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ABSTRACT

Achieving fusion of deep learning with combinatorial algorithms promises trans-
formative changes to artificial intelligence. One possible approach is to introduce
combinatorial building blocks into neural networks. Such end-to-end architec-
tures have the potential to tackle combinatorial problems on raw input data such
as ensuring global consistency in multi-object tracking or route planning on maps
in robotics. In this work, we present a method that implements an efficient back-
ward pass through blackbox implementations of combinatorial solvers with linear
objective functions. We provide both theoretical and experimental backing. In
particular, we incorporate the Gurobi MIP solver, Blossom V algorithm, and Di-
jkstra’s algorithm into architectures that extract suitable features from raw inputs
for the traveling salesman problem, the min-cost perfect matching problem and
the shortest path problem.

1 INTRODUCTION

The toolbox of popular methods in computer science currently sees a split into two major com-
ponents. On the one hand, there are classical algorithmic techniques from discrete optimization
– graph algorithms, SAT-solvers, integer programming solvers – often with heavily optimized im-
plementations and theoretical guarantees on runtime and performance. On the other hand, there is
the realm of deep learning allowing data-driven feature extraction as well as the flexible design of
end-to-end architectures. The fusion of deep learning with combinatorial optimization is desirable
both for foundational reasons – extending the reach of deep learning to data with large combinato-
rial complexity – and in practical applications. These often occur for example in computer vision
problems that require solving a combinatorial sub-task on top of features extracted from raw input
such as establishing global consistency in multi-object tracking from a sequence of frames.

The fundamental problem with constructing hybrid architectures is differentiability of the combina-
torial components. State-of-the-art approaches pursue the following paradigm: introduce suitable
approximations or modifications of the objective function or of a baseline algorithm that eventu-
ally yield a differentiable computation. The resulting algorithms are often sub-optimal in terms of
runtime, performance and optimality guarantees when compared to their unmodified counterparts.
While the sources of sub-optimality vary from example to example, there is a common theme: any
differentiable algorithm in particular outputs continuous values and as such it solves a relaxation of
the original problem. It is well-known in combinatorial optimization theory that even strong and
practical convex relaxations induce lower bounds on the approximation ratio for large classes of
problems (Raghavendra, 2008; Thapper & Živný, 2017) which makes them inherently sub-optimal.
This inability to incorporate the best implementations of the best algorithms is unsatisfactory.

In this paper, we propose a method that, at the cost of one hyperparameter, implements a backward
pass for a blackbox implementation of a combinatorial algorithm or a solver that optimizes a linear
objective function. This effectively turns the algorithm or solver into a composable building block
of neural network architectures, as illustrated in Fig. 1. Suitable problems with linear objective
include classical problems such as SHORTEST-PATH, TRAVELING-SALESMAN (TSP), MIN-COST-
PERFECT-MATCHING, various cut problems as well as entire frameworks such as integer programs
(IP), Markov random fields (MRF) and conditional random fields (CRF).

The main technical challenge boils down to providing an informative gradient of a piecewise con-
stant function. To that end, we are able to heavily leverage the minimization structure of the un-
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Figure 1: Architecture design enabled by Theorem 1. Blackbox combinatorial solver embedded into
a neural network.

derlying combinatorial problem and efficiently compute a gradient of a continuous interpolation.
While the roots of the method lie in loss-augmented inference, the employed mathematical tech-
nique for continuous interpolation is novel. The computational cost of the introduced backward
pass matches the cost of the forward pass. In particular, it also amounts to one call to the solver.

In experiments, we train architectures that contain unmodified implementations of the fol-
lowing efficient combinatorial algorithms: general-purpose mixed-integer programming solver
Gurobi (Gurobi Optimization, 2019), state-of-the-art C implementation of MIN-COST-PERFECT-
MATCHING algorithm – Blossom V (Kolmogorov, 2009) and Dijkstra’s algorithm (Dijkstra, 1959)
for SHORTEST-PATH. We demonstrate that the resulting architectures train without sophisticated
tweaks and are able to solve tasks that are beyond the capabilities of conventional neural networks.

2 RELATED WORK

Multiple lines of work lie at the intersection of combinatorial algorithms and deep learning. We
primarily distinguish them by their motivation.

Motivated by applied problems. Even though computer vision has seen a substantial shift from
combinatorial methods to deep learning, some problems still have a strong combinatorial aspect and
require hybrid approaches. Examples include multi-object tracking (Schulter et al., 2017), semantic
segmentation (Chen et al., 2018), multi-person pose estimation (Pishchulin et al., 2016; Song et al.,
2018), stereo matching (Knöbelreiter et al., 2017) and person re-identification (Ye et al., 2017). The
combinatorial algorithms in question are typically Markov random fields (MRF) (Chen et al., 2015),
conditional random fields (CRF) (Marin et al., 2019), graph matching (Ye et al., 2017) or integer
programming (Schulter et al., 2017). In recent years, a plethora of hybrid end-to-end architectures
have been proposed. The techniques used for constructing the backward pass range from employing
various relaxations and approximations of the combinatorial problem (Chen et al., 2015; Zheng
et al., 2015) over differentiating a fixed number of iterations of an iterative solver (Paschalidou
et al., 2018; Tompson et al., 2014; Liu et al., 2015) all the way to relying on the structured SVM
framework (Tsochantaridis et al., 2005; Chen et al., 2015).

Motivated by “bridging the gap”. Building links between combinatorics and deep learning can
also be viewed as a foundational problem; for example, Battaglia et al. (2018) advocate that “com-
binatorial generalization must be a top priority for AI”. One such line of work focuses on designing
architectures with algorithmic structural prior – for example by mimicking the layout of a Turing
machine (Sukhbaatar et al., 2015; Vinyals et al., 2015; Graves et al., 2014; 2016) or by promoting
behaviour that resembles message-passing algorithms as it is the case in Graph Neural Networks and
related architectures (Scarselli et al., 2009; Li et al., 2016; Battaglia et al., 2018). Another approach
is to provide neural network building blocks that are specialized to solve some types of combinato-
rial problems such as satisfiability (SAT) instances (Wang et al., 2019). Some works have directly
addressed the question of learning combinatorial optimization algorithms such as the TRAVELING-
SALESMAN-PROBLEM in Bello et al. (2017).

There are also efforts to bridge the gap in the opposite direction; to use deep learning methods to im-
prove state-of-the-art combinatorial solvers, typically by learning (otherwise hand-crafted) heuris-
tics. Some works have again targeted the TRAVELING-SALESMAN-PROBLEM (Kool et al., 2019;
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Deudon et al., 2018; Bello et al., 2017) as well as other NP-Hard problems (Li et al., 2018). Also,
more general solvers received some attention; this includes SAT-solvers (Selsam & Bjørner, 2019;
Selsam et al., 2019), integer programming solvers (Gasse et al., 2019) and SMT-solvers (satisfiabil-
ity modulo theories)(Balunovic et al., 2018).

3 METHOD

Let us first formalize the notion of a combinatorial solver. We expect the solver to receive continuous
input w ∈ W ⊆ RN (e.g. edge weights of a fixed graph) and return discrete output y from some
finite set Y (e.g. all traveling salesman tours on a fixed graph) that minimizes some cost c(w, y)
(e.g. length of the tour). More precisely, the solver maps

w 7→ y(w) such that y(w) = argmin
y∈Y

c(w, y). (1)

We will restrict ourselves to objective functions c(w, y) that are linear , namely c(w, y) may be
represented as

c(w, y) = w · φ(y) for w ∈W and y ∈ Y (2)
in which φ : Y → RN is an injective representation of y ∈ Y in RN . For brevity, we omit the
mapping φ and instead treat elements of Y as discrete points in RN .

Note that such definition of a solver is still very general as there are no assumptions on the set of
constraints or on the structure of the output space Y .
Example 1 (Encoding shortest-path problem). IfG = (V,E) is a given graph with vertices s, t ∈ V ,
the combinatorial solver for the (s, t)-SHORTEST-PATH would take edge weights w ∈W = R|E| as
input and produce the shortest path y(w) represented as φ(y) ⊆ {0, 1}|E| an indicator vector of the
selected edges. The cost function is then indeed the inner product c(w, y) = w · φ(y).

The task to solve during back-propagation is the following. We receive the gradient dL/dy. of the
global loss L with respect to solver output y at a given point ŷ = y(ŵ). We are expected to return
dL/dw, the gradient of the loss with respect to solver input w at a point ŵ.

Since Y is finite, there are only finitely many values of y(w). In other words, this function of w is
piecewise constant and the gradient is identically zero or does not exist (at points of jumps). This
should not come as a surprise; if one does a small perturbation to edge weights of a graph, one
usually does not change the optimal TSP tour and on rare occasions alters it drastically. This has an
important consequence:

The fundamental problem with differentiating through combinatorial solvers is
not the lack of differentiability; the gradient exists almost everywhere. However,
this gradient is a constant zero and as such is unhelpful for optimization.

Accordingly, we will not rely on standard techniques for gradient estimation (see Mohamed et al.
(2019) for a comprehensive survey).

First, we simplify the situation by considering the linearization f of L at the point ŷ. Then for

f(y) = L(ŷ) +
dL

dy
(ŷ) · (y − ŷ) we have

df
(
y(w)

)
dw

=
dL

dw

and therefore it suffices to focus on differentiating the piecewise constant function f
(
y(w)

)
.

If the piecewise constant function at hand was arbitrary, we would be forced to use zero-order
gradient estimation techniques such as computing finite differences. These require prohibitively
many function evaluations particularly for high-dimensional problems.

However, the function f
(
y(w)

)
is a result of a minimization process and it is known that for smooth

spaces Y there are techniques for such “differentiation through argmin” (Schmidt & Roth, 2014;
Samuel & Tappen, 2009; Foo et al., 2008; Domke, 2012; Amos et al., 2017; Amos & Kolter, 2017).
It turns out to be possible to build – with different mathematical tools – a viable discrete analogy. In
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Figure 2: Continuous interpolation of a piecewise constant function. (a) fλ for a small value of
λ; the set Wλ

eq is still substantial and only two interpolators g1 and g2 are incomplete. Also, all
interpolators are 0-interpolators. (b) fλ for a high value of λ; most interpolators are incomplete and
we also encounter a δ-interpolator g3 (between y1 and y2) which attains the value f(y1) δ-away from
the set P1. Despite losing some local structure for high λ, the gradient of fλ is still informative.

particular, we can efficiently construct a function fλ(w), a continuous interpolation of f
(
y(w)

)
,

whose gradient we return (see Fig. 2). The hyper-parameter λ > 0 controls the trade-off between
“informativeness of the gradient” and “faithfulness to the original function”.

Before diving into the formalization, we present the final algorithm as listed in Algo. 1. It is simple
to implement and the backward pass indeed only runs the solver once on modified input. Providing
the justification, however, is not straightforward, and it is the subject of the rest of the section.

Algorithm 1 Forward and Backward Pass

function FORWARDPASS(ŵ)
ŷ := Solver(ŵ) // ŷ = y(ŵ)
save ŵ and ŷ for backward pass
return ŷ

function BACKWARDPASS(dLdy (ŷ), λ)
load ŵ and ŷ from forward pass
w′ := ŵ + λ · dLdy (ŷ)

// Calculate perturbed weights
yλ := Solver(w′)
return ∇wfλ(ŵ) := − 1

λ

[
ŷ − yλ

]
// Gradient of continuous interpolation

3.1 CONSTRUCTION AND PROPERTIES OF fλ

Before we give the exact definition of the function fλ, we formulate several requirements on it. This
will help us understand why fλ(w) is a reasonable replacement for f

(
y(w)

)
and, most importantly,

why its gradient captures changes in the values of f .
Property A1. For each λ > 0, fλ is continuous and piecewise affine.

The second property describes the trade-off induced by changing the value of λ. For λ > 0, we
define sets Wλ

eq and Wλ
dif as the sets where f

(
y(w)

)
and fλ(w) coincide and where they differ, i.e.

Wλ
eq =

{
w ∈W : fλ(w) = f

(
y(w)

)}
and Wλ

dif =W \Wλ
eq.

Property A2. The sets Wλ
dif are monotone in λ and they vanish as λ→ 0+, i.e.

Wλ1

dif ⊆W
λ2

dif for 0 < λ1 ≤ λ2 and Wλ
dif → ∅ as λ→ 0+.

In other words, Property A2 tells us that λ controls the size of the set where fλ deviates from f and
where fλ has meaningful gradient.

In the third and final property, we want to capture the interpolation behavior of fλ. For that purpose,
we define a δ-interpolator of f . We say that g, defined on a set G ⊂ W , is a δ-interpolator of f
between y1 and y2 ∈ Y , if

• g is non-constant affine function;
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Figure 3: Example fλ for w ∈ R2 and λ = 3, 10, 20 (left to right). As λ changes, the interpolation
fλ is less faithful to the piecewise constant f(y(w)) but provides reasonable gradient on a larger set.

• the image g(G) is an interval with endpoints f(y1) and f(y2);

• g attains the boundary values f(y1) and f(y2) at most δ-far away from where f(y(w)) does.
In particular, there is a point wk ∈ G for which g(wk) = f(yk) and dist(wk, Pk) ≤ δ,
where Pk = {w ∈W : y(w) = yk}, for k = 1, 2.

In the special case of a 0-interpolator g, the graph of g connects (in a topological sense) two com-
ponents of the graph of f

(
y(w)

)
. In the general case, δ measures displacement of the interpolator

(see also Fig. 2 for some examples). This displacement on the one hand loosens the connection to
f
(
y(w)

)
but on the other hand allows for less local interpolation which might be desirable.

Property A3. The function fλ consists of finitely many (possibly incomplete) δ-interpolators of f
on Wλ

dif where δ ≤ Cλ for some fixed C. Equivalently, the displacement is linearly controlled by λ.

For defining the function fλ, we need a solution of a perturbed optimization problem

yλ(w) = argmin
y∈Y

{c(w, y) + λf(y)}. (3)

Theorem 1. Let λ > 0. The function fλ defined by

fλ(w) = f
(
yλ(w)

)
− 1

λ

[
c
(
w, y(w)

)
− c
(
w, yλ(w)

)]
(4)

satisfies Properties A1, A2, A3.

Let us remark that already the continuity of fλ is not apparent from its definition as the first term
f
(
yλ(w)

)
is still a piecewise constant function. Proof of this result, along with geometrical descrip-

tion of fλ, can be found in section A.2. Fig. 3 visualizes fλ for different values if λ.

Now, since fλ is ensured to be differentiable, we have

∇fλ(w) = −
1

λ

[ dc
dw

(
w, y(w)

)
− dc

dw

(
w, yλ(w)

)]
= − 1

λ

[
y(w)− yλ(w)

]
. (5)

The second equality then holds due to (2). We then return∇fλ as a loss gradient.

Remark 1. The roots of the method we propose lie in loss-augmented inference. In fact, the update
rule from (5) (but not the function fλ or any of its properties) was already proposed in a different
context in Hazan et al. (2010); Song et al. (2016) and was later used in Lorberbom et al. (2018);
Mohapatra et al. (2018). The main difference to our work is that only the case of λ→ 0+ is recom-
mended and studied, which in our situation computes the correct but uninformative zero gradient.
Our analysis implies that larger values of λ are not only sound but even preferable. This will be
seen in experiments where we use values λ ≈ 10− 20.

3.2 EFFICIENT COMPUTATION OF fλ

Computing yλ in (3) is the only potentially expensive part of evaluating (5). However, the linear
interplay of the cost function and the gradient trivially gives a resolution.
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Table 1: Experiments Overview.

Graph Problem Solver Solver instance size Input format
Shortest path Dijkstra up to 900 vertices (image) up to 240× 240)
Min Cost PM Blossom V up to 1104 edges (image) up to 528× 528

Traveling Salesman Gurobi up to 780 edges up to 40 images (20× 40)

Proposition 1. Let ŵ ∈W be fixed. If we set w′ = ŵ + λdL
dy (ŷ), we can compute yλ as

yλ(ŵ) = argmin
y∈Y

c(w′, y).

In other words, yλ is the output of calling the solver on input w′.

4 EXPERIMENTS

In this section, we experimentally validate a proof of concept: that architectures containing exact
blackbox solvers (with backward pass provided by Algo. 1) can be trained by standard methods.

To that end, we solve three synthetic tasks as listed in Tab. 1. These tasks are designed to mimic
practical examples from Section 2 and solving them anticipates a two-stage process: 1) extract
suitable features from raw input, 2) solve a combinatorial problem over the features. The dimen-
sionalities of input and of intermediate representations also aim to mirror practical problems and are
chosen to be prohibitively large for zero-order gradient estimation methods. Guidelines of setting
the hyperparameter λ are given in section A.1. The source code and datasets will be made public.

We include the performance of ResNet18 He et al. (2016) as a sanity check to demonstrate that the
constructed datasets are too complex for standard architectures.
Remark 2. The included solvers have very efficient implementations and do not severely impact
runtime. All models train in under two hours on a single machine with 1 GPU and no more than 24
utilized CPU cores. Only for the large TSP problems the solver’s runtime dominates.

4.1 WARCRAFT SHORTEST PATH

Problem input and output. The training dataset for problem SP(k) consists of 10000 examples
of randomly generated images of terrain maps from the Warcraft II tileset (Guyomarch, 2017). The
maps have an underlying grid of dimension k×k where each vertex represents a terrain with a fixed
cost that is unknown to the network. The shortest (minimum cost) path between top left and bottom
right vertices is encoded as an indicator matrix and serves as a label (see also Fig. 4). We consider
datasets SP(k) for k ∈ {12, 18, 24, 30}. More experimental details are provided in section A.3.

Architecture. An image of the terrain map is presented to a convolutional neural network which
outputs a k × k grid of vertex costs. These costs are then the input to the Dijkstra algorithm to
compute the predicted shortest path for the respective map. The loss used for computing the gradient
update is the Hamming distance between the true shortest path and the predicted shortest path.

Table 2: Results for Warcraft shortest path. Reported is
the accuracy, i.e. percentage of paths with the optimal costs.
Standard deviations are over five restarts.

Embedding Dijkstra ResNet18
k Train % Test % Train % Test %
12 99.7± 0.0 96.0± 0.3 100.0± 0.0 23.0± 0.3
18 98.9± 0.2 94.4± 0.2 99.9± 0.0 0.7± 0.3
24 97.8± 0.2 94.4± 0.6 100.0± 0.0 0.0± 0.0
30 97.4± 0.1 94.0± 0.3 95.6± 0.5 0.0± 0.0

Results. Our method learns to pre-
dict the shortest paths with high ac-
curacy and generalization capability,
whereas the ResNet18 baseline un-
surprisingly fails to generalize al-
ready for small grid sizes of k =
12. Since the shortest paths in the
maps are often nonunique (i.e. there
are multiple shortest paths with the
same cost), we report the percentage
of shortest path predictions that have
optimal cost. The results are summa-
rized in Tab. 2.
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Figure 4: The SP(k) dataset. (a) Each input is a k × k grid of tiles corresponding to a Warcraft II
terrain map, the respective label is a the matrix indicating the shortest path from top left to bottom
right. (b) is a different map with correctly predicted shortest path.

4.2 GLOBE TRAVELING SALESMAN PROBLEM

Problem input and output. The training dataset for problem TSP(k) consists of 10000 examples
where the input for each example is a k-element subset of fixed 100 country flags and the label
is the shortest traveling salesman tour through the capitals of the corresponding countries. The
optimal tour is represented by its adjacency matrix (see also Fig. 5). We consider datasets TSP(k)
for k ∈ {5, 10, 20, 40}.

Architecture. Each of the k flags is presented to a convolutional network that produces k three-
dimensional vectors. These vectors are projected onto the unit sphere in R3; a representation of the
globe. The TSP solver receives a matrix of pairwise distances of the k computed locations. The
loss of the network is the Hamming distance between the true and the predicted TSP adjacency
matrix. The architecture is expected to learn the correct representations of the flags (i.e. locations
of the respective countries’ capitals on Earth, up to rotations of the sphere). The employed Gurobi
solver optimizes a mixed-integer programming formulation of TSP using the cutting plane method
(Marchand et al., 2002) for lazy sub-tour elimination.

Table 3: Results for Globe TSP. Reported is the full tour
accuracy. Standard deviations are over five restarts.

Embedding TSP Solver ResNet18
k Train % Test % Train % Test %
5 99.8± 0.0 99.2± 0.1 100.0± 0.0 1.9± 0.6

10 99.8± 0.1 98.7± 0.2 99.0± 0.1 0.0± 0.0
20 99.1± 0.1 98.4± 0.4 98.8± 0.3 0.0± 0.0
40 97.4± 0.2 96.7± 0.4 96.9± 0.3 0.0± 0.0

Results. This architecture not only
learns to extract the correct TSP tours
but also learns the correct represen-
tations. Quantitative evidence is pre-
sented in Tab. 3, where we see that
the learned locations generalize well
and lead to correct TSP tours also
on the test set and also on somewhat
large instances (note that there are
39! ≈ 1046 admissible TSP tours for
k = 40). The baseline architecture
only memorizes the training set. Ad-
ditionally, we can extract the suggested locations of world capitals and compare them with reality.
To that end, we present Fig. 5b, where the learned locations of 10 capitals in Southeast Asia are
displayed.

4.3 MNIST MIN-COST PERFECT MATCHING

Problem input and output. The training dataset for problem PM(k) consists of 10000 examples
where the input to each example is a set of k2 digits drawn from the MNIST dataset arranged in a
k× k grid. For computing the label, we consider the underlying k× k grid graph (without diagonal
edges) and solve a MIN-COST-PERFECT-MATCHING problem, where edge weights are given simply
by reading the two vertex digits as a two-digit number (we read downwards for vertical edges and
from left to right for horizontal edges). The optimal perfect matching (i.e. the label) is encoded by
an indicator vector for the subset of the selected edges, see example in Fig. 6.
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(a) (b)
Figure 5: The TSP(k) problem. (a) illustrates the dataset. Each input is a sequence of k flags and
the corresponding label is the adjacency matrix of the optimal TSP tour around the corresponding
capitals. (b) displays the learned locations of 10 country capitals in southeast Asia and Australia,
accurately recovering their true position.

Architecture. The grid image is the input of a convolutional neural network which outputs a grid
of vertex weights. These weights are transformed into edge weights as described above and given to
the solver. The loss function is Hamming distance between solver output and the true label.

Table 4: Results for MNIST Min-cost perfect matching. Re-
ported is the accuracy of predicting an optimal matching. Stan-
dard deviations are over five restarts.

Embedding Blossom V ResNet18
k Train % Test % Train % Test %
4 99.97± 0.01 98.32± 0.24 100.0± 0.0 92.5± 0.3
8 99.95± 0.04 99.92± 0.01 100.0± 0.0 8.3± 0.8
16 99.02± 0.84 99.06± 0.57 100.0± 0.0 0.0± 0.0
24 95.63± 5.49 92.06± 7.97 96.1± 0.5 0.0± 0.0

Results. The architecture con-
taining the solver is capable of
good generalizations suggesting
that the correct representation is
learned. The performance is
good even on larger instances
and despite the presence of noise
in supervision – often there are
many optimal matchings. In con-
trast, the ResNet18 baseline only
achieves reasonable performance
for the simplest case PM(4). The
results are summarized in Tab. 4.

(a) (b)
Figure 6: Visualization of the PM dataset. (a) shows the case of PM(4). Each input is a 4× 4 grid
of MNIST digits and the corresponding label is the indicator vector for the edges in the min-cost
perfect matching. (b) shows the correct min-cost perfect matching output from the network. The
cost of the matching is 348 (46 + 12 horizontally and 27 + 45 + 40 + 67 + 78 + 33 vertically).

5 DISCUSSION

We provide a unified mathematically sound algorithm to embed combinatorial algorithms into neu-
ral networks. Its practical implementation is straightforward and training succeeds with standard
deep learning techniques. The two main branches of future work are: 1) exploring the potential of
newly enabled architectures, 2) addressing standing real-world problems. The latter case requires
embedding approximate solvers (that are common in practice). This breaks some of our theoretical
guarantees but given their strong empirical performance, the fusion might still work well in practice.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
arXiv, 1703.00443, 2017. URL http://arxiv.org/abs/1703.00443.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In 34th International
Conference on Machine Learning (ICML’17), pp. 146–155. JMLR, 2017.

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve SMT formulas. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 10317–10328. Curran Associates, Inc., 2018.

Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wier-
stra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Rela-
tional inductive biases, deep learning, and graph networks. arXiv, abs/1806.01261, 2018. URL
http://arxiv.org/abs/1806.01261.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Workshop Track Proceedings, 2017. URL http://openreview.net/
forum?id=Bk9mxlSFx.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. DeepLab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(04):834–848, 2018.

Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, and Raquel Urtasun. Learning deep
structured models. In Proceedings of the 32nd International Conference on International Confer-
ence on Machine Learning, ICML’15, pp. 1785–1794. JMLR, 2015.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Willem-Jan van Hoeve (ed.),
Proc. of Intl. Conf. on Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research, pp. 170–181. Springer, 2018.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271,
December 1959. doi: 10.1007/BF01386390.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326, 2012.

Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965. URL www.cs.
berkeley.edu/˜christos/classics/edmonds.ps.

Chuan-sheng Foo, Chuong B Do, and Andrew Y Ng. Efficient multiple hyperparameter learning for
log-linear models. In Advances in neural information processing systems, pp. 377–384, 2008.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. arXiv, abs/1906.01629, 2019. URL
http://arxiv.org/abs/1906.01629.

John C. Gower and Garmt B. Dijksterhuis. Procrustes problems, volume 30 of Oxford Statistical
Science Series. Oxford University Press, Oxford, UK, January 2004.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv, abs/1410.5401, 2014.
URL http://arxiv.org/abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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A APPENDIX

A.1 GUIDELINES FOR SETTING THE VALUES OF λ.

In practice, λ has to be chosen appropriately, but we found its exact choice uncritical (no precise tun-
ing was required). Nevertheless, note that λ should cause a noticeable disruption in the optimization
problem from equation (3), otherwise it is too likely that y(w) = yλ(w) resulting in a zero gradient.
In other words, λ should roughly be of the magnitude that brings the two terms in the definition of
w′ in Prop. 1 to the same order:

λ ≈ 〈w〉〈
dL
dy

〉
where 〈·〉 stands for the average. This again justifies that λ is a true hyperparameter and that there
is no reason to expect values around λ→ 0+.

A.2 PROOFS

Proof of Proposition 1. Let us write L = L(ŷ) and ∇L = dL
dy (ŷ), for brevity. Thanks to the

linearity of c and the definition of f , we have

c(ŵ, y) + λf(y) = ŵy + λ
(
L+∇L(y − ŷ)

)
= (ŵ + λ∇L)y + λL− λ∇Lŷ = c(w′, y) + c0,

where c0 = λL−λ∇Lŷ and w′ = ŵ+λ∇L as desired. The conclusion about the points of minima
then follows.

Before we prove Theorem 1, we make some preliminary observations. To start with, due to the
definition of the solver, we have the fundamental inequality

c(w, y) ≥ c
(
w, y(w)

)
for every w ∈W and y ∈ Y . (6)

Observation 1. The function w 7→ c
(
w, y(w)

)
is continuous and piecewise linear.

Proof. Since c’s are linear and distinct, c
(
w, y(w)

)
, as their pointwise minimum, has the desired

properties.

Analogous fundamental inequality

c(w, y) + λf(y) ≥ c
(
w, yλ(w)

)
+ λf

(
yλ(w)

)
for every w ∈W and y ∈ Y (7)

follows from the definition of the solution to the optimization problem (3).

A counterpart of Observation 1 reads as follows.

Observation 2. The function w 7→ c
(
w, yλ(w)

)
+ λf

(
yλ(w)

)
is continuous and piecewise affine.
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Proof. The function under inspection is a pointwise minimum of distinct affine functions w 7→
c(w, y) + λf(y) as y ranges Y .

As a consequence of above-mentioned fundamental inequalities, we obtain the following two-sided
estimates on fλ.

Observation 3. The following inequalities hold for w ∈W

f
(
yλ(w)

)
≤ fλ(w) ≤ f

(
y(w)

)
.

Proof. Inequality (6) implies that c
(
w, y(w)

)
− c

(
w, yλ(w)

)
≤ 0 and the first inequality then

follows simply from the definition of fλ. As for the second one, it suffices to apply (7) to y =
y(w).

Now, let us introduce few notions that will be useful later in the proofs. For a fixed λ, W partitions
into maximal connected sets P on which yλ(w) is constant (see Fig. 7). We denote this collection
of sets byWλ and setW =W0.

For λ ∈ R and y1 6= y2 ∈ Y , we denote

Fλ(y1, y2) =
{
w ∈W : c(w, y1) + λf(y1) = c(w, y2) + λf(y2)

}
.

We write F (y1, y2) = F0(y1, y2), for brevity. For technical reasons, we also allow negative values
of λ here.

(a) The situation for λ = 0. We can see the
polytope P on which y(w) attains y1 ∈ Y . The
boundary of P is composed of segments of lines
F (y1, yk) for k = 2, . . . , 5.

(b) The same situation is captured for some rela-
tively small λ > 0. Each line Fλ(y1, yk) is par-
allel to its corresponding F (y1, yk) and encom-
passes a convex polytope in Wλ.

Figure 7: The familyWλ of all maximal connected sets P on which yλ is constant.

Note, that if W = RN , then Fλ is a hyperplane since c’s are linear. In general, W may just
be a proper subset of RN and, in that case, Fλ is just the restriction of a hyperplane onto W .
Consequently, it may happen that Fλ(y1, y2) will be empty for some pair of y1, y2 and some λ ∈ R.
To emphasize this fact, we say “hyperplane in W ”. Analogous considerations should be taken into
account for all other linear objects. The note “inW ” stands for the intersection of these linear object
with the set W .

Observation 4. Let P ∈ Wλ and let yλ(w) = y for w ∈ P . Then P is a convex polytope in W ,
where the facets consist of parts of finitely many hyperplanes Fλ(y, yk) in W for some {yk} ⊂ Y .

Proof. Assume that W = RN . The values of yλ may only change on hyperplanes of the form
Fλ(y, y

′) for some y′ ∈ Y . Then P is an intersection of corresponding half-spaces and therefore P
is a convex polytope. If W is a proper subset of RN the claim follows by intersecting all the objects
with W .
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Observation 5. Let y1, y2 ∈ Y be distinct. If nonempty, the hyperplanes F (y1, y2) and Fλ(y1, y2)
are parallel and their distance is equal to |λ|K(y1, y2), where

K(y1, y2) =
|f(y1)− f(y2)|
‖y1 − y2‖

.

Proof. If we define a function c(w) = c(w, y1) − c(w, y2) = w(y1 − y2) and a constant C =
f(y2)− f(y1), then our objects rewrite to

F (y1, y2) = {w ∈W : c(w) = 0} and Fλ(y1, y2) = {w ∈W : c(w) = λC}.

Since c is linear, these sets are parallel and F (y1, y2) intersects the origin. Thus, the required
distance is the distance of the hyperplane Fλ(y1, y2) from the origin, which equals to |λC|/‖y1 −
y2‖.

As the set Y is finite, there is a uniform upper bound K on all values of K(y1, y2). Namely

K = max
y1,y2∈Y
y1 6=y2

K(y1, y2). (8)

A.2.1 PROOF OF THEOREM 1

Proof of Property A1. Now, Property A1 follows, since

fλ(w) =
1

λ

[
c
(
w, yλ(w)

)
+ λf

(
yλ(w)

)]
− 1

λ
c
(
w, y(w)

)
and fλ is a difference of continuous and piecewise affine functions.

Proof of Property A2. Let 0 < λ1 ≤ λ2 be given. We show that Wλ2
eq ⊆ Wλ1

eq which is the same
as showing Wλ1

dif ⊆W
λ2

dif . Assume that w ∈Wλ2
eq , that is, by the definition of Wλ2

eq and fλ,

c
(
w, y(w)

)
+ λ2f

(
y(w)

)
= c(w, y2) + λ2f(y2), (9)

in which we denoted y2 = yλ2(w). Our goal is to show that

c
(
w, y(w)

)
+ λ1f

(
y(w)

)
= c(w, y1) + λ1f(y1), (10)

where y1 = yλ1
(w) as this equality then guarantees that w ∈ Wλ1

eq . Observe that (7) applied to
λ = λ1 and y = y(w), yields the inequality “≥” in (10).

Let us show the reversed inequality. By Observation 3 applied to λ = λ1, we have

f
(
y(w)

)
≥ f(y1). (11)

We now use (7) with λ = λ2 and y = y1, followed by equality (9) to obtain

c(w, y1) + λ1f(y1) = c(w, y1) + λ2f(y1) + (λ1 − λ2)f(y1)
≥ c(w, y2) + λ2f(y2) + (λ1 − λ2)f(y1)
= c
(
w, y(w)

)
+ λ2f

(
y(w)

)
+ (λ1 − λ2)f(y1)

= c
(
w, y(w)

)
+ λ1f

(
y(w)

)
+ (λ2 − λ1)

[
f
(
y(w)

)
− f(y1)

]
≥ c
(
w, y(w)

)
+ λ1f

(
y(w)

)
where the last inequality holds due to (11).

Next, we have to show that Wλ
dif → ∅ as λ→ 0+, i.e. that for almost every w ∈W , there is a λ > 0

such that w /∈Wλ
dif. To this end, let w ∈W be given. We can assume that y(w) is a unique solution

of solver (1), since two solutions, say y1 and y2, coincide only on the hyperplane F (y1, y2) in W ,
which is of measure zero. Thus, since Y is finite, the constant

c = min
y∈Y

y 6=y(w)

{
c(w, y)− c

(
w, y(w)

)}
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is positive. Denote
d = max

y∈Y

{
f
(
y(w)

)
− f(y)

}
. (12)

If d > 0, set λ < c/d. Then, for every y ∈ Y such that f
(
y(w)

)
> f(y), we have

λ <
c(w, y)− c

(
w, y(w)

)
f
(
y(w)

)
− f(y)

which rewrites
c
(
w, y(w)

)
+ λf

(
y(w)

)
< c(w, y) + λf(y). (13)

For the remaining y’s, (13) holds trivially for every λ > 0. Therefore, y(w) is a solution of the
minimization problem (3), whence yλ(w) = y(w). This shows that w ∈ Wλ

eq as we wished. If
d = 0, then f

(
y(w)

)
≤ f(y) for every y ∈ Y and (13) follows again.

Proof of Property A3. Let y1 6= y2 ∈ Y be given. We show that on the component of the set

{w ∈W : y(w) = y1 and yλ(w) = y2} (14)

the function fλ agrees with a δ-interpolator, where δ ≤ Cλ and C > 0 is an absolute constant. The
claim follows as there are only finitely many sets and their components of the form (14) in Wλ

dif.

Let us set
h(w) = c(w, y1)− c(w, y2) for w ∈W

and
g(w) = f(y2)−

1

λ
h(w).

The condition on c tells us that h is a non-constant affine function. It follows by the definition of
F (y1, y2) and Fλ(y1, y2) that

h(w) = 0 if and only if w ∈ F (y1, y2) (15)

and
h(w) = λ

(
f(y2)− f(y1)

)
if and only if w ∈ Fλ(y1, y2). (16)

By Observation 5, the sets F and Fλ are parallel hyperplanes. Denote by G the nonempty intersec-
tion of their corresponding half-spaces in W . We show that g is a δ-interpolator of f on G between
y1 and y2, with δ being linearly controlled by λ.

We have already observed that g is the affine function ranging from f(y1) – on the set Fλ(y1, y2) –
to f(y2) – on the set F (y1, y2). It remains to show that g attains both the values f(y1) and f(y2)
at most δ-far from the sets P1 and P2, respectively, where Pk ∈ W denotes a component of the set
{w ∈W : y(w) = yk}, k = 1, 2.

Consider y1 first. By Observation 4, there are z1, . . . , z` ∈ Y , such that facets of P1 are parts of
hyperplanes F (y1, z1), . . . , F (y1, z`) in W . Each of them separates W into two half-spaces, say
W+
k and W−k , where W−k is the half-space which contains P1 and W+

k is the other one. Let us
denote

ck(w) = c(w, y1)− c(w, zk) for w ∈W and k = 1, . . . , `.

Every ck is a non-zero linear function which is negative on W−k and positive on W+
k . By the

definition of y1, we have

c(w, y1) + λf(y1) ≤ c(w, zk) + λf(zk) for w ∈ P1 and for k = 1, . . . , `,

that is
ck(w) ≤ λ

(
f(zk)− f(y1)

)
for w ∈ P1 and for k = 1, . . . , `.

Now, denote

Wλ
k =

{
w ∈W : ck(w) ≤ λ

∣∣f(zk)− f(y1)∣∣} for k = 1, . . . , `.

Each Wλ
k is a half-space in W containing W−k and hence P1. Let us set Pλ1 =

⋂`
k=1W

λ
k . Clearly,

P1 ⊆ Pλ1 (see Fig. 8). By Observation 5, the distance of the hyperplane
{
w ∈ W : ck(w) =

λ
∣∣f(zk)− f(y1)∣∣} from P1 is at most λK, where K is given by (8). Therefore, since all the facets
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(a) The facets of P1 consist of parts of hyper-
planes F (y1, zk) in W . Each facet F (y1, zk) has
its corresponding shifts Fλ and F−λ, from which
only one intersects P . The polytope Pλ1 is then
bounded by those outer shifts.

(b) The interpolator g attains the value f(y1) on
a part of Fλ(y1, y2) – a border of the domain G.
The value f(y2) is attained on a part of F (y1, y2)
– the second border of the strip G.

Figure 8: The polytopes P1 and Pλ1 and the interpolator g.

of Pλ1 are at most λK far from P1, there is a constant C such that each point of Pλ1 is at most Cλ
far from P1.

Finally, choose any w1 ∈ Pλ1 ∩ Fλ(y1, y2). By (16), we have g(w1) = f(y1), and by the definition
of Pλ1 , w1 is no farther than Cλ away from P1.

Now, let us treat y2 and define the set Pλ2 analogous to Pλ1 , where each occurrence of y1 is replaced
by y2. Any w2 ∈ Pλ2 ∩ F (y1, y2) has desired properties. Indeed, (15) ensures that g(w2) = f(y2)
and w2 is at most Cλ far away from P2.

A.3 DETAILS OF EXPERIMENTS

A.3.1 WARCRAFT SHORTEST PATH

The maps for the dataset have been generated with a custom random generation process by using
142 tiles from the Warcraft II tileset (Guyomarch, 2017). The costs for the different terrain types
range from 0.8–9.2. Some example maps of size 18 × 18 are presented in Fig. 9a together with
a histogram of the shortest path lengths. We used the first five layers of ResNet18 followed by a
max-pooling operation to extract the latent costs for the vertices.

(a) Three random example maps.

18 20 22 24 26 28 30 32 34 36
shortest path length

0.00

0.05

0.10

re
l. 

fre
qu

en
cy

18 × 18

(b) the shortest path distribution
in the training set. All possible
path lengths (18-35) occur.

Figure 9: Warcraft SP(18) dataset.

Optimization was carried out via Adam optimizer (Kingma & Ba, 2014) with scheduled learning
rate drops dividing the learning rate by 10 at epochs 30 and 40. Hyperparameters and model details
are listed in Tab. 5
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Table 5: Experimental setup for Warcraft Shortest Path.

k Optimizer(LR) Architecture Epochs Batch Size λ

12, 18, 24, 30 Adam(5× 10−4) subset of ResNet18 50 70 20

A.3.2 MNIST MIN-COST PERFECT MATCHING

The dataset consists of randomly generated grids of MNIST digits that are sampled from a subset
of 1000 digits of the full MNIST dataset. We trained a fully convolutional neural network with two
convolutional layers followed by a max-pooling operation that outputs a k × k grid of vertex costs
for each example. The vertex costs are transformed into the edge costs via the known cost function
and the edge costs are then the inputs to the Blossom V solver (Edmonds, 1965) as implemented in
(Kolmogorov, 2009).

Regarding the optimization procedure, we employed the Adam optimizer along with scheduled
learning rate drops dividing the learning rate by 10 at epochs 10 and 20, respectively. Other training
details are in Tab. 6. Lower batch sizes were used to reduce GPU memory requirements.

Table 6: Experimental setup for MNIST Min-cost Perfect Matching.

k Optimizer(LR) Architecture
[channels, kernel size, stride] Epochs Batch Size λ

4, 8 Adam(10−3) [[20, 5, 1], [20, 5, 1]] 30 70 10
16 Adam(10−3) [[50, 5, 1], [50, 5, 1]] 30 40 10
24 Adam(10−3) [[50, 5, 1], [50, 5, 1]] 30 30 10

A.3.3 GLOBE TRAVELING SALESMAN PROBLEM

For the Globe Traveling Salesman Problem we used a convolutional neural network architecture
of three convolutional layers and two fully connected layers. The last layer outputs a vector of
dimension 3k containing the k 3-dimensional representations of the respective countries’ capital
cities. These representations are projected onto the unit sphere and the matrix of pairwise distances
is fed to the TSP solver.

The high combinatorial complexity of TSP has negative effects on the loss landscape and results in
many local minima and high sensitivity to random restarts. For reducing sensitivity to restarts, we
set Adam parameters to β1 = 0.5 (as it is done for example in GAN training (Radford et al., 2015))
and ε = 10−3.

The local minima correspond to solving planar TSP as opposed to spherical TSP. For example, if
all cities are positioned to almost identical locations, the network can still make progress but it will
never have the incentive to spread the cities apart in order to reach the global minimum. To mitigate
that, we introduce a repellent force between epochs 15 and 30. In particular, we set

Lrep = E
i 6=j

e−‖xi−xj‖

where xi ∈ R3 for i = 1, . . . , k are the positions of the k cities on the unit sphere. The regularization
constants Ck were chosen as 2.0, 3.0, 6.0, and 20.0 for k ∈ {5, 10, 20, 40}.
For fine-tuning we also introduce scheduled learning rate drops where we divide the learning rate
by 10 at epochs 80 and 90.

Table 7: Experimental setup for the Globe Traveling Salesman Problem.

k Optimizer(LR)
Architecture

[channels, kernel size, stride],
linear layer size

Epochs Batch Size λ

5, 10, 20 Adam(10−4) [[20, 4, 2], [50, 4, 2], 500] 100 50 20
40 Adam(5× 10−5) [[20, 4, 2], [50, 4, 2], 500] 100 50 20

In Fig. 5b, we compare the true city locations with the ones learned by the hybrid architecture. Due to
symmetries of the sphere, the architecture can embed the cities in any rotated or flipped fashion. We
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resolve this by computing “the most favorable” isometric transformation of the suggested locations.
In particular, we solve the orthogonal Procrustes problem (Gower & Dijksterhuis, 2004)

R∗ = argmin
R:RTR=I

‖RX − Y ‖2

where X are the suggested locations, Y the true locations, and R∗ the optimal transformation to
apply. We report the resulting offsets in kilometers in Tab. 8.

Table 8: Average errors of city placement on the Earth.

k 5 10 20 40
Location offset (km) 69± 11 19± 5 11± 5 58± 7
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