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ABSTRACT

Humans view the world through many sensory channels, e.g., the long-wavelength
light channel, viewed by the left eye, or the high-frequency vibrations channel,
heard by the right ear. Each view is noisy and incomplete, but important factors,
such as physics, geometry, and semantics, tend to be shared between all views (e.g.,
a “dog” can be seen, heard, and felt). We hypothesize that a powerful representation
is one that models view-invariant factors. Based on this hypothesis, we investigate
a contrastive coding scheme, in which a representation is learned that aims to
maximize mutual information between different views but is otherwise compact.
Our approach scales to any number of views, and is view-agnostic. The resulting
learned representations perform above the state of the art for downstream tasks such
as object classification, compared to formulations based on predictive learning or
single view reconstruction, and improve as more views are added. On the Imagenet
linear readoff benchmark, we achieve 68.4% top-1 accuracy.

1 INTRODUCTION

A foundational idea in coding theory is to learn compressed representations that nonetheless can be
used to reconstruct the raw data. This idea shows up in contemporary representation learning in the
form of autoencoders (Salakhutdinov & Hinton, 2009) and generative models (Kingma & Welling,
2013; Goodfellow et al., 2014), which try to represent a data point or distribution as losslessly as
possible. Yet lossless representation might not be what we really want, and indeed it is trivial to
achieve — the raw data itself is a lossless representation. What we might instead prefer is to keep the
“good” information (signal) and throw away the rest (noise). How can we identify what information
is signal and what is noise?

To an autoencoder, or a max likelihood generative model, a bit is a bit. No one bit is better than any
other. Our conjecture in this paper is that some bits are in fact better than others. Some bits code
important properties like semantics, physics, and geometry, while others code attributes that we might
consider less important, like incidental lighting conditions or thermal noise in a camera’s sensor.

We hypothesize that the good bits are the ones that are shared between multiple views of the world, for
example between multiple sensory modalities like vision, sound, and touch. Under this perspective
“presence of dog” is good information, since dogs can be seen, heard, and felt, but “camera pose” is bad
information, since a camera’s pose has little or no effect on the acoustic and tactile properties of the
imaged scene. There is significant evidence in the cognitive science and neuroscience literature that
such cross-view representations are encoded by the brain (e.g., Smith & Gasser (2005); Den Ouden
et al. (2012); Hohwy (2013)).

Our goal is therefore to learn representations that capture information shared between multiple
sensory views but that are otherwise compact (i.e. throw away the bad information). To do so, we
employ contrastive learning, where we learn a feature embedding such that views of the same scene
map to nearby points while views of different scenes map to far apart points. In particular, we adapt
the recently proposed method of Contrastive Predictive Coding (CPC) (Oord et al., 2018), except we
simplify it — removing the recurrent network — and generalize it — showing how to apply it to arbitrary
collections of views, rather than just to temporal predictions. In reference to CPC, we term our method
Contrastive Multiview Coding (CMC). The contrastive objective in our formulation, as in CPC, can
be understood as attempting to maximize the mutual information between the representations of each
view.

We intentionally leave “good bits” only loosely defined and treat its definition as an empirical question.
Ultimately, the proof is in the pudding: we consider a representation to be good if it makes subsequent
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Figure 1: (a) Given a pair of sensory views, a deep representation is learnt by bringing views of the same
scene together in embedding space, while pushing views of different scenes apart. Here we show an example
of learning from the luminance channel (L) of an image and the ab-color channel. The strawberry’s L and ab
channels embed to nearby points whereas the ab channel of a different image (a photo of blueberries) embeds to
a far away point. (b) Example of a 4-view dataset (NYU RGBD (Nathan Silberman & Fergus, 2012)) and its
learned representation. Dotted lines represent the contrastive objective. The encodings for each view may be
concatenated to form the full representation of a scene.

problem solving easy, on tasks of human interest. For example, a useful representation of images
might be a feature space in which it is easy to learn to recognize objects. We therefore evaluate our
method by testing if the learned representations transfer well to standard semantic recognition tasks.
On several benchmark tasks, our method achieves state of the art results, compared to other methods
for self-supervised representation learning. We additionally find that the quality of the representation
improves as a function of the number of views used for training. Finally, we compare the contrastive
formulation of multiview learning to the recently popular approach of cross-view prediction, and find
that in head-to-head comparisons, the contrastive approach learns stronger representations.

The core ideas that we build on: contrastive learning, mutual information maximization, and deep
representation learning, are not new and have been explored in the literature on representation and
multiview learning (Li et al., 2018; Xu et al., 2013; Arora et al., 2019). Our main contribution is to
set up a framework to extend these ideas to any number of views, and to empirically study the factors
that lead to success in this framework. A review of the related literature is given at the end of the
paper, in Section 4. Fig. 1 gives a pictorial overview of our framework for the different learning tasks
we consider in this paper, to learn representations across datasets with different sets of views. Our
main contributions are:

e We apply contrastive learning to the multiview setting, attemping to maximize mutual
information between representations of different views of the same scene (e.g., between
different image channels, or different modalities).

e Our approach yields representations that outperform the state-of-the-art in self-supervised
learning in head-to-head comparisons. For example, in the ImageNet linear readoff evalua-
tion, we achieve 68.4% top-1 accuracy, which is slightly above the state of the art concurrent
work Bachman et al. (2019).

e We show that the contrastive objective is superior to cross-view prediction.

e We extend the framework to learn from more than two views, and show that the quality of
the learned representation improves as number of views increase.

e We conduct controlled experiments to measure the effect of mutual information on represen-
tation quality.

2 METHOD

Our goal is to learn representations that capture information shared between multiple sensory views
without human supervision. We start by reviewing previous predictive learning (or reconstruction-
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based learning) methods, and then elaborate on contrastive learning within two views. We show
connections to mutual information maximization and extend it to scenarios including more than two
views. We consider a collection of M views of the data, denoted as V7, ..., Vj,. For each view V;,
we denote v; as a random variable representing samples following v; ~ P(V;).

2.1 PREDICTIVE LEARNING

Let V; and V5 represent two views of a dataset. For instance, V; might be the luminance of a
particular image and V5 the chrominance. We define the predictive learning setup as a deep nonlinear
transformation from v; to vy through latent variables z, as shown in Fig. 2. Formally, z = f(v;) and
Uy = g(z), where f and g represent the encoder and decoder respectively and ¥, is the prediction of
v given v;. The parameters of the encoder and decoder models are then trained using an objective
function that tries to bring v» “close to” vy. Simple examples of such an objective include the £, or
L loss functions. Note that these objectives assume independence between each pixel or element
of vg given vy, i.e., p(va|vy) = I;p(ve;|v1 ), thereby reducing their ability to model correlations or
complex structure. The predictive approach has been extensively used in representation learning, for
example, colorization (Zhang et al., 2016; 2017) and predicting sound from vision (Owens et al.,
2016).

2.2 CONTRASTIVE LEARNING WITH TWO VIEWS

The idea behind contrastive learning is to learn an embedding that separates (contrasts) samples from
two different distributions. Given a dataset of V7 and V5 that consists of a collection of samples
{vi,vi} N |, we consider contrasting congruent and incongruent pairs, i.e. samples from the joint
distribution = ~ p(vy,ve) or & = {vi, vi}, which we call positives, versus samples from the product

of marginals, y ~ p(v1)p(ve) or y = {vi, v} }, which we call negatives.

We learn a “critic” hg(+) that is high for positives and low for negatives. Similar to recent setups for
contrastive learning (Oord et al., 2018; Gutmann & Hyvirinen, 2010; Mnih & Kavukcuoglu, 2013),
we train this function to correctly select a single positive sample x out of a set S = {x, y1, y2, ..., Y }
that contains k negative samples:

he(x)
ho(x) + 35—y ho(y:)

To construct S, we simply fix one view and enumerate positives and negatives from the other view,
allowing us to rewrite the objective as:

(D

‘Ccont'r'ast = _H;: 1Og

h 1,1
L:Z;’;L‘;f‘ast = - E ot 1 k+91({1}17v?})j (2)
toodns™y | 30550 he({of, 2))

where k is the number of negative samples v% for a given sample v{. In practice, k can be extremely
large, and so directly minimizing Eq. 2 is infeasible. In Section 2.4, we show an approximation based
on Noise Contrastive Estimation (Gutmann & Hyvirinen, 2010) that allows for tractable computation.
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Implementing the critic We implement the critic hy(-) as a neural network. To extract compact
latent representations of v; and v,, we employ two encoders fp, (-) and fy, (-) with parameters 6,
and 0 respectively. The latent representions are extracted as z; = fp, (v1), z2 = fo,(v2). On top of
these features, the score is computed as the exponential of a bivariate function of z; and z,, e.g., a
bilinear function parameterized by Wis:

ho({vr,v2}) = efor ()" Wazfoa (v2) 3)

Loss L’X;;Xi ast In Eq. 2 treats view V7 as anchor and enumerates over V5. Symmetrically, we can get

EXj,’L‘t/}ast by anchoring at V5. We add them up as our two-view loss:
Vi,V Va,V;
E(Vlﬂ VQ) = ‘Cc;ntf‘ast + ‘CCOQnml”ast (4)

After the contrastive learning phase, we use the representation z1, 23, or the concatenation of both,
[21, 22], depending on our paradigm. This process is visualized in Fig. 1.

Connecting to mutual information The optimal critic hj is proportional to the density ratio
between the joint distribution p(z1, z2) and the product of marginals p(z1)p(z2) (proof provided in
Sec. C.1):

. p(z1,22)  p(z1]22)
holtonead) o ZE T plen) ®

This quantity is the pointwise mutual information, and its expectation, in Eq. 2, yields an estimator
related to mutual information. A formal proof is given by Oord et al. (2018); Poole et al. (2019),
which we recapitulate in Section C, showing that:

I(Zw Zj) Z log(k) - Lcontrast (6)

where, as above, k is the number of negative pairs in sample set S. Hence minimizing the objective £
maximizes the lower bound on the mutual information /(z;; z;), which is bounded above by I (v;; v;)
by the data processing inequality. The dependency on k also suggests that using more negative
samples can lead to an improved representation; we show that this is indeed the case in Section A.1.2.
We note that recent work (McAllester & Statos, 2018) shows that the bound in Eq. 6 can be very
weak; and finding better estimators of mutual information is an important open problem.

2.3 CONTRASTIVE LEARNING WITH MORE THAN TWO VIEWS

We present more general formulations of Eq. 2 that can handle any number of views. We call them
the “core view” and “full graph” paradigms, which offer different tradeoffs between efficiency and
effectiveness. These formulations are visualized in Fig. 3.

Suppose we have a collection of M views V7, ..., Vas. The “core view” formulation sets apart one
view that we want to optimize over, say V7, and builds pair-wise representations between V; and each
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other view Vj, j > 1, by optimizing the sum of a set of pair-wise objectives:
M
Lo=) LW, V) (7)
j=2

A second, more general formulation is the “full graph” where we consider all pairs (¢, j),¢ # 7, and
build (%) relationships in all. By involving all pairs, the objective function that we optimize is:

Lrp= Y LViV) ®)

1<i<j<M

Both these formulations have the effect that information is prioritized in proportion to the number
of views that share that information. This can be seen in the information diagrams visualized in
Fig. 3. The number in each partition of the diagram indicates how many of the pairwise objectives,
L(V;,V;), that partition contributes to. Under both the core view and full graph objectives, a factor,
like “presence of dog”, that is common to all views will be preferred over a factor that affects fewer
views, such as “depth sensor noise”.

The computational cost of the bivariate score function in the full graph formulation is combinatorial
in the number of views. However, it is clear from Fig. 3 that this enables the full graph formulation to
capture more information between different views, which may prove useful for downstream tasks.
For example, the mutual information between V» and V3 or V, and V} is completely ignored in the
core view paradigm (as shown by a 0 count in the information diagram).

2.4 APPROXIMATING THE SOFTMAX DISTRIBUTION WITH NOISE-CONTRASTIVE ESTIMATION
Better representations using E(‘:/;;L‘fﬁast in Eq. 2 are learnt by using many negative samples. However,
computing the full softmax loss is prohibitively expensive for large /N. We alleviate computational
load by using Noise-Contrastive Estimation (NCE) (Gutmann & Hyvérinen, 2010) to approximate
the full softmax in Eqn. 2, as has also been used in Mnih & Kavukcuoglu (2013)'.

Given an anchor v} from V4, the probablity that an atom v, € {v}]j =1,2,..., N} from V; is the
best match of v}, using the score hy is given by:

iy h9({v1702}) 9
valv}) = —— )
POl = N o) (

where the normalization factor Z = Z;vzl ho({vi,v}}) is expensive to compute for large N. Here

we use hg({v1,v2}) = exp(fo, (v1)T Wia fo, (v2)/T), where 7 modulates the distribution.

Noise-Contrastive Estimation (Gutmann & Hyvirinen, 2010) (NCE) is an effective way to estimate
unnormalized statistical models. NCE fits a density model p to data distributed as (unknown)
distribution p,4, by using a binary classifier to distinguish it from noise samples distributed as p,,.
To learn p(vs|vi), we use a binary classifier, which treats v, as the data sample when given vi.
The noise distribution p,, (-|v}) we choose here is a uniform distribution over all atoms from V5,
i.e., pn(-|vi) = 1/N. If we sample m noise samples to pair with each data sample, the posterior
probability that a given atom v, comes from the data distribution is:

pa(v2|v})
pa(v2|v]) + mpp (v2|v])

P(D = 1|vg;v}) = (10)
and we estimate this probability by replacing pq(v2 |vt) with our unnormalized model distribution

hg (v}, v2). Minimizing the negative log-posterior probability of correct labels D over data and noise
samples yields our final objective, which is the NCE-based approximation of Eq. 2 (p is the empirical
data distribution):

Lyce=- E { E  [log(P(D=1fva;v}))] +m E [log(P(D = 0Jva;v3))]} (1)

vi~p(v1) varp(-|o]) v2~pn (|v])

!Confusingly, the literature has previously referred to Eqn. 2 as “InfoNCE” (Oord et al., 2018). Our NCE
approximation does not refer to the allusion to NCE in the name “InfoNCE”. Rather we are here describing an
NCE approximation to the “InfoNCE” softmax objective.
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Memory bank. Following Wu et al. (2018), we maintain a memory bank to store latent features
for each training sample. Therefore, we can efficiently retrieve m noise samples from the memory
bank to pair with each positive sample without recomputing their features. The memory bank is
dynamically updated with features computed on the fly.

An alternative to the NCE based approximation above, is to simply do m+1 way softmax classification
with m noise samples retrieved from the memory bank. We note that CPC (Oord et al., 2018) and
Deep InfoMax (Hjelm et al., 2019) use this m + 1 way softmax classification as their ultimate
contrastive loss rather than the NCE-based contrastive loss in Eq. 11 (but note that CPC refers to
the m + 1 approximation as also “based on NCE”). Empirically we have found that the m + 1-way
softmax classification approach performed worse than our NCE-based approximation, given the same
number of noise samples.

3 EXPERIMENTS

We extensively evaluate Contrastive Multiview Coding (CMC) on a number of datasets and tasks.
We evaluate on two established image representation learning benchmarks: Imagenet and STL-10
(See A.1.1). We further validate our framework on video representation learning tasks (See A.2),
where we use image and optical flow modalities, as the two views that are jointly learned. The last set
of experiments extends our CMC framework to more than two views and provides empirical evidence
of it’s effectiveness.

3.1 BENCHMARKING CMC ON IMAGENET

Following Zhang et al. (2016), we evaluate task generalization of the learned representation by
training 1000-way linear classifiers on top of different layers.

Setup. Given a dataset of RGB images, we convert them to the Lab image color space, and split
each image into L and ab channels, as originally proposed in SplitBrain autoencoders (Zhang et al.,
2017). During contrastive learning, L and ab from the same image are treated as the positive pair,
and ab channels from other randomly selected images are treated as a negative pair (for a given
L). Each split represents a view of the orginal image and is passed through a separate encoder.
As in SplitBrain, we design these two encoders by evenly splitting a given deep network, such as
AlexNet (Krizhevsky et al., 2012), into sub-networks across the channel dimension. By concatenating
representations layer-wise from these two encoders, we achieve the final representation of an input
image. As proposed by previous literature (Oord et al., 2018; Hjelm et al., 2019; Arora et al., 2019),
the quality of such a representation is evaluated by freezing the weights of encoder and training linear
or non-linear classifiers on top of each layer.

To compare with other methods, we adopt standard AlexNet and split it into two encoders. Because
of splitting, each layer only connects to half of the neurons in the previous layer, and therefore
the number of parameters in our model halves. We remove local response layer and add batch
normalization to each layer. For the memory-based CMC model, we adopt ideas from Wu et al.
(2018) for computing and storing a memory. We retrieve 4096 negative pairs from the memory bank
to contrast each positive pair. The training details are present in Sec. D.2.

Table 1 shows the results of comparing the CMC against other models, both predictive and contrastive.
Our CMC is the best among all these methods; futhermore CMC tends to perform better at higher
convolutional layers, similar to another contrasting-based model Inst-Dis (Wu et al., 2018).

CMC with ResNets. We verify the scalability of CMC with larger networks such as ResNets He
et al. (2016). Here we do not split ResNets, rather we use ResNet-50, ResNet-101 or ResNet-50 x2
to encoder each of the two views (L and ab). The results are shown in Table 2, where ResNet-50,
ResNet-101, and ResNet-50 x2 achieve 64.1%, 65.0%, and 68.4% top-1 accuracies, respectively.
To our best knowledge, 68.4% on ImageNet is the highest published accuracy ever achieved by
self-supervsied/unsupervised methods (We note that a concurrent work AMDIM Bachman et al.
(2019) achieves similar results).
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ImageNet Classification Accuracy

Method convl conv2 conv3 conv4 conv5
ImageNet-Labels 193 363 442 483 505
Random 11.6 17.1 169 163 14.1
Data-Init (Krihenbiihl et al., 2015) | 17.5 23.0 245 232 20.6
Context (Doersch et al., 2015) 16.2 233 302 31.7 29.6

Colorization (Zhang et al., 2016) 13.1 248 31.0 326 31.8
Jigsaw (Noroozi & Favaro, 2016) 19.2  30.1 347 339 283
BiGAN (Donahue et al., 2017) 177 245 310 299 28.0
SplitBrain® (Zhang et al., 2017) 177 293 354 352 328
Counting (Noroozi et al., 2017) 180 30.6 343 325 257

Inst-Dis (Wu et al., 2018) 16.8 265 31.8 341 356
RotNet (Gidaris et al., 2018) 18.8 31.7 387 382 365
DeepCluster (Caron et al., 2018) 129 292 382 398 36.1
AET (Zhang et al., 2019) 193 328 406 39.7 37.7
CMC 184 33,5 381 404 426

Table 1: Top-1 classification accuracy on 1000 classes of ImageNet Deng et al. (2009) with single crop. We
compare our CMC method with other unsupervised representation learning approaches by training 1000-way
logistic regression classifiers on top of the feature maps of each layer, as proposed by Zhang et al. (2016).
Methods marked with T only have half the number of parameters compared to others, because of splitting.

Accuracy (%) \ ResNet-50 ResNet-101  ResNet-50 x2
Top-1 \ 64.1 65.0 68.4

Table 2: Single crop top-1 classification accuracy on ImageNet. We evaluate CMC with ResNet-50, ResNet-101,
or ResNet-50 x2 as encoder for each of the two views (L and ab).

3.2 DOES REPRESENTATION QUALITY IMPROVE AS NUMBER OF VIEWS INCREASES?

We further extend our CMC learning framework to multiview scenarios. We experiment on the
NYU-Depth-V2 (Nathan Silberman & Fergus, 2012) dataset which consists of 1449 labeled images.
We focus more on understanding the behavior and effectiveness of CMC rather than competing with
the current state-of-the-arts. The views we consider are: luminance (L channel), chrominance (ab
channel), depth, surface normal (Eigen & Fergus, 2015), and semantic labels.

Setup. To extract features from each view, we use a neural network with 5 convolutional layers,
and 1 fully connected layer. As the size of the dataset is relatively small, we adopt the sub-patch
based contrastive objective (see B) to increase the number of negative pairs. Patches with a size of
128 x 128 are randomly cropped from the original images for contrastive learning (from images of
size 480 x 640). For downstream tasks, we discard the fully connected layers and evaluate using the
convolutional layers as a representation.

To measure the quality of the learned representation, we consider the task of predicting semantic
labels from the representation of L. We follow the core view paradigm and use L are the core view,
thus learning a set of representations on L by contrasting different views with L. A UNet style
architecture (Ronneberger et al., 2015) is utilized to perform the segmentation task. Contrastive
training is performed on the above architecture that is equivalent of the UNet’s encoder. After
contrastive training is completed, we initialize the encoder weights of the UNet from the L encoder
(which are equivalent architectures) and keep them frozen. Only the decoder is trained during this
finetuning stage.

Since we use the patch-based contrastive loss, in the 1 view setting case, CMC coincides with
DIM (Hjelm et al., 2019). The 2-4 view cases contrast L with ab, and then sequentially add depth and
surface normals. The semantic labeling results are measured by mean IoU over all classes and pixel
accuracy, shown in Fig. 4. We see that the performance steadily improves as new views are added.
We have tested different orders of adding the views, and they all follow a similar pattern.

We also compare CMC with two baselines. First, we randomly initialize and freeze the encoder, and
we call this the Random baseline; it serves as a lower bound on the quality since the representation is
just a random projection. Rather than freezing the randomly initialized encoder, we could train it
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Figure 4: We show the Intersection over Union (IoU) (left) and Pixel Accuracy (right) for the NYU-Depth-V2
dataset, as CMC is trained with increasingly more views from 1 to 4. As more views are added, both these
metrics steadily increase. The views are (in order of inclusion): L, ab, depth and surface normals.

Table 3: Results on the task of predicting

Pixel semantic labels from L channel representa-

Accuracy (%) mloU (%) tion which is learnt using the patch-based

contrastive loss and all 4 views. We compare

Random . 45.5 21.4 CMC with Random and Supervised baselines,

CMC (core-view) 57.1 34.1 .

which serve as lower and upper bounds re-

CMC (full—graph) 57.0 34.4 spectively. Th core-view paradigm refers to
Supervised 57.8 35.9 Fig. 3(a), and full-view Fig. 3(b).

jointly with the decoder. This end-to-end Supervised baseline serves as an upper bound. The results
are presented in Table 3, which shows our CMC produces high quality feature maps even though it’s
unaware of the downstream task.

3.3 PREDICTIVE LEARNING VS. CONTRASTIVE LEARNING

While experiments in section 3.1 show that contrastive learning outperforms predictive learn-
ing (Zhang et al., 2017) in the context of Lab color space, it’s unclear whether such an advantage
is due to the natural inductive bias of the task itself. To further understand this, we go beyond
chrominance (ab), and try to answer this question when geometry or semantic labels are present.

We consider three view pairs on the NYU-Depth dataset: (1) L and depth, (2) L and surface normals,
and (3) L and segmentation map. For each of them, we train two identical encoders for L, one using
contrastive learning and the other with predictive learning. We then evaluate the representation quality
by training a linear classifier on top of these encoders on the STL-10 dataset.

| Accuracy on STL-10 (%)

Views Predictive  Contrastive Table 4: We compare predictive learning
L, Depth 555 583 with contrastive learning by evaluating the
L’ Normal 58. 4 60'1 learned encoder on unseen dataset and task.

The contrastive learning framework consis-

L, Seg. Map 57.7 59.2 tently outperforms predictive learning.
Random 252
Supervised 65.1

The comparison results are shown in Table 4, which shows that contrastive learning consistently
outperforms predictive learning in this scenario where both the task and the dataset are unknown. We
also include “random” and “supervised” baselines similar to that in previous sections. Though in the
unsupervised stage we only use 1.3K images from a dataset much different from the target dataset
STL-10, the object recognition accuracy is close to the supervised method, which uses an end-to-end
deep network directly trained on STL-10.

Given two views V7 and V5 of the data, the predictive learning approach approximately models
p(vz2|v1). Furthermore, losses used typically for predictive learning, such as pixel-wise reconstruction
losses usually impose an independence assumption on the modeling: p(va|v1) = II;p(va;|v1). On
the other hand, the contrastive learning approach by construction does not assume conditional
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Figure 5: How does mutual information between views relate to representation quality? (Left) Classification
accuracy against estimated MI between channels of different color spaces; (Right) Classification accuracy vs
estimated MI between patches at different distances (distance in pixels is denoted next to each data point). MI
estimated using MINE (Belghazi et al., 2018).

independence across dimensions of ve. In addition, the use of random jittering and cropping between
views allows the contrastive learning approach to benefit from spatial co-occurrence (contrasting
in space) in addition to contrasting across views. We conjecture that these are two reasons for the
superior performance of contrastive learning approaches over predictive learning.

3.4 HOW DOES MUTUAL INFORMATION AFFECT REPRESENTATION QUALITY ?

Given a fixed set of views, CMC aims to maximize the mutual information between representations
of these views. We have found that maximizing information in this way indeed results in strong
representations, but it would be incorrect to infer that information maximization (infomax) is the
key to good representation learning. In fact, this paper argues for precisely the opposite idea: that
cross-view representation learning is effective because it results in a kind of information minimization,
discarding nuisance factors that are not shared between the views.

The resolution to this apparent dilemma is that we want to maximize the “good” information —
the signal — in our representations, while minimizing the “bad” information — the noise. The idea
behind CMC is that this can be achieved by doing infomax learning on two views that share signal
but have independent noise. This suggests a “Goldilocks principle”: a good collection of views is
one that shares some information but not too much. Here we test this hypothesis on two domains:
learning representations on images with different colorspaces forming the two views; and learning
representations on pairs of patches extracted from an image, separated by varying spatial distance.

In patch experiments we randomly crop two RGB patches of size 64x64 from the same image as two
views. Their relative position is fixed. Namely, the two patches always starts at position (z, y) and
(x +d,y + d) with (z, y) being randomly sampled. While varying the distance d, we start from 64 to
avoid overlapping. There is a possible bias that with an image of relatively small size (e.g., 512x512),
a large d (e.g., 384) will always push these two patches around boundary. To minimize this bias, we
use high resolution images (e.g. 2k) from DIV2K (Agustsson & Timofte, 2017) dataset.

Fig. 5 shows the results of these experiments. The left plot shows the result of learning representations
on different colorspaces (splitting each colorspace into two views, such as (L, ab), (R, GB) etc). We
then use the MINE estimator Belghazi et al. (2018) to estimate the mutual information between the
views. We measure representation quality by training a linear classifier on the learned representations
on the STL-10 dataset Coates et al. (2011). The plots clearly show that using colorspaces with
minimal mutual information give the best downstream accuracy (For the outlier HSV in this plot,
we conjecture the representation quality is harmed by the periodicity of H. Note that the H in HED
is not periodic.). On the other hand, the story is more nuanced for representations learned between
patches at different offsets from each other (Fig. 5, right). Here we see that views with too little or
too much MI perform worse; a sweet spot in the middle exists which gives the best representation.
That there exists such a sweet spot should be expected. If two views share no information, then, in
principle, there is no incentive for CMC to learn anything. If two views share all their information, no
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nuisances are discarded and we arrive back at something akin to an autoencoder or generative model,
that simply tries to represent all the bits in the multiview data.

These experiments demonstrate that the relationship between mutual information and representation
quality is meaningful but not direct. Selecting optimal views, which just share relevant signal, may
be a fruitful direction for future research.

4 RELATED WORK

Unsupervised representation learning is about learning transformations of the data that make sub-
sequent problem solving easier (Bengio et al., 2013). This field has a long history, starting with
classical methods with well established algorithms, such as principal components analysis (PCA
(Jolliffe, 2011)) and independent components analysis (ICA (Hyvirinen et al., 2004)). These methods
tend to learn representations that focus on low-level variations in the data, which are not very useful
from the perspective of downstream tasks such as object recognition.

Representations better suited to such tasks have been learnt using deep neural networks, starting
with seminal techniques such as Boltzmann machines (Smolensky, 1986; Salakhutdinov & Hinton,
2009), autoencoders (Hinton & Salakhutdinov, 2006), variational autoencoders (Kingma & Welling,
2013), generative adversarial networks (Goodfellow et al., 2014) and autoregressive models (Oord
et al., 2016). Numerous other works exist, for a review see (Bengio et al., 2013). A powerful family
of models for unsupervised representations are collected under the umbrella of “self-supervised”
learning (Sa, 2004; Zhang et al., 2017; 2016; Isola et al., 2015; Wang & Gupta, 2015; Pathak et al.,
2016; Zhang et al., 2019). In these models, an input X to the model is transformed into an output X s
which is supposed to be close to another signal Y, which itself is related to X in some meaningful
way. Examples of such X/Y pairs are: luminance and chrominance color channels of an image
(Zhang et al., 2017), patches from a single image (Oord et al., 2018), modalities such as vision and
sound (Owens et al., 2016) or the frames of a video (Wang & Gupta, 2015). Clearly, such examples
are numerous in the world, and provides us with nearly infinite amounts of training data: this is
one of the appeals of this paradigm. Time contrastive networks (Sermanet et al., 2017) use a triplet
loss framework to learn representations from aligned video sequences of the same scene, taken by
different video cameras. Closely related to self-supervised learning is the idea of multi-view learning,
which is a general term involving many different approaches such as co-training (Blum & Mitchell,
1998), multi-kernel learning (Cortes et al., 2009) and metric learning (Bellet et al., 2012; Zhuang
et al., 2019); for comprehensive surveys please see (Xu et al., 2013; Li et al., 2018). Nearly all
existing works have dealt with one or two views such as video or image/sound. However, in many
situations, many more views are available to provide training signals for any representation.

The objective functions used to train deep learning based representations in many of the above
methods are either reconstruction-based loss functions such as Euclidean losses in different norms e.g.
(Isola et al., 2017), adversarial loss functions (Goodfellow et al., 2014) that learn the loss in addition
to the representation, or contrastive losses e.g. (Gutmann & Hyvirinen, 2010; Hjelm et al., 2019;
Oord et al., 2018; Arora et al., 2019; Hénaff et al., 2019) that take advantage of the co-occurence
of multiple views. Another recently introduced novel objective function is instance discrimination
(Wu et al., 2018). In this work, we compare the two most commonly used objectives: predictive
and contrastive. The prior works most similar to our own (and inspirational to us) are Contrastive
Predictive Coding (CPC) (Oord et al., 2018) and Deep InfoMax (Hénaff et al., 2019). These
two methods, like ours, learn representations by contrasting between congruent and incongruent
representations of a scene, and are motivated as forms of infomax learning. CPC learns from two
views — the past and future — and is applicable to sequential data. Deep Infomax (Hjelm et al., 2019)
considers the two views to be the input to a neural network and its output. These two methods share
the same mathematical objective, but differ in the definition of the views. Our technical method is
also highly related, but differs in the following ways: we extend the objective to the case of more
than two views; and we use a loss function which more closely follows the original method of noise
contrastive estimation (Gutmann & Hyvirinen, 2010) (See details in Section 2.4). Although CPC,
Deep InfoMax, and the present paper are all very similar at the mathematical level, they each explore
a different set of view definitions, architectures, and application settings, and each contributes its own
unique empirical investigation of this paradigm of representation learning.
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A ADDITIONAL EXPERIMENTS

A.1 CMC ON IMAGES

Given a dataset of RGB images, we convert them to the Lab image color space, and split each
image into L and ab channels, as originally proposed in SplitBrain autoencoders (Zhang et al., 2017).
During contrastive learning, L and ab from the same image are treated as the positive pair, and ab
channels from other randomly selected images are treated as a negative pair (for a given L). Each split
represents a view of the orginal image and is passed through a seprate encoder. This corresponds to
the “full graph” model of Eq. 8 with L and ab channels as the two views. As in SplitBrain, we design
these two encoders by evenly splitting a given deep network, such as AlexNet (Krizhevsky et al.,
2012), into sub-networks across the channel dimension. By concatenating representations layer-wise
from these two encoders, we achieve the final representation of an input image. As proposed by
previous literature (Oord et al., 2018; Hjelm et al., 2019; Arora et al., 2019), the quality of such
a representation is evaluated by freezing the weights of encoder and training linear or non-linear
classifiers on top of each layer.
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A.1.1 STL-10

STL-10 (Coates et al., 2011) is an image recognition dataset designed for developing unsupervised or
self-supervised learning algorithms. It consists of 100000 unlabeled training 96 x 96 RGB image
samples and 500 labeled samples for each of the 10 classes.

Setup. We adopt the same data augmentation strategy and network architecture as those in
DIM (Hjelm et al., 2019). A variant of AlexNet takes as input 64 x 64 images, which are ran-
domly cropped and horizontally flipped from the original 96 x 96 size images. For a fair comparison
with DIM, we also train our model in a patch-based contrastive fashion during unsupervised pre-
training. With the weights of the pre-trained encoder frozen, a two-layer fully connected network with
200 hidden units is trained on top of different layers for 100 epochs to perform 10-way classification.
We also investigated the strided crop strategy of CPC (Oord et al., 2018). Fixed sized overlapping
patches of size 16 x 16 with an overlap of 8 pixels are cropped and fed into the network separately.
This ensures that features of one patch contain minimal information from neighbouring patches; and
increases the available number of negative pairs for the contrastive loss. Additionally, we include
NCE-based contrastive training and linear classifier evaluation.

Comparison. We compare CMC with the state of the art unsupervised methods in Table 5. Three
columns are shown: the conv5 and fc7 columns use respectively these layers of AlexNet as the
encoder (again remembering that we split across channels for L and ab views). For these two columns
we can compare against the all methods except CPC, since CPC does not report these numbers in
their paper (Hjelm et al., 2019). In the Strided Crop setup, we only compare against the approaches
that use contrastive learning, DIM and CPC, since this method was only used by those works. We
note that in Table 5 for all the methods except SplitBrain, we report numbers are shown in the
original paper. For SplitBrain, we reimplemented their model faithfully and report numbers based on
our reimplementation (we verified the accuracy of our SplitBrain code by the fact that we get very
similar results with our reimpementation as in the original paper (Zhang et al., 2017) for ImageNet
experiments, see below).

The family of contrastive learning methods, such as DIM, CPC, and CMC, achieve higher classifica-
tion accuracy than other methods such as SplitBrain that use predictive learning; or BIGAN that use
adversarial learning. CMC significantly outperforms DIM and CPC in all cases. We hypothesize that
this outperformance results from the modeling of cross-view mutual information, where view-specific
noisy details are discarded. Another head-to-head comparison happens between CMC and SplitBrain,
both of which modeling images as seprated L and ab streams; we achieve a nearly 8% absolute
improvement for conv5 and 17% improvement for fc5. Finally, we notice that the predictive learning
methods suffer from a big drop in performance when the encoding layer is switched from conv5
to fc7. On the other hand, the contrastive learning approaches are much more stable across layers,
suggesting that the mutual information maximization paradigm learns more semantically meaningful
representations shared by the different views. From a practical perspective, this is a significant
advantage as the selection of specific layers should ideally not change downstream performance by
too much.

In this experiments we used AlexNet as backbone. Switching to more powerful networks such as
ResNets is likely to further improve the representation quality.

A.1.2 IMAGENET

ImageNet (Deng et al., 2009) consists of 1000 image classes and is frequently considered as a testbed
for unsupervised representation learning algorithms.

Effect of the number of negative samples. We investigate the relationship between the number
of negative pairs m in NCE-based loss and the downstream classification accuracy on a randomly
chosen subset of 100 classes of Imagenet (the same set of classes is used for any number of negative
pairs). We train a 100-way linear classifier using CMC pre-trained features with varying number of
negative pairs, starting from 64 pairs upto 8192 (in multiples of 2). Fig. 6 shows that the accuracy
of the resulting classifier steadily increases but saturates at around 60.3% with m = 4096 samples.
AlexNet is used in this study.
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Method classifier | conv5S  fc7 | Strided Crop
AE 62.19 55.78 -
NAT (Bojanowski & Joulin, 2017) MLP 6432 61.43 -
BiGAN (Donahue et al., 2017) 71.53 67.18 -
SplitBrain® (Zhang et al., 2017) 72.35 63.15 -
DIM (Hjelm et al., 2019) MLP 72.57 70.00 78.21
CPC (Oord et al., 2018) - - 77.81
CMCT (Patch) Linear | 76.65 79.25 82.58
CMC' (Patch) MLP 80.14 80.11 83.43
CMCT(NCE) Linear | 83.28 86.66 -
CMCT(NCE) MLP | 84.64 86.88 -
Supervised { 68.70

Table 5: Classification accuracies on STL-10 by using a two layer MLP as classifier for evaluating the
representations learned by a small AlexNet. For all methods we compare against, we include the numbers
that are reported in the DIM (Hjelm et al., 2019) paper, except for SplitBrain, which is our reimplementation.
Methods marked with T have half the number of parameters because of splitting.
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Figure 6: We plot the number of negative examples m in NCE-based contrastive loss against the accuracy for
100 randomly chosen classes of Imagenet 100. It is seen that the accuracy steadily increases with m.

A.2 CMC oN VIDEOS

We apply CMC on videos by drawing insight from the two-streams hypothesis (Schneider, 1969;
Goodale & Milner, 1992), which posits that human visual cortex consists of two distinct processing
streams: the ventral stream, which performs object recognition, and the dorsal stream, which processes
motion. In our formulation, given an image ¢, that is a frame centered at time ¢, the ventral stream
associates it with a neighbouring frame 4,5, while the dorsal stream connects it to optical flow f;
centered at t. Therefore, we extract iy, i+ and f; from two modalities as three views of a video;
for optical flow we use the TV-L1 algorithm (Zach et al., 2007). Two separate contrastive learning
objectives are built within the ventral stream (i, i¢1) and within the dorsal stream (i, f). For
the ventral stream, the negative sample for i, is chosen as a random frame from another randomly
chosen video; for the dorsal stream, the negative sample for i, is chosen as the flow corresponding to
a random frame in another randomly chosen video.

Pre-training. We train CMC on UCF101 (Soomro et al., 2012) and use two CaffeNets (Krizhevsky
et al., 2012) for extracting features from images and optical flows, respectively. In our implementation,
ft represents 10 continuous flow frames centered at {. We use batch size of 128 and contrast each
positive pair with 127 negative pairs. CMC is trained with Adam for 300 epochs, with an initial
learning rate of 0.001 which is decayed by a factor of 5 after 200 and 250 epochs.

Action recognition. We apply the learn representation to the task of action recognition. The spatial
network from (Simonyan & Zisserman, 2014) is a well-established paradigm for evaluating pre-trained
RGB network on action recognition task. We follow the same spirit and evaluate the transferability of
our RGB CaffeNet on UCF101 and HMDBS51 datasets. We initialize the action recognition CaffeNet
up to conv5 using the weights from the pre-trained RGB CaffeNet. The averaged accuracy over three
splits is present in Table 6. Unifying both ventral and dorsal streams during pre-training produces
higher accuracy for downstream recognition than using only single stream. Increasing the number
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Method # of Views UCF-101 HMDB-51
Random - 48.2 19.5
ImageNet - 67.7 28.0
VGAN* (Vondrick et al., 2016) 2 52.1 -
LT-Motion* (Luo et al., 2017) 2 53.0 -
TempCoh (Mobahi et al., 2009) 1 454 159
Shuffle and Learn (Misra et al., 2016) 1 50.2 18.1
Geometry (Gan et al., 2018) 2 55.1 23.3
OPN (Lee et al., 2017) 1 56.3 22.1
ST Order (Buchler et al., 2018) 1 58.6 25.0
Cross and Learn (Sayed et al., 2018) 2 58.7 27.2
CMC (V) 2 55.3 -
CMC (D) 2 57.1 -
CMC (V+D) 3 59.1 26.7

Table 6: Test accuracy (%) on UCF-101 which evaluates task transferability and on HMDB-51 which evaluates
task and dataset transferability. Most methods either use single RGB view or additional optical flow view, while
VGAN explores sound as the second view. * indicates different network architecture.

Metric (%) | L ab Depth Normal

Random mloU 214 15.6 30.1 29.5
pix. acc. |45.5 37.7 51.1 50.5

mloU 344 26.1 392 378

CMC pix. acc. |57.0 49.6 594 578
Supervised mloU 359 29.6 41.0 415
pix. acc. |57.8 52.6 59.1 59.6

Table 7: Performance on the task of using single view v to predict the semantic labels, where v can be L, ab,
depth or surface normal. Our CMC framework improves the quality of unsupervised representations towards
that of supervised ones, for all of views investigated. This uses the full-graph paradigm Fig. ??2(b).

of views of the data from 2 to 3 (using both streams instead of one) provides a boost for UCF-101.
Furthermore, on UCF-101, we outperform all other methods; and on HMDB-51, CMC is second-best
in performance.

A.3 1Is CMC IMPROVING ALL VIEWS?

A desirable unsupervised representation learning algorithm operating on multiple views or modalities
should improve the quality of representations for all views. We therefore investigate our CMC
framwork beyond L channel. To treat all views fairly, we train these encoders following the full graph
paradigm, where each view is contrasted with all other views.

We evaluate the representation of each view v by predicting the semantic labels from only the
representation of v, where v is L, ab, depth or surface normals. This uses the full-graph paradigm.
As in the previous section, we compare CMC with Random and Supervised baselines. As shown
in Table 7, the performance of the representations learned by CMC using full-graph significantly
outperforms that of randomly projected representations, and approaches the performance of the fully
supervised representations. Furthermore, the full-graph representation provides a good representation
learnt for all views, showing the importance of capturing different types of mutual information across
views.

B CONTRASTING SUB-PATCHES

Instead of contrasting features from the last layer, patch-based method (Hjelm et al., 2019) contrasts
feature from the last layer with features from previous layers, hence increasing the number of negative
pairs. For instance, we use features from the last layer of fy, to contrast with feature points from
feature maps produced by the first several conv layers of fy,. This is equivalent to contrast between
global patch from one view with local patches from the other view. In this fashion, we directly
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perform m + 1 way softmax classification, the same as (Oord et al., 2018; Hjelm et al., 2019) for a
fair comparison in Sec. A.1.1.

Such patch-based contrastive loss is computed within each mini-batch and does not require a memory
bank. Therefore, deploying it in parallel training schemes is easy and flexible. However, patch-based
contrastive loss usually yields suboptimal results compared to NCE-based contrastive loss, according
to our experiments.

C PROOFS

We prove that: (a) the optimal score function hj({v1,v2}) is proportional to density ratio between the
joint distribution p(vy,v2) and product of marginals p(v1)p(v2), as shown in Eq. 5; (b) Minimizing
the contrastive 108S L.onirast Maxmizes a lower bound on the mutual information between two views,
as shown in Eq. 6

We will use the most general formula of contrastive loss L.ontrqst Shown in Eq. 1 for our derivation.
But we note that replacing L.ontrqst With L&;Xiust is straightforward. The overall proof follows a

similar derivation introduced in (Oord et al., 2018).

C.1 SCORE FUNCTION AS DENSITY RATIO ESTIMATOR

We first show that the optimal score function hj({v1,v2}) that minimizes Eq. 1 is proportional to
the density ratio between joint distribution and product of marginals, shown as Eq. 5. For notation
convenience, we denote p(vy, v2) as data distribution pg(-) and p(v1)p(v2) as noise distribution py, (+).
The loss in Eq. 1 is indeed a cross-entropy loss of classifying the correct positive pair out from the
given set S. Without loss of generality, we assume the first pair (v{,v9) in S is positive or congruent
and all others (vi,v),4 = 1,2, ..., k are negative or incongruent. The optimal probability for the
loss, p(pos = 0|5), should depict the fact that (v, v9) comes from the data distribution py(-) while
all other pairs come from the noise distribution p,,(-). Therefore,

k o

pd(v(l)a 'Ug) Hi:l Pn(vi,v3)

k : o . .
Zj:o pa(vi, v3) Hi;ﬁj pn(vi,5)

k . .

p(v},v8) [Ti—y P(v1)p(v5)

k * : i '.
Zj:o p(vi,v3) Hi;ﬁj p(vi)p(v3)

p(vy,v3)
p(v?)p(vY)

Zk p(vf,v5)

J=0 p(v})p(vE)

p(pos =0|S) =

where we plug in the definition of py(-) and p,,(-), and divide H?:o p(vi)p(v3) for both the numerator
and denominator. By comparing above equation with the loss function in Eq. 1, we can see that

the optimal score function hj({v1,v2}) is proportional to the density ratio %. The above

derivation is agnostic to which layer the score function starts from, e.g., h can be defined on either
the raw input (v, vg) or the latent representation (21, 22). As we care more about the property of the
latent representation, for the following derivation we will use Ay, ({21, 22}), which is proportional

p(21,22)
p(z1)p(22)"
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C.2 MAXIMIZING LOWER BOUND ON MI

Now we substitute the score function in Eq. 1 with the above density ratio, and the optimal loss

objective L', .. becomes:
h* 0, 0
‘ng’fttrast = Iglog [ . le*({zl 212})1 ‘|
> im0 Py, ({21, 23})
p(=7,29)
— _Elog p(Z?)p(Z;S :
S Zl_v p(21,75)
1=0 p(z])p(z3)
r k . .
p(21)p(23) x~ p(2, 25)
= Elog |1+ - -
s p(e?,) ;p(zi)p(%)
r 0 0
< o1+ 200D o)
s 7L p(ah2g) A [ op(a)
r 0 0
— Elog 1+p(2'1())p(z2)k]
S L p(zlsz)
p(21, 23)
> log(k) — Elog {
() = 518 | Cnmted)
p(21722) ]
= log(k) — E log | ————
5(k) (1,22)~P=y 25 () g[p(zl)p(zfz)

log(k) — I(z1; 22)

Therefore, for any two views V; and V;, we have I(z;; z;) > log(k) — L2, (V;,V}). As the
k increases, the approximation step becomes more accurate. Given any k, minimizing L (V;, V;)
maximizes the lower bound on the mutual information I (z;; z;). We should note that increasing k to
infinity does not always lead to a higher lower bound. While log (k) increases with a larger k, the

optimization problem becomes harder and L (V;, V;) also increases.

D IMPLEMENTATION DETAILS

D.1 STL-10

For a fair comparison with DIM (Hjelm et al., 2019) and CPC (Oord et al., 2018), we adopt the same
architecture as that used in DIM and split it into two encoders, each shown as in Table 8. For the
implementation of the score function, we adopt similar “encoder-and-dot-product” strategy, which is
tantamount to a bilinear model.

In the patch-based contrastive learning stage, we use Adam optimizer with an initial learning rate of
0.001, 51 = 0.5, B2 = 0.999. We train for a total of 200 epochs with learning rate decayed by 0.2
after 120 and 160 epochs. In the non-linear classifier evaluation stage, we use the same optimizer
setting. For the NCE-based contrastive learning stage, we train for 320 epochs with the learning
rate initialized as 0.03 and further decayed by 10 for every 40 epochs after the first 200 epochs. The
temperature 7 is set as 0.1. In general, 7 € [0.05, 0.2] works reasonably well.

D.2 IMAGENET

For patch-based contrastive loss, we use the same optimizer setting as in Sec. D.1 except that the
learning rate is initialized as 0.01.

For NCE-basd contrastive loss in both full ImageNet and ImageNet100 experiments present in
Sec. A.1.2, the encoder architecture used for either L or ab channels is shown in Table 9. In the
unsupervised learning stage of AlexNet, we use SGD to train the network for a total of 400 epochs.
The temperature 7 is set as 0.07 by following previous work (Wu et al., 2018). The learning rate is
initialized as 0.03 with a decay of 10 for every 50 epochs after the first 250 epochs. Weight decay is
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Half of AlexNet(Krizhevsky et al., 2012) for STL-10

Layer X C K S |
data 64 *

convl 64 48 3 1 1
pooll 31 48 3 2 0
conv2 31 96 3 1 1
pool2 15 96 3 2 0
convd 15 192 3 1 1
convd 15 192 3 1 1
convs 15 96 3 1 1
poolS 7 96 3 2 0

fc6 1 2048 7 1 0

fc7 1 2048 1 1 0

fc8 1 64 1 1 0

Table 8: The variant of AlexNet architecture used in our CMC for STL-10 (only half is present
here due to splitting). X spatial resolution of layer, C number of channels in layer; K conv or
pool kernel size; S computation stride; P padding; * channel size is dependent on the input source,
e.g. 1 for L channel and 2 for ab channel.

set as 10~* and momentum is kept as 0.9. For the linear classification stage, we train for 160 epochs.
The learning rate is initialized as 0.1 and decayed by 0.2 every 20 epochs after the first 100 epochs.
We set weight decay as 0 and momentum as 0.9.

For ResNets in CMC stage, there are three differences. First, we use larger learning rate, that is,
we set a base learning rate of 0.03 for every 128 images and then roughly scale it up with the batch
size. Specifically, we train: (1) ResNet-50 with bsz = 280 and {r = 0.08; (2) ResNet-101 with
bsz = 200 and Ir = 0.05; (3) ResNet-50 x2 with bsz = 156 and Ir = 0.04. Second, we only
train for 280 epochs with learning rate decayed at 160, 200, and 240 epochs. Third, we used Fast
Autoaugment (Lim et al., 2019) as data augmentation. In the linear evaluation stage, we train for 100
epochs. The learning rate is initialized as 30 for ResNet-50 and ResNet-101, and 50 for ResNet-50
x2. It is decayed by 0.2 every 15 epochs after the first 60 epochs. We set weight decay as 0 and
momentum as 0.9.

Half of AlexNet(Krizhevsky et al., 2012) for ImageNet

Layer X C K S P
data 224 * - - -
convl 55 48 11 4 2
pooll 27 48 3 2 0
conv2 27 128 5 1 2
pool2 13 128 3 2 0
convd 13 192 3 1 1
convd 13 192 3 1 1
convs 13 128 3 1 1
pool5 6 128 3 2 0
fc6 1 2048 6 1 0
fc7 1 2048 1 1 0
fc8 1 128 1 1 0

Table 9: AlexNet architecture used in CMC for ImageNet (only half is present here due to
splitting). X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; P padding; * channel size is dependent on the input source, e.g. 1 for L
channel and 2 for ab channel.
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D.3 UCF101 AND HMDBS51

Following previous work (Misra et al., 2016; Lee et al., 2017; Sayed et al., 2018; Buchler et al., 2018),
we use CaffeNet for the video experiments. We tailor the network and use features from the fc6 layer
for contrastive learning. Dropout of 0.5 is used to alleviate overfitting.

D.4 NYU DEPTH-V2

While experimenting with different views on NYU Depth-V2 dataset, we encode the features from
patches with a size of 128 x 128. The detailed architecture is shown in Table 10. In the unsupervised
training stage, we use Adam optimizer with an initial learning rate of 0.001, 8; = 0.5, S = 0.999.
We train for a total of 3000 epochs with learning rate decayed by 0.2 after 2000, 2400, and 2800
epochs. For the downstream semantic segmentation task, we use the same optimizer setting but train
for fewer epochs. We only train 200 epochs for CMC pre-trained models, and train 1000 epochs
for the Random and Supervised baselines until convergence. For the classification task evaluated on
STL-10, we use the same optimizer setting as in Sec. D.1 to report numbers in Table 2.

Encoder Architecture on NYU

Layer X C K S P

data 128 * - - -
convl 64 64 8 2 3
pooll 32 64 2 2 O
conv2 16 128 4 2 1
conv3 8 256 4 2 1
conv4d 8 256 3 1 1
convs 4 512 4 2 1

fc6 1 512 4 1 O

fc7 1 256 1 1 O

Table 10: Encoder architecture used in our CMC for playing with different views on NYU
Depth-V2. X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; P padding; * channel size is dependent on the input source, e.g. 1 for L, 2
for ab, 1 for depth, 3 for surface normal, and 1 for segmentation map.
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