
Under review as a conference paper at ICLR 2020

THE SURPRISING BEHAVIOR
OF GRAPH NEURAL NETWORKS

ABSTRACT

We highlight a lack of understanding of the behaviour of Graph Neural Networks
(GNNs) in various topological contexts. We present 4 experimental studies which
counter-intuitively demonstrate that the performance of GNNs is weakly depen-
dent on the topology, sensitive to structural noise and the modality (attributes or
edges) of information, and degraded by strong coupling between nodal attributes
and structure. We draw on the empirical results to recommend reporting of topo-
logical context in GNN evaluation and propose a simple (attribute-structure) de-
coupling method to improve GNN performance.

1 INTRODUCTION

Graph Neural Networks (GNNs) have produced state-of-the-art results in areas which utilize graphs
data. Despite their widespread and rapid application across many fields, little research has been
conducted on understanding the effect of topology on GNN behavior. Though GNNs use both graph
modalities i.e., the topology and nodal attributes, it is not clear whether they utilize topology to the
same degree as nodal attributes or if they generalize across topological contexts.

In this paper, we seek to underscore this lack of understanding. We present 4 empirical stud-
ies, which characterized and compared GNNs’ utilization of topology, with surprisingly counter-
intuitive results.

Topology, Does it really matter?: We empirically analyze GNN performance and show that it is,
contrary to expectation, only loosely dependent on the topological characteristics of a graph -
particularly those of connectivity. The impact of connectivity is explored in the extreme case of a
disconnected graph with multiple components (Section 3).

Just Noisy Graphs: We analyze the impact of topological perturbations on the models’ performance
and dependence on topology. Given the weak dependence of GNN performance on topological
features and the neighborhood aggregation mechanisms of GNNs, one would expect the graphs to
be robust to topological noise. However, we see that GNN performance degrades considerably
with noise (Section 4).

Attributes & Topology, together or not?: We show that instead of improving performance (Fosdick
& Hoff, 2015), increased coupling between the modalities of topology and nodal attributes
hampers it. We demonstrate a simple method to decouple the topological and attribute information
which improves performance by acting as a regularization mechanism (Section 5).

Attributes vs. Topology: We then create an experiment which questions whether the information
in the graph structure and the attribute stack has any overlap and is inter-convertible by simple
means (Section 6).

The counter-intuitive results of these experiments highlight a gap in understanding of the behavior
of GNNs in various common scenarios (Du et al., 2017). This gap prohibits applying these powerful
models to sensitive and diverse areas such as medicine (Parisot et al., 2018), chemistry (De Cao &
Kipf, 2018), and governance (Li & Goldwasser, 2019). The consequent recommendations from this
study take the first step in shrinking that gap.

2 METHODS

In this work we compared the behavior of a set of GNNs across engineered graphs derived from a
basket of benchmark datasets.
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Evaluation: The models were evaluated in a transductive node classification setting that closely
follows the evaluation setup in Shchur et al. (2018). For each model, we used a fixed set
of hyperparameters reported in Shchur et al. (2018), which are the best-performing configura-
tions that have achieved the best average accuracy on Cora and Citeseer datasets (averaged over
100 train/validation/test splits and 20 random initializations, using only the largest-connected-
component. In reporting test accuracies, unless otherwise mentioned, we report the average accuracy
averaged over 20 train/validation/test splits and 2 random initializations for each model.

Models: We consider the most prolific spectral, spatial, and attention based GNNs. In this work,
we study Graph Convolutional Network (GCN) (Kipf & Welling, 2016), GraphSAGE (GS) (Hamil-
ton et al., 2017) and Mixture Model Network (MoNet) (Monti et al., 2017), and Graph Attention
Network (GAT) (Veličković et al., 2017) from each category respectively. We also considered two
additional non-GNN based methods: Label Propagation (LabelProp) and Label Propagation with
Normalized Laplacian (LabelProp NL). These methods only consider the graph structure and not its
node attributes.

Datasets: We use the following Citation, Co-author and Co-purchase networks (Table 2). Citation
networks, used to evaluate GCNs and GATS: Cora, Citeseer (Sen et al., 2008) and Pubmed (Namata
et al., 2012), have documents as nodes, citation as edges and bag-of-words from the papers as node
features. We consider a Co-author network, Coauthor Physics, with authors as nodes, paper co-
authorship as edges, and keywords of the author’s papers as node features (Shchur et al., 2018). We
also consider Co-purchase networks: Amazon Computers and Amazon Photo (Shchur et al., 2018),
with goods as nodes, co-purchase as edges and product reviews as node features.

3 TOPOLOGY, DOES IT REALLY MATTER?

While convolutional neural networks work with highly regular neighborhood structures (4-
neighboring pixels), GNNs attempt to deal with situations where such regularity assumptions may
not apply. They characterize nodes through the composition of their neighborhood either explicitly,
as in spatial methods, or implicitly, as in approximate spectral methods. Thus, a denser neighbor-
hood - one with more samples - would allow a more certain characterization of a node. In the
following experiment, we investigate whether such an intuitive relationship with the underlying
topological features, which proxy topological connectivity, exists.

Question: Does topology impact GNN performance?

Hypothesis/Expectation: Better connected nodes have larger neighborhoods and hence, should
show less variance in GNN performance. Topology should significantly impact performance.

Counter-intuitive results: Nodal topology does not appear to strongly impact the performance of
the GNN, whereas the extreme case appears to degrade performance after a critical point.

Methods: We investigated the correlations between a subset of node-relevant topological features
listed in Table 1, many of which measure aspects of connectivity of the graph, and node-level accu-
racy achieved by various models. We calculated node-granularity topological features for each node
and analyzed their correlation with the average accuracy of node classification across test-train and
initialization splits. Subsequently, we confirmed these results through a robust binning mechanism
and a Mann-Whitney-U (MWU) test.

We then analyzed the extreme case of completely disconnected components, and measured the im-
pact of increasing number of disconnected components in the graph and increasing size. For each
dataset, we considered subgraphs with different types and number of components being retained as
the input graph to a model: (1) only the largest connected component, (2) all components except
isolated nodes, and (3) all components.

Results: Suprisingly, the accuracy of node classification does not appear to depend strongly on its
topological characteristics. As Figure 1 shows, all topological features considered showed weak
correlation (|r| < 0.2) across both models and datasets with significance (p < 0.05), with most
indicators of connectivity being mildly positive. Though all the datasets considered relatively sparse
(D < 10−3), (Amazon Photograph and Computers) show slightly better connectivity properties
through long-tailed degree and coreness distributions. This increased connectivity did not affect
the performance. These are supported by a visual analysis and MWU test which shows significance
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Figure 1: Significant (p < 0.05) correlation (Pearson’s r) between accuracy and topological features
across a: Datasets b: Models

(p < 0.001) in Coauthor Physics, Pubmed, and Coauthor Computers networks. In concordance with
our intuition models that showed a positive mean-accuracy correlation with coreness, closeness and
eccentricity also displayed moderate negative correlation (0.2 < |r| < 0.4, p < 0.05) with the σ of
the accuracy.

We then drilled into the effect of extreme disconnectvity in the form of disconnected components.
We chose 4 graphs that represent scenarios which represented a range multi-component properties,
as seen in Table 2.

We observe that the inclusion of isolated nodes is inhibiting for the GCNs, MoNets and GraphSAGE
models. In particular, GCNs fail to train in the presence of isolated nodes. In all scenarios, GNNs
(except GCNs) are able to handle graphs with multiple components better than Label Propagation
baselines. We also observe that GNNs find multiple-component scenario presented in Citeseer the
hardest to cope with; on average, GNNs perform 20% worse with the multi-component Citeseer.

For the other three datasets, it may seem that the overall model accuracies change negligibly despite
the addition of multiple components. However, the reported model accuracies are an average of
test nodes’ performance; since most of the randomly selected test nodes are likely from the largest
component, nodes located on the largest component would mask the poor node-level performance
of other nodes. This is supported by Figure 2b, where we observe that nodes located in components
other than the largest have a significantly worse performance than those located in the largest com-
ponent. For GNNs on all datasets, the average node accuracy on the largest component is 26.0%
higher than those on other components; for LabelProp, this is even worse (with a 51.6% difference).

Finally, given the discrepancies between the performance of GCNs and other models in handling
multi-component graphs, we further analyzed the impact of the number of components in the graph
on the performance of GCNs and GATs. In this experiment, for each graph, we input the subgraph
retaining only the largest nc components, with nc ∈ {1, 2, 10, 100, Nc−Ni, Nc},Nc as total number
of components and Ni as number of isolated nodes. Figure 2a reports the test accuracies achieved
at these intervals. We find that as nc increases from 1 to Nc − Ni, there is only a slight decrease
in accuracies suffered by GCNs and GATs which are within the statistical limit. Again, we see
that there is only a small divergence in performance between GCNs and other GNNs as the graph
includes isolated nodes. GATs, as well as other GCNNs, cope well with the presence of isolated
nodes.

4 JUST NOISY GRAPHS

Structural errors may originate during the acquisition of networks (e.g. a malfunction in a cellu-
lar network) or during the construction of networks from underlying data, particularly in dynamic
networks where transient phenomenon are difficult to separate from noise. Thus, understanding the
robustness of GNNs to errors of a topological nature is essential to applying them successfully in
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Figure 2: a: Test accuracy for GCNs and GATs for graphs with varying number of components
retained. b: Mean test accuracy per component against its size. Only components other than the
largest component are included in the plot. Similar patterns by all GraphSAGE models so only
GraphSAGE-mean is shown.

real world situations. Having established that GNNs do not strongly depend on topology in Section
3, it is reasonable to hypothesize that they should be robust, to all but specific, topological noise
(Zügner et al., 2018). We restrict our investigation to edge based perturbations and measure the
performance of GNNs on introducing specific controlled perturbations to the structure, allowing us
to characterize the behavior of GNNs in noisy scenarios.

Question: How does the addition of topological noise impact GNN performance?

Hypothesis/Expectation: As GNNs do not seem to depend on the topological features, they should
remain fairly robust to noise.

Counter-intuitive results: The addition of noise degrades performance significantly in some mod-
els and even more surprisingly, the GNN performance becomes more dependent on the global topo-
logical characteristics in noisy graphs.

Methods: We construct several perturbed versions of the largest components of the dataset. The
perturbation method is derived from an Erdos-Renyi graph-based noise model, which can be shown
to form an equivalent of the central limit theorem in graphs (Albert & Barabási, 2002). The details
of the algorithm and parameters can be seen in Appendix D. It perturbs an edge with probability P ,
and thresholds the resulting edges with respect to a parameter t. We picked a low P = 0.001 to stay
true to the original graph and considered 5 perturbed versions using t ∈ {0.3, 0.45, 0.6, 0.75, 0.9}
in our analysis.
We further analyzed the behavior of GNNs in the case of smaller perturbations (t ≥ 0.6). As the
perturbations are global rather than local, we used correlation analysis on the statistical characteristic
of the global performance across graphs.

Results: We perturbed the Cora, Citeseer, Pubmed and Coauthor Physics graph datasets for this
experiment. Adding edge based noise predictably degraded performance (Figure 3a). All GNNs
handle noise better than LabelProp methods. Most models degrade considerably as the number of
edges added exceeds its original edge count; an exception is the performance of GraphSAGE (mean
and meanpool) model on Coauthor Physics, which only saw an accuracy drop of 0.0006 at t = 0.3,
where more than 550,000 edges had been added (i.e. adding about 2× the original number of edges).
This tolerance to the addition of edges might be related to the high sparsity of the original Coauthor
Physics graph, which has an edge density of 0.0005.

We considered the original and high threshold (least noise) perturbed versions (t ∈ {0.6, 0.75, 0.9})
of 4 graph datasets. For each graph, we used the largest connected component as input graph to
all GNN and LabelProp models. Figure 3b summarizes the significant correlations found between
graph topological features and the average test accuracy achieved across all datasets per model.
In stark contrast to the original graphs, there is a significant and strong positive correlation (mean
r = 0.74, p = 0.006) with features which indicate better connectivity such as number of triangles
, clustering (max r = 0.766), transitivity (max r = 0.578), coreness (max r = 0.804), and degree.

4



Under review as a conference paper at ICLR 2020

0 1000 2000 3000

0.4

0.6

0.8
te

st
.a

cc
ur

ac
y.

m
ea

n

Cora

0 2000 4000

0.4

0.6

0.8

Citeseer

0 50000 100000 150000 200000
Edges Added

0.4

0.6

0.8

te
st

.a
cc

ur
ac

y.
m

ea
n

Pubmed

0 200000 400000 600000
Edges Added

0.4

0.6

0.8

Coauthor Physics

GAT
GCN
GS maxpool
GS mean
GS meanpool
LabelProp 
LabelProp-NL
MoNet

(a)

GAT
MoN

et
GCN

GS-m
ax

po
ol

GS-m
ea

np
oo

l
GS-m

ea
n

pagerank min
centrality variance

degree centrality min
pagerank mean

assortativity
transitivity

number of cliques
clustering

clique number
degree mean

degree centrality sum
coreness

degree sum
centrality sum

number of triangles variance
number of triangles sum

number of triangles mean
number of triangles max

degree variance
degree max

0.8

0.4

0.0

0.4

0.8

(b)
Figure 3: a: Mean accuracy of perturbed graphs with varying number of edges added. Lower
thresholds imply more edges and more noise. b: Correlation between test accuracy and statistics of
topological features for each model; only correlations with r ≥ 0.40 and p < 0.05 are shown.

There is also a significant negative correlation (mean r = −0.54, p = 0.03) with the minimum
values of connectivity metrics. Correlations between these topological features with the standard
deviation of accuracy across different train/validation/test splits also indicate that a higher transitivity
(r = −0.25) and clustering (r = −0.22) correspond to a more consistent accuracy across splits.

This clearly indicates that the performance of GNNs is more related to the topological features as
compared to baseline LabelProp methods where no significant correlations are found. The uniform
polarity of the correlations suggests that these correlations are consistent across different models and
are related to the same changes in performance (albeit to varying magnitudes). Similar correlation
patterns for validation F1-scores support this conclusion.

5 ATTRIBUTES & TOPOLOGY, TOGETHER OR NOT?

GNNs use two modalities (topology and attributes) that are often coupled to characterize nodes
e.g. high degree nodes in transport networks often correspond to interchange stations and have
more amenities. A strong coupling has significant effects on the model’s confidence and robustness
(in the previous example, one can look at either the amenities present at the station or its degree
to establish if it is an interchange) (Fosdick & Hoff, 2015). However, statistically establishing its
impact is difficult due to the lack of graphs within the same domain with varying degrees of coupling.
To overcome this, we created variations of the graph that removed the coupling and statistically
compared them to the original.

Question: Does the degree of association (coupling) between a node’s topology and its attributes
affect a GNN’s performance?

Hypothesis/Expectation: Decoupling by shuffling nodal attributes would degrade performance.

Counter-intuitive results: Shuffling attributes while preserving nodal labels resulted in improved
performance, whereas shuffling attributes while preserving nodal labels degrees added little im-
provement.

Methods: To selectively study the effect of attribute-topology coupling, we permuted (shuffled) the
attribute vectors while keeping the underlying network topology constant. The shuffling mechanism
decoupled the attribute vector from the nodal topology, while ensuring the attributes themselves
were representative of the domain. Thus generating domain-faithful samples which facilitated a
statistical analysis of the effect of the coupling. The attribute vectors were shuffled subject to certain
constraints which impose a partition on the graph’s nodes:
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Figure 4: Accuracy for different shuffle scenarios. We see that shuffling within partitions imposed by
class labels (ISO-CL and ISO-CL-DEG) leads to better results. The grid-y-axis indicates different
datasets and the grid-x-axis different model types. The x-axis shows different constraint scenarios
and the y-axis is accuracy scaled logarithmically. The error bars indicate standard deviation across
runs.

1. Shuffled without restriction (Naive).
2. Shuffled within partitions formed by class labels (Iso-Class). This ensures that the correspon-

dence between both the attributes and class labels and topology and class labels is maintained.
3. Shuffled within partitions formed by class labels and node degree (Iso-Class-Deg). This addi-

tionally preserves correspondences between the node degree and class labels.

The original un-shuffled graph was compared with 10 attribute-shuffled variations for each dataset.
The results were subsequently analyzed for significance using a grouped MWU test.

Results: We analyzed 4 datasets with 4 models (Figure 4). As expected, Naive shuffling led to
a large decrease in performance across all models. However, surprisingly, shuffling the attribute
vectors within Class-partitions led to an increase in mean accuracy. Statistically significant (MWU
p < 0.001) mean increases ranging from 2.7% to 6.8% were seen across datasets for each GNN
with MLPs being agnostic to the shuffle. GCN saw the largest increase (accuracy 6.8% and F1

6.5%, MWU p ∼ e− 20)

Even more counter-intuitively the performance remained same, and even dropped slightly but not
significantly, when partitions were redefined using both the degree and Class labels. Similar results
(2.4− 6.5% MWU p ∼ e− 20) were seen for the F1 score across all GNN models and all datasets.
MLP, which does not take topology into account, showed no significant change on shuffling.

Therefore, selectively decoupling attributes from the graph structure by constricted shuffling leads
to a consistent and significant improvement in accuracy without corresponding loss in F1. Imple-
menting it is simple and has the potential to improve performance across models.

6 ATTRIBUTES VS. TOPOLOGY

In graph inference or edge prediction, one attempts to infer the edges that ought to be in a graph from
a set of points with attribute vectors (and perhaps an incomplete set of edges). Graphs constructed
in this way are prolific particularly in biological areas such as protein or transcription networks.
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Often, there is some overlap in the information used to create edges and the attributes annotating
the nodes. This begs the question, ”are these two modalities equivalent and can one be converted
to the other?”. In the previous sections, we have demonstrated that GNNs treat the graph structure
(topology) differently and are robust to perturbations to it. Being able to encode information in either
modality would allow for the construction of more robust networks. The following experiments
explore the equivalence of the two modalities and determine whether it is possible to encode attribute
information in the graph structure.

Question: Is it possible to convert attribute data to structural information?

Hypothesis/Expectation:

1. Decorrelating the nodal attributes should lead to better or constant performance at worst.
2. Increasing dimensions discarded from the nodal attribute stack would correspond to decrease in

performance.
3. Retaining higher variance dimensions should yield better performance.
4. Adding edges in the place of lost dimensions should alleviate the decrease in performance.

Counter-intuitive results: PCA decreases performance. Augmenting the edgeset with edges that
ought to be there does not alleviate the situation.

Methods: We constructed a set of graphs from which certain attributes have been discarded. For a
set of attributes chosen to be discarded, a pair of graphs were constructed: one where the attributes
were removed outright and another where the edge set was augmented with the edges derived from
the discarded attributes. The edge set was augmented by a fixed amount of edges (of the same
order as the graph) for each graph. Firstly, the cosine distance between the discarded attribute
vector was calculated. Secondly, the edges corresponding to the closest 60 ∗ densityG percentile
of the distances were selected and added to the graph. As not all attributes are equally important,
we transformed the attribute set using a PCA transform and compared the cases where either the
resulting k% highest variance components or the k% lowest variance components were discarded
(k ∈ {0.99, 0.97, 0.94, 0.92, 0.9, 0.85, 0.8, 0.75}). Depending on whether the high or low variance
attributes were selected, and whether the attributes were discarded or were embedded as edges, 4
possible constructions arose which can be seen in Figure 6. Differences in performance across 3
initializations and 15 test-train splits were verified for significance through MWU tests.

We drilled down into edge case where all attributes were retained with a different set of construc-
tions. Here, the goal was to analyze redundancy of information between modalities more explicitly.
We compared GNN performance with pairs of graphs constructed such that the edges between the
most similar nodes were used to either augment the edge set or diminish it (set difference).

Results: We investigated the same datasets and models as used in Section 5. The PCA version of the
attribute set elicited an average 50% performance drop across all models, even with > 99% of the
features retained. Increased reduction of the features did not yield a monotonic decrease (|ρ| < 0.1;
as the number of points were limited we also verified the monotonicity visually). There was little
difference between cohorts retaining high variance and low variance attributes. The performance
was also insensitive to the addition of the edges based on the discarded features.

In the case where all attributes are retained, there is a relatively small overlap (< 10%) between the
edge set created through similarity and the original edges. While adding extraneous edges degrades
performance, removing common edges degrades further, albeit by an insignificant amount.

The addition of edges to the graph is associated with a stronger (negative) dependence on the topo-
logical features of individual nodes. The models shows strong ( |ρ| > 0.3) , statistically signifi-
cant (p < 0.05), and consistent correlation. Betweenness was one topological characteristic which
showed little correlation even with. We also robustly compared the set of nodes which tend to mis-
classified (accuracy < 0.4) to those that tend to be accurately (accuracy > 0.6) classified using
the Mann-Whiteny-U test. The test showed a significant (perhaps non linear) difference in particu-
larly the coreness, closeness and degree characteristics of the two node populations. Confidence in
differences was higher in cases where a higher number of attributes were retained.

To conclude, it is clear that attribute information attributes themselves are sensitive to their repre-
sentation and cannot be simply transformed into the graph structure.
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redundancy and decreases performance further.

7 DISCUSSION

As the experiment in Section 6 demonstrates, topology and attributes are distinct modalities and not
easily convertible between each other. The inherently different descriptive capacities (an edge in
an undirected, unweighted graph is only a binary value whereas many attributes have significantly
larger domains), and their differential utilization by GNNs (network structure is primarily used to
define a neighborhood), may lead to such a stark dissociation. While the experiment is restricted by
the simplicity and selection of the distance function/edge prediction mechanism, choosing a more
sophisticated method would asymptotically be equivalent to solving the original problem (presented
to GNN) itself. It is also possible that a more elaborate hyperparameter tuning may yield better
results. Future work to characterize the complexity of GNN inference and training with respect to
the topology and attribute stack would be important. This would facilitate the selective deployment
of models to situations they are best suited for.

Given this substantial difference between the modalities, the restricted decoupling (explored in Sec-
tion 5) removes any bias which would have been amplified by their association. Shuffling exposes
the model to a larger number combination of neighborhoods and attribute vectors stack. It thus acts
as a regularization mechanism and improves generalization of the models. Such a shuffling step
would positively increase standard performance across a range of models and should be included as
a standard component of GNN deployment pipelines.

The difference between modalities and their utilization does not fully explain why the weak depen-
dence on topology in Section 3 increases across experiments on the addition of edges. Analysis of
the nodes influencing (nodal domains) a graph’s eigenvectors in sparse situations provides additional
insight. An eigenvector induces partitions on a graph’s nodes based on the sign (±) of its (signifi-
cant) components. Each maximally connected subgraph with a similar sign is called a nodal domain.
With increasing sparsity (worse connectivity (Albert & Barabási, 2002)), the nodal domains of the
eigenvectors tend to de-localize and increase in number (Arora & Bhaskara, 2011). This implies that
the nodes represented by the eigenvector are further away and more fragmented. Thus making the
complete characterization of a node dependent on a larger neighborhood and needing more samples
to control its variance. The relatively sparse benchmark datasets used for our experiments would
require more than the immediate neighborhoods, considered by most GNNs, to characterize each
node. This is turn would force the GNN to pay less attention to the topology. In noisy, but dense,
situations (Section 4), the GNN would pay more attention to the topology and as a result, would
imbibe its error. While these studies would benefit from exploring alternative noise (e.g. block)
models and a wider range of datasets, their findings clearly indicate that a thorough evaluation of a
model must include the dataset’s topological and noise features - features which preprocessing often
changed unrealistically (e.g. discarding all but the largest component).

8 CONCLUSION

As the diversity of applications which use GNNs grows, so will the need to understand their behavior.
The preceding experiments prove how far our intuitive understanding of GNNs is from reality. Our
results demonstrate that although GNN performance is only weakly, albeit positively, correlated with
a graphs topology, this changes in a number of common scenarios. In addition, GNNs are sensitive
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to structural noise. To ensure a more thorough and complete benchmarking, we recommend that
future models should consider and report topological and noise characteristics of datasets in the
evaluation process. We also empirically evidence the limited inter-convertibility of attribute and
topological information in a graph. Furthering this dissociation between modalities, we demonstrate
an effective method of regularization through attribute shuffling. This study serves as a timely and
important first step towards recognizing the need to address the network topological context when
operating GNNs within the graph domain.
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Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2847–2856, 2018. ISBN 9781450355520. doi: 10.1145/3219819.
3220078. URL https://dl.acm.org/citation.cfm?id=3220078.

Appendices
A TOPOLOGICAL FEATURES

Table 1: Graph topological features.

Feature explanation

size and order Number of edges and nodes
degree Statistical characteristics of the distribution of degrees (across nodes) in

a graph
assortativity A measure of mixing in graphs instantiated; by the correlations between

node degrees
transitivity Fraction of all possible triangles present in a graph
coreness k-core’s are maximal subgraphs where each node has degree k. Averaged

across max. k ∀ nodes
number of triangles For each node total number of complete 3 node K3 subgraphs that node

is a part of
number of cliques Total number of complete subgraphs
clustering Clustering of a node measures the completeness of its neighbourhood;

averaged across nodes
centrality and degree centrality A (eigenvetor and degree respectively based) measure of node importance
communicability For each node it is the sum of closed walks of all lengths starting and

ending at that node
density Fraction of actual to all possible edges
diameter and radius Maximum and minimum eccentricity present in the graph
pagerank Weighted ranking of the nodes in the graph based on the structure of the

incoming links

B DATASET CHARACTERISTICS

Table 2: Dataset statistics and description

Data Component

Dataset Nodes edges Desnity Features Classes Nc Ni Largest 2nd Largest

Cora 2708 5278 0.00072 1433 7 78 0 2485 26
Citeseer 3312 4660 0.000424949 3703 6 438 48 2110 18
Amazon Comp. 13752 245861 0.001300138 767 10 314 281 13381 8
Amazon Photo 7650 119082 0.002035073 745 8 136 115 7487 4
Pubmed 19717 44324 0.00011402 500 3 na na na na
Coauthor Physics 34493 247962 0.000208418 8415 5 na na na na
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Table 3: Topological features for each dataset

Topological

pagerank closeness betweeness number of triangles degree coreness

Dataset mean std mean std mean std mean std mean std mean std

Cora 3.7e-4 3.7e-4 1.4e-1 4.7e-2 1.7e-3 6.9e-3 1.8e+0 4.7e+0 3.9e+0 5.2e+0 2.3e+0 8.8e-1
Citeseer 3.0e-4 2.0e-4 4.5e-2 3.5e-2 1.0e-3 3.8e-3 1.1e+0 3.8e+0 2.8e+0 3.4e+0 1.7e+0 1.0e+0
Amazon Comp. 7.3e-5 1.0e-4 2.9e-1 6.2e-2 1.6e-4 1.9e-3 3.3e+2 1.6e+3 3.6e+1 7.0e+1 1.9e+1 1.4e+1
Amazon Photo 1.3e-4 1.4e-4 2.4e-1 5.1e-2 3.8e-4 2.2e-3 2.8e+2 9.0e+2 3.1e+1 4.7e+1 1.7e+1 1.1e+1
Pubmed 5.1e-5 6.4e-5 1.6e-1 2.0e-2 2.7e-4 1.6e-3 1.9e+0 8.4e+0 4.5e+0 7.4e+0 2.4e+0 1.9e+0
Coauthor Physics 2.9e-5 1.8e-5 2.0e-1 2.4e-2 1.2e-4 3.3e-4 4.1e+1 7.9e+1 1.4e+1 1.6e+1 7.7e+0 4.3e+0

C MULTI COMPONENT PERFORMANCE

Table 4: Mean accuracy (%) of test nodes as input graph contains varying number of connected
components. For each graph dataset, we consider three scenarios: all components, all components
except isolated nodes (i.n.), and, only the largest component. Listed in brackets next to each dataset
name is the total number of components in each graph.

Model Cora (78) Citeseer (438) Amazon Computers (314) Amazon Photo (136)
all no I.N. largest all no I.N. largest all no I.N. largest all no I.N. largest

GCN 79.2 - 81.3 6.61 66.7 71.4 2.9 82.3 82.5 4.4 90.5 91.0
GAT 80.8 - 82.3 68.2 68.4 71.2 80.1 79.2 76.1 87.9 80.3 87.4
MoNet 80.3 - 82.0 67.7 68.1 71.1 83.2 84.5 84.5 90.2 91.2 91.3
GS-mean 79.0 - 80.6 67.6 67.8 71.6 81.0 82.3 83.4 89.9 91.1 91.4
GS-maxpool 75.9 - 77.3 63.6 64.3 67.4 - - - 89.0 90.1 90.1
GS-meanpool 76.9 - 78.8 64.4 65.4 68.5 78.1 80.2 80.3 88.8 90.4 90.6
LabelProp-NL 68.9 - 74.3 47.4 47.5 66.4 72.5 74.0 75.7 81.6 83.8 81.0
LabelProp 69.3 - 75.1 47.3 47.6 67.8 70.0 68.6 67.0 78.4 75.4 67.0

Avg. GNN 78.7 - 80.4 56.3 66.8 70.2 65.1 81.7 81.4 75.0 88.9 90.3
Avg. LabelProp 69.2 - 74.7 47.4 47.6 67.1 71.3 71.3 71.4 80.0 79.6 74.0

D NOISE ALGORITHM

The algorithms perturbs an edge with probability P , and thresholds the resulting edges with respect
to a parameter t. By varying the threshold for an edge to exist, we created different perturbed
versions for each dataset. Note that a smaller P means a higher probability for edges in the original
graph to be retained, whereas a higher t means a smaller number of new edges are added to the
graph.(For the following algorithm p = P)
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Algorithm 1: perturbation and threshold method
Input: Adjacency Matrix A, number of nodes: n, Threshold: t, an edge probability: p
Result: A adjacency matrix Apt

mx = max(A);
mn = min(A);
Amask = Erdos-Renyi(n, p).adjacencyMatrix;
Arnm = Amask �N (0, 1)[n, n]
rnmn = min(Arnm);
rnmx = max(Arnm);
Ascaled = mn + (Arnm − rnmn)/(rnmx− rnmn) ∗ (mx−mn)
for i, j : i, j ∈ I+, i, j < n do

if Amask
i,j == 0 then
A′i,j = Ai,j ;

else
A′i,j = Ascaled

i,j ;
end

end
Ap,t = A′ � heaviside(A′ − t))

E PCA EXPERIMENTAL SETUP

4 types of constructions were made. The exact configuration depended on whether the high or
low variance attributes were discarded and whether the discarded edges were used to augment the
dataset:

1. high Inf: kept; Low inf: discarded [top left]
2. high Inf: kept; Low inf: edges [top right]
3. high Inf: discarded; Low inf: kept [bottom left]
4. high Inf: edges; Low inf: discarded [bottom right]

Retained
Attributes

Attributes 

Lower
Variance

Attributes

Higher
Variance

Attributes

Retained
Attributes

Higher
variance

components
retained

Lower
variance

components
retained

Remaining
components

discarded

Edges
added on

the basis of
remaining

components

Similarity
based
edge

Similarity
based
edge

Figure 6: Graphs constructed based on 4 possible cases arise depending on whether higher or lower
variance features are retained and whether the remainder are discarded out of hand or used to create
edges before discarding. The original graph on the left with attribute vectors next to each node.
Dashed line between nodes depict possible edges and between parts of the attribute vector depict
high similarity. Graphs on the right show the constructed graphs.
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