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ABSTRACT

Origin-Destination (OD) flow data is an important instrument in transportation
studies. Precise prediction of customer demands from each original location to
a destination given a series of previous snapshots helps ride-sharing platforms
to better understand their market mechanism. However, most existing prediction
methods ignore the network structure of OD flow data and fail to utilize the topo-
logical dependencies among related OD pairs. In this paper, we propose a latent
spatial-temporal origin-destination (LSTOD) model, with a novel convolutional
neural network (CNN) filter to learn the spatial features of OD pairs from a graph
perspective and an attention structure to capture their long-term periodicity. Ex-
periments on a real customer request dataset with available OD information from
a ride-sharing platform demonstrate the advantage of LSTOD in achieving at least
6.5% improvement in prediction accuracy over the second best model.

1 INTRODUCTION

Spatial-temporal prediction of large-scale network-based OD flow data plays an important role in
traffic flow control, urban routes planning, infrastructure construction, and the policy design of ride-
sharing platforms, among others. On ride-sharing platforms, customers keep sending requests with
origins and destinations at each moment. Knowing the exact original location and destination of
each future trip allows platforms to prepare sufficient supplies in advance to optimize resource uti-
lization and improve users’ experience. Given the destinations of prospective demands, platforms
can predict the number of drivers transferring from busy to idle status. Prediction of dynamic de-
mand flow data helps ride-sharing platforms to design better order dispatch and fleet management
policies for achieving the demand-supply equilibrium as well as decreased passenger waiting times
and increased driver serving rates.

Many efforts have been devoted to developing traffic flow prediction models in the past few decades.
Before the rise of deep learning, traditional statistical and machine learning approaches dominate
this field (Li et al., 2012; Lippi et al., 2013; Moreira-Matias et al., 2013; Shekhar & Williams, 2007;
Idé & Sugiyama, 2011; Zheng & Ni, 2013). Most of these models are linear and thus ignore some
important non-linear correlations among the OD flows. Some other methods (Kwon & Murphy,
2000; Yang et al., 2013) further use additional manually extracted external features, but they fail to
automatically extract the spatial representation of OD data. Moreover, they roughly combine the
spatial and temporal features when fitting the prediction model instead of dynamically modelling
their interactions.

The development of deep learning technologies brings a significant improvement of OD flow predic-
tion by extracting non-linear latent structures that cannot be easily covered by feature engineering.
(Xingjian et al., 2015; Ke et al., 2017; Zhou et al., 2018). Zhang et al. (2016; 2017) modeled
the whole city are as an entire image and employed residual neural network to capture tempo-
ral closeness. Ma et al. (2017) and Yu et al. (2017) also learned traffic as images but they used
LSTM instead to obtain the temporal dependency. Yao et al. (2018b) proposed a Deep Multi-View
Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relation-
ships. However, using standard convolution filters suffers from the problem that some OD flows
covered by a receptive field of regular CNNs are not spatially important.
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The aim of this paper is to introduce a hierarchical Latent Spatial-Temporal Origin-Destination
(LSTOD) prediction model to jointly extract the complex spatial-temporal features of OD data by
using some well-designed CNN-based architectures. Instead of modelling the dynamic OD net-
works as a sequence of images and applying standard convolution filters to capture their spatial
information, we introduce a novel Spatial Adjacent Convolution Network (SACN) that uses an ir-
regular convolution filter to cover most related OD flows for a target one. The OD flows connected
by common starting and/or ending vertexes, which may fall into different regions of the flow map,
can be spatially correlated and topologically connected. Moreover, for most ride-sharing platforms,
a passenger is more likely to send a new request from the location where his/her last trip ends in.
To learn such sequential dependency, we introduce a temporal gated CNN (TGCNN) (Yu et al.,
2018) and integrate it with SACN by using the sandwich-structured ST-conv block in order to col-
lectively catch the evolutionary mechanism of dynamic OD flow systems. A periodically shifted
attention mechanism is also used to capture the shift in the long-term periodicity. Finally, the com-
bined short-term and long-term representations are fed into the final prediction layer to complete the
architecture. Our contributions are summarized as follow:

• To the best of our knowledge, it is the first time that we propose purely convolutional
structures to learn both short-term and long-term spatio-temporal features simultaneously
from dynamic origin-destination flow data.

• We propose a novel SACN architecture to capture the graph-based semantic connections
and functional similarities among correlated OD flows by modeling each OD flow map as
an adjacency matrix.

• We design a periodically shift attention mechanism to model the long-term periodicity
when using convolutional architecture TGCNN in learning temporal features.

• Experimental results on two real customer demand data sets obtained from a ride-sharing
platform demonstrate that LSTOD outperforms many state-of-the-art methods in OD flow
prediction, with 6.5% to 15.0% improvement of testing RMSE.

2 DEFINITIONS AND PROBLEM STATEMENT

For a given urban area, we observe a sequence of adjacency matrices representing the OD flow maps
defined on a fixed vertex set V , which indicates the N selected sub-regions from this area. We let
V = {v1, v2, . . . , vN} denote the vertex set with vi being the i-th sub-region. The shape of each
grid vi could be either rectangles, hexagons or irregular sub-regions. We define the dynamic OD
flow maps as {Od,t}, where d = 1, . . . , D and t = 1, . . . , T represent the day and time indexes,
respectively. For each snapshot Od,t = (oijd,t) ∈ R

N×N , the edge weight oijd,t at row i and column
j denotes the flow amount from node vi to node vj at time t of day d. A larger edge weight oijd,t is
equivalent to a strong connection between nodes vi and vj . The Od,ts’ are asymmetric since all the
included OD flows are directed. Specifically, oijd,t = 0 if there is no demand from vi to vj within the
t-th time interval of day d.

The goal of our prediction problem is to predict the snapshot Od,t+j ∈ RN×N in the fu-
ture time window (t + j) of day d given previously observed data, including both short-term
and long-term historical information. The short-term input data consists of the last p1 times-
tamps from t + 1 − p1 to t, denoted by X1 = {Od,t+1−p1 ,Od,t+1−p1+1, . . . ,Od,t}. The
long-term input data is made up of q time series {Od−ϕ,t+j−(p2−1)/2, . . . ,Od−ϕ,t+j+(p2−1)/2}
of length p2 for each previous day (d − ϕ) with the predicted time index (t + j) in the
middle for ϕ = 1, . . . , q. We let X2 = {Od−q,t+j−(p2−1)/2, . . . ,Od−q,t+j+(p2−1)/2, . . . ,
Od−1,t+j−(p2−1)/2, . . . ,Od−1,t+j+(p2−1)/2} denote the entire long-term data. Increasing p1 and
p2 leads to higher prediction accuracy, but more training time.

We reformulate the set of short-term OD networks X1 into a 4D tensor X1 ∈ RN×N×p1×1 and con-
catenate the long-term snapshots X2 into a 5D tensor X2 = (X2,d−1, . . . ,X2,d−q ∈ Rq×N×N×p2×1.
Each X2,d−ϕ ∈ RN×N×p2×1 for day d − ϕ is a 4D tensor for ϕ = 1, . . . , q. Therefore, we can
finally define our latent prediction problem as follows:

od,t+j = F (X1,X2), (1)
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where F (·, ·) represents the LSTOD model, which captures the network structures of OD flow data
as well as the temporal dependencies in multiple scales. A notation table is attached in the appendix.

3 LSTOD FRAMEWORK

In this section, we describe the details of our proposed LSTOD prediction model. See Figure 1 for
the architecture of LSTOD. The four major novelties and functionalities of LSTOD model include

• an end-to-end framework LSTOD constructed by all kinds of CNN modules to process
dynamic OD flow maps and build spatio-temporal prediction models;

• a novel multi-layer architecture SACN to extract the network patterns of OD flow maps by
propagating through edge connections, which can not be covered by traditional CNNs;

• a special module ST-Conv block used to combine SACN and gated temporal convolutions
to coherently learning the essential spatio-temporal representations;

• a periodically shifted attention mechanism which is well designed for the purely convo-
lutional ST-Conv blocks to efficiently utilize the long-term information by measuring its
similarities with short-term data.

Figure 1: The architecture of LSTOD consisting of (C1) ST-
Conv blocks, (C2) TGCNN, (C3) SACN, and (C4) attention.

Figure 2: An example to show how
standard CNN fails to capture the
network structure of OD flows

3.1 SPATIAL ADJACENT CONVOLUTION NETWORK

Before we formally introduce SACN, we first discuss why directly applying standard CNNs to the
OD flow map Od,t may disregard the connections between neighboring OD flows in the graph
space. Figure 2 demonstrates that it fails to capture enough semantic information using the real-
world example of ride demands. For the OD flow starting from v1 to v2, as illustrated in the upper
sub-figure, the most related OD flows should be those with either origin or destination being v1 or
v2 in the past few timestamps. A certain part of the travel requests from v1 to v2 can be matched
with some historical finished trips from a third-party location to V1 by the same group of people, for
example a trip from v3 to v1. However, as the lower-left sub-figure illustrates, some of the OD flows
covered by a single CNN filter (the green square) such as the four corners of the kernel window may
be topologically far away from the target one in the graph.

More generally, let’s consider a target OD flow oijd,t in a map Od,t. Most of the components covered

by a standard CNN of size q × q with oijd,t in the middle such as o(i+1)(j+1)
d,t are less correlated than

some out of the kernel window, for example okid,t when |k− j| > (q+1)/2. Moreover, if we change
the order of the N vertexes in Od,t, then the network structure is unchanged, but a different set of
OD flows is covered by the receptive field of the same size with the center being oijd,t.

We propose a novel CNN-based architecture SACN using a global-view receptive field to include all
connected edges in the graph and exclude the topologically unrelated ones considered by standard
CNN filters. As shown in the lower right sub-figure of Figure 2, OD flows with either origin or
destination being vi or vj , covered by the red and yellow kernel windows, are considered to be the
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most related ones for oijd,t in row i and column j. Formally, we use SACN to extract the latent
topological structure inside the OD flow network Od,t at each timestamp (d, t). For an L-layer
SACN architecture, the l-th layer takes M l−1 edge features obtained from the previous (l − 1)-th
layer as input and feeds the M l-dimensional output to the next layer. The input of a general SACN
layer l is a 3D tensor, Ad,t(l) = {Aijnd,t (l)} ∈ R

N×N×M l

, which includes the M l features of each
of the N2 OD flows, and the output is another 3D tensor Ad,t(l + 1) = {Aijnd,t (l + 1)} of size
N ×N ×M l+1. The learned representation of a target edge is defined as the weighted sum of those
from the same row or column in the adjacency matrix, and those from the row or column in the
transposed adjacency matrix. The n-th output of the l-th layer-wise SACN propagation for the OD
flow from vi to vj of snapshot Od,t, denoted as Aijnd,t (l + 1), is written as

F{
M l∑
m=1

N∑
k=1

rkmn1 (l)Aikmd,t (l) + ckmn1 (l)Akjmd,t (l) + rkmn2 (l)Akimd,t (l) + ckmn2 (l)Ajkmd,t (l)}, (2)

where n ∈ {1, . . . ,M l} and {rkmn1 (l)}, {rkmn2 (l)} , {ckmn1 (l)}, and {ckmn2 (l)} ∈ RN×M l×M l+1

include all the related parameters to be learnt for the l-th SACN layer. The F(·) represents an
elementwise activation function, such as ReLU(x) = max(0, x). The first part of (2) works by
summing up the feature values of OD flows having either the same origin or destination with the
target OD flow. The second part covers another set of OD flows that either start at vj or end at
vi. Similar to standard CNN architectures, OD flows more related to the target one are more highly
weighted by a multi-layer SACN operator. For notational simplification, we useA(θ)∗L to represent
a L-layer SACN operator and denote the overall output as Sd,t ∈ RN×N×M

L+1

. Figure 4 in the
appendix more clearly illustrates the architecture of SACN.

3.2 TEMPORAL GATED CNN

We use temporal gated CNN (TGCNN) (Yu et al., 2018) instead of RNN-based architectures such
as LSTMs to capture the temporal representation, which makes our LSTOD a pure convolutional
architecture. RNNs suffer from the problem of lower training efficiency, gradient instability, and
time-consuming convergence. Moreover, the high dimension of the spatial representations captured
by SACN and a potential long temporal sequence length make RNNs notoriously difficult to train.
The CNNs is more flexible in handling various data structures and allows parallel computations to
increase training speed.

TGCNN consists of two parts including one being a 3D convolution kernel applied to the spatial
representations of all the N2 OD flows along the time axis and the other being a gated linear unit
(GLU) as the gate mechanism. Given an input spatial-temporal sequential data Y ∈ RN×N×r×m0 ,
the detailed architecture of a one-layer temporal gated CNN is formally defined as follows:

G(γ) ∗τ Y = P� σ(Q) ∈ RN×N×(r−K+1)×m1 , (3)

where � denotes the element-wise Hadamard product and γ denotes the set of parameters to be
learnt. The output Q with an element-wise sigmoid function σ(·) work together as a gate to evaluate
the importance of each element in P and assign a weight before moving to the following layer.

3.3 ST-CONV BLOCKS

We use the spatial-temporal convolutional block (ST-conv block) to jointly capture the spatial-
temporal features of OD flow data, which has a ‘sandwich’-structure architecture with an L-layer
SACN operator in the middle connecting the two TGCNNs. The use of ST-Conv blocks have two
major advantages. First, the block can be stacked or extended based on the dimension and character-
istic of the spatio-temporal input data. Second, a temporal operation is applied before extracting the
spatial information, which greatly reduces its computation complexity and memory consumption.

Both the input and output of a single ST-Conv block are 4D tensors. We denote the input as Y0 ∈
RN×N×r×c0 of r continuous snapshots and c0 features, which can be the short-term OD flow data
by setting r = p1 and c0 = 1. The mathematical definition of the ST-Conv block is given by.

Y1 = G1(γ1) ∗τ [A(θ0) ∗L {G0(γ0) ∗τ Y0}], (4)
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where G1(·) and G0(·) are the two temporal gated CNN layers and A(θ)∗L is an L-layer SACN
operator. The (θ0, γ0, γ1) is the set of all parameters to be learnt. The m1 3D convoluitonal filters
of kernel size 1 × 1 ×K0 and 1 × 1 ×K1 are used by the two TGCNN G0(γ0)∗τ and G1(γ1)∗τ ,
respectively. The L-layer SACN is applied to each of the {r − (K0 − 1)} 3D output of size N ×
N ×m1 obtained from TGCNN G0(γ0)∗τ , and then fed into the other TGCNN operator G1(γ1)∗τ .
One ST-Conv block shortens the temporal length of input Y0 by (K0 +K1 − 2), and the dimension
of the output Y1 becomes N × N × {r − (K0 + K1 − 2)} × m1. Accordingly, a set of nST =
(r−1)/(K0+K1−2) ST-Conv blocks reduces the sequential length from r to 1. We can then flatten
the spatial-temporal representation into a 3D tensor by squeezing out the temporal dimension.

The short-term spatial-temporal representation ZST ∈ RN×N×cST is obtained by continuously
applying (p1 − 1)/(K0

ST + K1
ST − 2) ST-Conv blocks to the short-term OD flow data X1 ∈

RN×N×p1×1. The kernel sizes of the two TGCNNs in all ST-Conv blocks are fixed to be 1×1×K0
ST

and 1×1×K1
ST , respectively. The cST filters are used by all the L-layer SACN and TGCNN layers.

The detailed propagation of the n-th ST-Conv block is defined as

ZST (n+ 1) = G1(γ
1
ST ) ∗τ [A(θST ) ∗L {G0(γ

0
ST ) ∗τ ZST (n)}], (5)

Moreover, ZST (1) = X1, and ZST = ZST (nST +1) ∈ RN×N×cST is the output of the last ST-Cov
block and is denoted as the final learned short-term spatial-temporal representations.

3.4 PERIODICALLY SHIFTED ATTENTION MECHANISM

In addition to capturing the the spatial-temporal features from short-term OD flow data X̃1, we also
take into account the long-term temporal periodicity due to the potential day-wise cycling patterns
insides the OD flow data, decided by customer’s travelling schedule and the city’s traffic conditions.
Directly applying ST-Con blocks to an extremely long OD sequence which covers previous few days
or weeks is computationally expensive. Only a small set of timestamps from each previous day is
necessary to capture the long-term periodicity. As mentioned, we pick p2 time intervals for each day
d− ϕ when predicting the time window (d, t+ j) considering the non-strict long-term periodicity.
This slight time shifting may be caused by unstable traffic peaks, holidays and extreme weather
conditions among different days.

Inspired by the recently widely used attention mechanisms (Xu et al., 2015; Yao et al., 2018a; Liang
et al., 2018) in spatial-temporal prediction problems, we propose a modified periodically shifted
attention to work for the CNN-based ST-Conv blocks here. Different from Yao et al. (2018a) that
measures the similarity between hidden units of LSTMs, the attention here is built on the interme-
diate outputs of TGCNNs where the concatenations are then fed into a new set of ST-Conv blocks.
For each day (d−ϕ), we apply (p2−n0LT )/(2K0

LT − 2) ST-Conv blocks to the day-level p2-length
sequential OD flow data indexed by {Od−ϕ,t+j−(p2+1)/2; . . . ;Od−ϕ,t+j+(p2+1)/2} to reduce the
sequence length from p2 to n0LT . We let the two TGCNNs in all the (p2 − n0LT )/(2K0

LT − 2) ST-
Conv blocks have the same filter size 1×1×K0

LT . The propagation rule of the n-th ST-Conv blocks
is defined as:

Zn+1
d−ϕ = G1(γ

01
LT ) ∗τ [A(θ0LT ) ∗L {G0(γ

00
LT ) ∗τ Znd−ϕ}] (6)

with Znd−ϕ ∈ RN×N×{p2−2(n−1)(K
0
LT−1)}×c̃ and Zn+1

d−ϕ ∈ RN×N×{p2−2n(K
0
LT−1)}×c̃ being the

input and output, respectively. Specifically, Z1
d−ϕ = X2,d−ϕ is the original OD flow data at day d−ϕ.

All SACN and TGCNN layers use c̃ convolutional filters and (θ0LT , γ
00
LT , γ

01
LT ) is the parameter set.

We denote the day-level features of day (d − ϕ) captured by (p2 − n0LT )/(2K0
LT − 2) ST-Conv

blocks as Z̃d−ϕ ∈ RN×N×n
0
LT×c̃, where z̃ijd−ϕ,φ ∈ Rc̃×1 denotes the φ-th element along the time

axis for the OD flow from vi to vj . We let zijST ∈ RcST×1 be the learned short-term representation
at the OD flow from vi to vj . Then, a day-level output zijd−ϕ can be obtained by summing up all the
n0LT z̃

ij
d−ϕ,φ’s by the weights which measure their similarities with zijST :

zijd−ϕ =

n0
LT∑
φ=1

βijd−ϕ,φz̃
ij
d−ϕ,φ, (7)
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where βijd−ϕ,φ is the weight function of quantifying the similarity between z̃ijd−ϕ,φ and zijST based on
a score function score(z̃ijd−ϕ,φ, z

ij
ST ), which is defined as:

βijd−ϕ,φ =
exp(score(z̃ijd−ϕ,φ, z

ij
ST ))∑

φ′ exp(score(z̃ijd−ϕ,φ′ , z
ij
ST ))

. (8)

Moreover, score(z̃ijd−ϕ,φ, z
ij
ST ) is defined as

vTφ tanh(W1z̃
ij
d−ϕ,φ +W2z

ij
ST + bs), (9)

where W1 ∈ Rc̃×c̃,W2 ∈ Rc̃×cST , and vφ ∈ Rc̃×1 are learned projection matrices, and bs is
the added bias term. We let Zd−ϕ = (zijd−ϕ) ∈ RN×N×c̃ denote the day-level output and then
concatenate the q Zd−ϕ’s along a new additional axis in the third dimension as

Z0
LT = Concat1ϕ=qZd−ϕ (10)

to build a new day-wise time series Z0
LT ∈ RN×N×q×c̃ of length q. Finally, we apply another set of

(q−1)/(2K1
LT −2) ST-Conv blocks to the day-wise sequence data generated by (10) to capture the

long-term spatial-temporal representations. which is denoted by ZLT ∈ RN×N×cLT , where cLT is
the number of feature channels.

We concatenate the short-term and long-term spatial-temporal representations ZST and ZLT together
along the feature axis as Z = ZST ⊕ ZLT ∈ RN×N×C , where C = cST + cLT . Then, Z is modified
to a 2D tensor Z ∈ RN

2×C by flattening the first two dimensions while keeping the third one. We
apply a fully connected layer to the C feature channels together with an element-wise non-linear
sigmoid function to get the final predictions for all the N2 OD flows.

3.5 DATA PROCESSING AND TRAINING

We normalize the original OD flow data in the training set to (0, 1) by Max-Min normalization and
use ’sigmoid’ activation for the final prediction layer to ensure that all predictions fall into (0, 1).
The upper and lower bounds are saved and used to denormalize the predictions of testing data to get
the actual flow volumes.

We use L2 loss to build the objective loss during the training. The model is optimized via Back-
propagation Through Time (BPTT) and Adam (Kingma & Ba, 2014). The whole architecture of
our model is realized using Tensorflow (Abadi et al., 2016) and Keras (Chollet et al., 2015). All
experiments were run on a cluster with one NVIDIA 12G-memory Titan GPU.

4 EXPERIMENT

In this section, we compare the proposed LSTOD model with some state-of-the-art approaches for
latent traffic flow predictions. All compared methods are classified into traditional statistical meth-
ods and deep-learning based approaches. We use the demand flow data collected by a ride-sharing
platform to examine the finite sample performance of OD flow predictions for each method.

4.1 DATASET DESCRIPTION

We employ a large-scale demand dataset obtained from a large-scale ride-sharing platform to do
all the experiments. The dataset contains all customer requests received by the platform from
04/01/2018 to 06/30/2018 in two big cities A and B. Within each urban area, N = 50 hexago-
nal regions with the largest customer demands (cover more than 80% of total demands) are selected
with radius being 2 km, N = 50 of which with the largest customer demands are selected to build
the vertex set V . In total, 2500 OD flows are generated based on the 50 sub-regions.

We split the whole dataset into two parts. The data from 04/01/2018 to 06/16/2018 is used for
model training, while the other part from 06/17/2017 to 06/30/2017 (14 days) serves as the testing
set. The first two and half months of OD flow data is further divided in half to the training and
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validation sets. The size ratio between the two sets is around 4:1. We let 30 min be the length of
each timestamp and the value of the OD flow from vi to vj is the cumulative number of customer
requests. We make predictions for all the 502 OD flows in the incoming 1st, 2nd, and 3rd 30 minutes
(i.e. t + 1, t + 2, t + 3) by each compared method, given the historical data with varied (p1, p2)
combinations. For those model settings incorporating long-term information, we trace back q = 3
days to capture the time periodicity. We use Rooted Mean Square Error to evaluate the performance
of each method:

RMSE =

√√√√ 1

N2 ∗ |T0|

N∑
i=1

N∑
j=1

∑
(d,t)∈T0

(oijd,t − ô
ij
d,t)

2, (11)

oijd,t and ôijd,t are the true value and prediction at the OD flow from vertex vi to vertex vj at time
(d, t), respectively. T0 is the set containing all the predicted time points in the testing data.

4.2 COMPARED METHODS

All state-of-the-art methods to be compared are listed as follows, some of which are modified to
work for the OD flow data: (i) Historical average (HA): HA predicts the demand amount at each
OD flow by the average value of previous 5 days, (ii) Autoregressive integrated moving aver-
age (ARIMA), (iii) Support Vector Machine Regression (SVMR), (iv) Latent Space Model
for Road Networks (LSM-RN) (Deng et al., 2016), (v) Dense + BiLSTM (DLSTM) (Altché &
de La Fortelle, 2017) and (vi) Spatiotemporal Recurrent Convolutional Networks (SRCN) (Yu
et al., 2017). We only consider latent models in this paper, that is, no external covariates are allowed,
while only the historical OD flow data is used to extract the hidden spatial-temporal features.

4.3 PREPROCESSING AND PARAMETERS

We tune the hyperparameters of each compared model to obtain the optimal prediction performance.
Specifically, we get (p∗, d∗, q∗) = (3, 0, 3) for ARIMA and k∗ = 15, γ∗ = 2−5, λ∗ = 10 for LSM-
RN. The optimal kernel size of the spatial based CNN kernel is 11× 11 in SRCN model.

For fair comparison, we set the length of short-term OD flow sequence to be p1 = 9 (i.e., previous
4.5 hours), q = 3 for long-term data which covers the three most recent days, and the length of
each day-level time series p2 = 5 to capture the periodicity shifting (one hour before and after the
predicted time index). More analysis of how variant (p1, p2) combinations may affect the prediction
performance of LSTOD will be studied latter.

A two-layer architecture is used by all the deep-learning based methods to extract the spatial patterns
inside the OD flow data (L = 2 for both short-term and long-term SACN). We set the filter size of all
deep learning layers in both spatial and temporal space to be 64, including the SACNs and TGCNNs
in our LSTOD model with c̃ = cST = cLT = 64.

4.4 RESULTS

Comparison with state-of-the-art methods. Table 1 summarizes the finite sample performance
for all the competitive methods and our LSTOD model in terms of the prediction RMSE on the
testing data. For city A, LSTOD outperforms all other methods on the testing data with the lowest
RMSE (2.44/2.59/2.69), achieving (6.51%/6.83%/7.24%) improvement over the second best method
’SRCN’. This demonstrates the advantages of using our spatial-temporal architecture and long-term
periodicity mechanism in modelling the dynamic evolution of OD flow networks. The improvement
increases as the predicting scope increases since our model captures the long-term periodicity. The
’Dense + BiLSTM’ outperforms traditional approaches by more precisely learning the temporal
dependency using deep learning architecture, but it fails to model the underlying graph structure of
OD flow data. Both ’ARIMA’ and ’LSM-RN’ perform poorly, even much worse than HA, indicating
that they cannot capture enough short-term spatial-temporal features to get the evolution trend of
OD flow data. The LSTOD performs even better on city B compared to SRCN (11.34% - 15%
improvement) since the long-term periodical pattern in city B is more significant compared with
that in city A.
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Table 1: Comparison with State-of-the-art methods
City A City B

Method 30 min 60 min 90 min 30 min 60 min 90 min
HA 4.64 3.53

ARIMA 5.64 6.01 6.49 8.82 9.47 10.82
LSVR 3.53 3.95 4.06 4.13 4.85 5.12

LSM-RN 5.73 6.36 6.74 6.02 6.75 7.36
DLSTM 3.08 3.59 3.99 3.88 4.09 4.59
SRCN 2.61 2.78 2.90 2.91 3.08 3.20

LSTOD 2.44 2.59 2.69 2.58 2.67 2.72

ACN VS standard local CNN. In this experiment, we will show that our proposed SACN outper-
forms standard CNNs in capturing the hidden network structure of the OD flow data. Given the
model setting that N = 50 sub-regions of city A are used to build the dynamic OD flow matrices,
the number of pixels being covered by SACN at each single snapshot is 50 × 4 = 200. For fair
comparison, the largest receptive filed of standard CNN should be no bigger than a 15×15 window,
which includes 225 elements each time. We consider five different kernel sizes including 5 × 5,
8 × 8, 11 × 11, 14 × 14, and 15 × 15. We replace SCAN in our model by standard CNN in or-
der to fairly compare its performance. All hyper-parameters are fixed but only the kernel size of
CNNs being changed. Moreover, we only consider the baseline short-term mode of LSTOD model
while ignoring the long-term information. As Figure 3 illustrates, standard CNN achieves the best
performance with the smallest RMSE = 2.64 on testing data with the filter size being 11 × 11,
which is still higher than that using SACN with RMSE = 2.54. Specifically, RMSE increases when
the receptive field is larger than 11 × 11 since the spatial correlations among the most related OD
flows (sharing common origin or destination nodes) are smoothed with the increase in the filter size
((8 × 2 − 1)/64 > (14 × 2 − 1)/196). This experiment shows that treating the dynamic demand
matrix as an image, and applying standard CNN filters does not capture enough spatial correlations
among related OD flows without considering their topological connections from the perspective of
graphs. For more details, please refer to Figure 3.

Comparison with variants of LSTOD. Table 2 shows the finite sample performance of our pro-
posed model LSTOD and its different variants based on the demand data from city A. We can see
that the LSTOD model without using attention mechanism (RMSE = 2.49) outperforms the base-
line setting only using short-term data (RMSE = 2.54). This shows the necessity of modeling the
seasonal temporal patterns. Moreover, the complete model using the attention mechanism (RMSE =
2.44) outperforms the one without using it (RMSE = 2.49). It indicates that the periodically shifted
attention can capture the shifting of the day-wise periodicity and extract more seasonal patterns to
improve prediction accuracy. We do some more experiments to show how different hyperparameter
configurations influence the model performance. For more details, please refer to the appendix.

RMSE
Method 30 min 60 min 90 min

ACN + GCNN 2.54 2.71 2.83
LSTOD (no attention) 2.49 2.63 2.72
LSTOD (complete) 2.44 2.59 2.69

Table 2: Evaluation of LSTOD and its
variants

Figure 3: RMSE on testing data with respect to
ACN and standard CNN using different kernel
sizes.
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A NOTATION TABLE

Od,t OD flow maps of day d, time t

oijd,t Flow amount from vertex vi to vj at day d, time t

X1,X2 Short-term and long-term spatial-temporal OD flow data

X2,d−ϕ long-term spatial-temporal OD flow data of day d− ϕ
Ad,t(l + 1) Output of l-th SACN layer when input being Od,t

A(θ)∗L L-layer SACN operator

G(γ)∗τ One-layer TGCNN operator

ZST (n+ 1) Short-term output of the l-th ST-Conv block

ZST Final captured short-term spatial-temporal representations

Zn+1
d−ϕ Output of n-th ST-Conv block of day d− ϕ

Z̃d−ϕ features of day (d− ϕ) captured by ST-Conv blocks

z̃ijd−ϕ,φ φ-th element along the time axis of Z̃d−ϕ from vi to vj
βijd−ϕ,φ similarity between z̃ijd−ϕ,φ and zijST
Zd−ϕ day-level output of day d− ϕ
ZLT long-term spatial-temporal representations

Z ZST ⊕ ZLT , combined spatial-temporal representations

B ILLUSTRATION OF SACN

Figure 4: Working mechanism of spatial adjacent convolution network (SACN) for a target OD flow
from vi to vj

C TRAINING DETAILS

Batch normalization is used in the SACN component. The batch size in our experiment was set to 10,
corresponding to 10 randomly sampled timestamps and all the 502 OD flows in each snapshot. The
initial liearning rate is set to be 10−4 with a decay rate 10−6. We use early stopping for all the deep
learning-based methods where the training process is terminated when the RMSE over validation
set has not been improved for 10 successive epochs. The maximal number of epochs allowed is 100.
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D COMPARISON OF DIFFERENT HYPERPARAMETER CONFIGURATIONS

In this section, we want to explore how some important hyperparameters of input OD flow data, for
example p1 and p2, may affect the performance of our LSTOD model.

Figure 5 (b) compares RMSE on testing data by STOD model with different data settings. Varied
combinations of the short-term sequence length p1 and the long-term day-level sequence length p2
are studied. We can see that the best performance is achieved as (p1, p2) = (7, 5) with RMSE =
2.41. Specifically, settings with different p1’s under p2 = 5 consistently outperform those under
p2 = 7. It may demonstrate that the shift can usually be captured within a short time range, while a
longer time sequence may smooth the significance. Table 3 provides the detailed prediction results
for each data setting.

Table 3: Comparison of STOD under different p1, p2 combinations
p2 (K0

LT ,K
1
LT ) p1 (K0

ST ,K
1
ST ) RMSE

5 (2, 2) 2.45
7 (2,3) 2.41

5 (2, 2) 9 (3, 3) 2.42
11 (3, 4) 2.43
13 (4, 4) 2.43
5 (2, 2) 2.45
7 (2, 3) 2.44

7 (3, 2) 9 (3, 3) 2.44
11 (3, 4) 2.44
13 (4, 4) 2.49

Figure 5: RMSE on testing data with respect to STOD with different p1 and p2 combinations.
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