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ABSTRACT

Word-embeddings are a vital component of Natural Language Processing (NLP)
systems and have been extensively researched. Better representations of words
have come at the cost of huge memory footprints, which has made deploying NLP
models on edge-devices challenging due to memory limitations. Compressing em-
bedding matrices without sacrificing model performance is essential for successful
commercial edge deployment. In this paper, we propose Distilled Embedding, an
(input/output) embedding compression method based on low-rank matrix decom-
position with an added non-linearity. First, we initialize the weights of our decom-
position by learning to reconstruct the full word-embedding and then fine-tune on
the downstream task employing knowledge distillation on the factorized embed-
ding. We conduct extensive experimentation with various compression rates on
machine translation, using different data-sets with a shared word-embedding ma-
trix for both embedding and vocabulary projection matrices. We show that the
proposed technique outperforms conventional low-rank matrix factorization, and
other recently proposed word-embedding matrix compression methods.

1 INTRODUCTION

Deep Learning models are the state-of-the-art in NLP, Computer Vision, Speech Recognition and
many other fields in Computer Science and Engineering. The remarkable deep learning revolution
has been built on top of massive amounts of data (both labeled and unlabeled), and faster computa-
tion. In NLP, large pre-trained language models like BERT (Devlin et al., 2018) are state-of-the-art
on a large number of downstream NLP problems. The largest publicly available language model to
date is trained with 1.6 billion parameters (Keskar et al., 2019). On machine translation the state-
of-the-art models have parameters in the order of millions. Data privacy and server cost are some
major issues, driving research towards deploying these models on edge-devices. However, running
these models on edge-devices, face memory and latency issues due to limitations of the hardware.
Thus, there has been considerable interest towards research in reducing the memory footprint and
faster inference speed for these models (Sainath et al., 2013; Acharya et al., 2019; Shu & Nakayama,
2017; Shi & Yu, 2018; Jegou et al., 2010; Chen et al., 2018; Winata et al., 2018).

The architecture of deep-learning-based NLP models can be broken down into three components.
The first component, represents the embedding section, which maps words in the vocabulary to con-
tinuous dense vector representations of the words. For all future references, the first component
includes both the source and target vocabulary mapping using a common embedding matrix with a
shared vocabulary. The second component, consists of a function f , typically a deep neural-network
(Schmidhuber, 2015; Krizhevsky et al., 2012; Mikolov et al., 2010) which maps the embedding rep-
resentation for different NLP problems (machine-translation, summarization, question-answering
and others), to the output-space of function f . The third component, is the output layer which maps
the output of function f to the vocabulary-space, followed by a softmax function. Most of these NLP
problems use linear transformations, in the first and the third components of the models. Since, these
components depend upon a large vocabulary-size, they require large number of parameters which
results in higher latency and larger memory requirements. For instance, the Transformer Base model
(Vaswani et al., 2017) uses 37% of the parameters in the first and third components using a vocabu-
lary size of 50k, and with parameter-tying between the components. The percentage of parameters
increases to 54%, when parameters are not shared between the first and third components. The
reader is encouraged to look at Table A.1 of the Appendix for more information.
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Thus, an obvious step is to compress parametric functions used by the first and third components.
Recently, many researchers have worked on compressing word-embedding matrices (Sainath et al.,
2013; Acharya et al., 2019; Shu & Nakayama, 2017; Shi & Yu, 2018; Jegou et al., 2010; Chen et al.,
2018; Winata et al., 2018). These techniques have proven to perform at-par with the uncompressed
models, but still suffer from a number of issues.

First, embedding compression models (Shi & Yu, 2018; Chen et al., 2018; Khrulkov et al., 2019;
Shu & Nakayama, 2017), require two hyper-parameters to be fine-tuned. These hyper-parameters
influence the number of parameters in the model, and thus the compression rate. This leads to an
additional layer of complexity for optimizing the model for different NLP problems. Additionally,
Chen et al. (2018) requires an additional optimization step for grouping words, and lacks end-to-end
training through back-propagation. Shi & Yu (2018) also requires an additional step for performing
k-means clustering for generating the quantization matrix. Thus, most of the current state-of-the-art
systems are much more complicated to fine-tune for different NLP problems and data-sets.

Second, all the state-of-the-art embedding compression models compress the first and third compo-
nents separately. In practice, state-of-the-art NLP models like Vaswani et al. (2017) have shown to
perform better with parameter sharing between the first and third components (Press & Wolf, 2016).
Thus, there is a need for an exhaustive analysis of various embedding compression techniques, with
parameter sharing.

Lastly, embedding compression models not based on linear SVD (Khrulkov et al. (2019); Shu &
Nakayama (2017); Shi & Yu (2018)) require the reconstruction of the entire embedding matrix or
additional computations, when used at the output-layer. Thus, the model either uses the same amount
of memory as the uncompressed model or requires additional computation cost. This makes linear
SVD based techniques more desirable for running models on edge-devices.

In this paper, we introduce Distilled Embedding, a non-linear matrix factorization method, which
outperforms the current state-of-the-art methods. Our method, first compresses the vocabulary-space
to a much smaller dimension compared to the original hidden-dimension, then applies a non-linear
activation function, before recovering the original embedding-dimension. Additionally, we also
introduce an embedding distillation method, which is similar to Knowledge Distillation (Hinton
et al., 2015) but we apply it to distill knowledge from a pre-trained embedding matrix and use an L2
loss instead of cross-entropy loss. To summarize our contributions are:

• We demonstrate that at the same compression rate our method outperforms existing state-
of-the-art methods.

• Our proposed method is much simpler than the current state-of-the-methods, with only a
single hyper-parameter controlling the compression rate.

• We introduce an embedding distillation method, which out-performs standard machine
translation cross-entropy loss.

• Unlike the current state-of-the-art systems, we compress the embedding matrix with param-
eter sharing between the first and third components. We perform an exhaustive comparison
of current state-of-the-art models in this setting.

• Our model uses a similar factorization as SVD, with the addition of a non-linearity, thus it
is able to leverage benefits of linear SVD based methods discussed above.

• We also compare all the models against a simple low-rank matrix factorization using Sin-
gular Value Decomposition (SVD) and demonstrate that it can compete with more complex
algorithms.

2 RELATED WORK

We can model the problem of compressing the embedding matrix as a matrix factorization prob-
lem. There is a considerable amount of work done in this field, some of the popular works broadly
belong to the domain of low-rank factorization (Singular Value Decomposition (SVD);Srebro &
Jaakkola (2003); Mnih & Salakhutdinov (2008), product quantization (Jegou et al., 2010) and tensor
decomposition (De Lathauwer et al., 2000). A number of prior works in embedding compression
are influenced by these fields and have been applied to various NLP problems. In this Section, we
will discuss some of the significant works across different NLP problems.
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Low-rank Factorization Low-rank approximation of weight matrices, using SVD, is a natural
way to compress deep learning based NLP models. Sainath et al. (2013) apply this to a convolutional
neural network for language modeling and acoustic modeling. Winata et al. (2018) use SVD on
all the weight matrices of an LSTM and demonstrate competitive results on question-answering,
language modeling and text-entailment. Acharya et al. (2019) use low-rank matrix factorization for
word-embedding layer during training to compress a classification model. However, they do not
study the effects of applying a non-linear function before reconstructing the original dimension.

GroupReduce Chen et al. (2018) apply weighted low-rank approximation to the embedding ma-
trix of an LSTM. They first create a many-to-one mapping of all the words in the vocabulary into
g groups, this initial mapping is done based upon frequency. For each group g they apply weighted
SVD to obtain a lower rank estimation, the rank is determined by setting the minimum rank and
linearly increasing it based upon average frequency. Finally, they update the groups by minimizing
the reconstruction error from the weighted SVD approximation. They demonstrate strong results
on language modeling and machine translation compared to simple SVD. In their models they use
different embedding matrices for input and softmax layers and apply different compression to each.

Product Quantization Jegou et al. (2010) introduced product quantization for compressing high
dimensional vectors, by uniformly partitioning them into subvectors and quantizing each subvector
using K-means clustering technique. Basically, product quantization approach assumes that the
subvectors share some underlying properties which can be used to group similar subvectors together
and unify their representation. That being said, this approach breaks the original matrix into a set
of codebooks coming from the center of the clusters in different partitions together with a separate
index matrix which refers to the index of the clusters for each subvector. Shi & Yu (2018) applied
product quantization to a language model and were able to show better perplexity scores. Shu &
Nakayama (2017) extended this technique by first representing the product quantization as a matrix
factorization problem, and then learning the quantization matrix in an end-to-end trainable neural
network. Li et al. (2018) implement product quantization through randomly sharing parameters in
the embedding matrix, and show good results on perplexity for an LSTM based language model.

Tensor Decomposition De Lathauwer et al. (2000) introduced multilinear SVD, which is a gener-
alization of SVD for higher order tensors. Oseledets (2011) introduced an efficient algorithm Tensor
Train (TT) for multilinear SVD Tensor. Novikov et al. (2015) applied the Tensor Train decompo-
sition on fully connected layers of deep neural networks. Khrulkov et al. (2019) applied Tensor
Train algorithm to the input embedding layer on different NLP problems like language modeling,
machine translation and sentiment analysis. They demonstrate high compression rate with little loss
of performance. However, they compress only the input embedding and not the softmax layer for
language modeling and machine translation.

Knowledge Distillation Knowledge distillation has been studied in model compression where
knowledge of a large cumbersome model is transferred to a small model for easy deployment. Sev-
eral studies have been studied on the knowledge transfer technique Hinton et al. (2015); Romero
et al. (2015). In this paper, we propose a embedding factorization of word-embedding matrix using
knowledge distillation to mimic the pre-trained word-embedding representation.

3 METHODOLOGY: DISTILLED EMBEDDING

3.1 FUNNELING DECOMPOSITION AND EMBEDDING DISTILLATION

We present an overview of our proposed method in Figure 1. Given an embedding matrix E ∈
R|V|×d, we can decompose it into three matrices (Equation 1), using the SVD algorithm

E = U|V|×|V|Σ|V|×dV
T
d×d (1)

where |V| is the vocabulary size and d is the embedding dimension. Σ is a diagonal matrix con-
taining the singular values, and matrices U and V represent the left and right singular vectors of the
embedding matrix respectively. We can obtain the reduced form of the embedding matrix by only
keeping r (< d) largest singular values out of d.

Ẽ = U|V|×rΣr×rV
T
r×d = U|V|×rV T

r×d (2)
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Figure 1: Funneling Decomposition method to compress the shared embedding matrix of a trans-
former based sequence to sequence model.

where the matrix U = UΣ. The reduced form of the embedding matrix will need r × (|V| + d)
parameters compared to |V| × d.

Our proposed approach in this work, is to apply a non-linear transformation on the matrix U, before
reconstructing the original embedding dimension using V (see Figure 1a), as shown in Equation 3,

Ẽ = f(U|V|×r)V T
r×d (3)

We use the ReLU as our non-linear function f(.) throughout this paper. We train a sequence to
sequence model (Sutskever et al. (2014); Vaswani et al. (2017)) with tied input and output embed-
ding (i.e. the output embedding is the transpose of the input embedding matrix Ẽout = ẼT =
Vd×r[f(U|V|×r]T . We train our model end-to-end by replacing the embedding function with Equa-
tion 3. The matrix U and V are trainable parameters, and for the output layer we use ẼT , with the
parameter sharing. We train on two losses. The standard cross entropy loss defined as:

Lce = −
M∑
i=1

yilog(pi) (4)

whereM is the sequence length, yi is the one-hot representation for the ith label and pi is the softmax
probability of the ith term generated by the decoder.

In addition to the cross-entropy loss, we introduce a novel embedding reconstruction loss (Equa-
tion 5), which we refer to as embedding distillation as we distill information from the pre-trained
embedding into our model,

Lrecon =
1

|V|

|V|∑
i=1

‖ei − êi‖2 =
1

|V|

|V|∑
i=1

‖ei − f(ui)V
T
r×d‖2 (5)

where ei and êi are the embedding vectors corresponding to the ith word in the original embedding
matrix E and the reconstructed embedding matrix Ê respectively and ui refers to the ith row of the
matrix U. We use Equation 6 as our final loss function.

Ltotal = αLrecon + (1− α)Lce (6)

where α ∈ [0, 1] is a hyper-parameter, which controls the trade-off between reconstruction and
cross-entropy loss. Lrecon acts as the knowledge distillation loss by which we try to distill informa-
tion from the original pre-trained embedding layer as a teacher to the funneling decomposed embed-
ding layer as a student. The training process of our Distilled Embedding method is summarized in
Algorithm 1.
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Algorithm 1 Distilled Embedding

1: Step 1) Pre-training the Embedding Matrix Pre-train the sequence to sequence model with
the full embedding matrix for better initialization.

2: Step 2) Initializing the Weights of Funneling Decomposition Layer We extract the trained
embedding matrixE from Step 1 and train our decomposed matrices U and V on reconstruction
loss defined in Equation 5, as shown in Figure 1a.

3: Step 3) Embedding Distillation The pre-trained funneling decomposition layer is plugged into
the model (replacing the original embedding matrix E) and the entire model is trained based on
Equation 6.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND EVALUATION

We test our proposed method on machine translation which is a fundamental problem in NLP and
challenging for embedding compression since we typically have at least two dictionaires and an input
and output embedding. Comparitively language modeling uses a single dictionary and classification
tasks such as sentiment analysis don’t have an output embedding.

We present results on translating three language pairs: WMT English to French (En-Fr), WMT
English to German (En-De) and IWSLT Portuguese to English (Pt-En). We decided that these pairs
are good representatives of high-resource, medium-resource and low-resource language pairs.

WMT En-Fr is based on WMT14 training data which contain 36M sentence pairs. We used Senten-
cePiece (Kudo & Richardson (2018)) to extract a shared vocabulary of 32k subwords. We validate
on newstest2013 and test on newstest2014. For WMT English to German (En-De), we use the same
setup as Vaswani et al. (2017). The dataset is based on WMT16 training data and contains about
4.5M pairs. We use a shared vocabulary of 37k subwords extracted using SentencePiece.

For the IWSLT Portuguese to English (Pt-En) dataset, we replicate the setup of Tan et al. (2019) for
training individual models. Specifically, the dataset contains about 167k training pairs. We used a
shared vocabulary of 32k subwords extracted with SentencePiece.

For all language pairs, we measure case-sensitive BLEU score (Papineni et al. (2002)) using Sacre-
BLEU1 (Post (2018)). In addition, we save a checkpoint every hour for the WMT En-Fr and WMT
En-De language pairs and every 5 minutes for the IWSLT Pt-En due to the smaller size of the dataset.
We use the last checkpoint which resulted in the highest validation BLEU and average the last five
checkpoints based on this. We use beam search with a beam width of 4 for all language pairs.

4.2 EXPERIMENT DETAILS

Hyper-Parameters For WMT En-Fr and WMT En-De we use the same configuration as Trans-
former Base which was proposed by Vaswani et al. (2017). Specifically, the model hidden size
dmodel is set to 512, the feed-forward hidden size dff is set to 2048 and the number of layers for the
encoder and the decoder was set to 6. For the IWSLT Pt-En, we use Transformer Small configu-
ration. Specifically, the model hidden-size dmodel is set to 256, the feed-forward hidden size dff is
set to 1024 and the number of layers for the encoder and the decoder was set to 2. For Transformer
Small, the dropout configuration was set the same as Transformer Base. All models are optimized
using Adam (Kingma & Ba (2015)) and the same learning rate schedule as proposed by Vaswani
et al. (2017). We use label smoothing with 0.1 weight for the uniform prior distribution over the vo-
cabulary (Szegedy et al. (2015); Pereyra et al. (2017)). Additionally, we set the value α of Equation
6 to 0.01.

Hardware Details We train the WMT models on 8 NVIDIA V100 GPUs and the IWSLT models
on a single NVIDIA V100 GPU. Each training batch contained a set of sentence pairs containing

1https://github.com/mjpost/sacreBLEU
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Model Param Emb.
Params

Emb.
Compression Rate

WMT En-Fr
(BLEU)

Transformer Base 60M 16.3M 1.0x 38.12

Smaller Transformer Network (416) 46M 13.3M 1.23x 37.26
SVD with rank 64 46M 2.08M 7.87x 37.44
GroupReduce (Chen et al. (2018)) 46M 2.10M 7.79x 37.63
Structured Embedding (Shi & Yu (2018)) 46M 2.07M 7.90x 37.78
Tensor Train (Khrulkov et al. (2019)) 46M 2.12M 7.72x 37.27

Distilled Embedding (Ours) 46M 2.08M 7.87x 37.78

Table 1: Machine translation accuracy in terms of BLEU for WMT En-Fr on newstest2014.

approximately 6000 source tokens and 6000 target tokens for each GPU worker. All experiments
were run using the TensorFlow framework2.

5 RESULTS

5.1 MACHINE TRANSLATION

We present BLEU score for our method and compare it with SVD, GroupReduce (Chen et al.
(2018)), Structured Emedding (Shi & Yu (2018)), Tensor Train (Khrulkov et al. (2019)) and a
smaller transformer network with the same number of parameters. We learn a decomposition for
all the methods except Tensor Train since it was pointed out in Khrulkov et al. (2019) that there
is no difference in performance between random initialization and tensor train learnt initialization.
Once initialized we plug the decomposed embedding and fine-tune till convergence. None of the
weights are frozen during fine-tuning.

Table 1 presents the results on English-French translation. The hyper-parameters for tuning the com-
peting methods are presented in Section A.1 of the Appendix. We see that on this task our method
along with Structured Embedding performs the best. Group Reduce is the next, and SVD performs
better than Tensor Train, showing that SVD is a strong baseline, when fine-tuned till convergence.

On English-German translation, as seen in Table 2, our method outperforms all other methods.
The smaller transformer network does well and is only surpassed by GroupReduce amongst the
competing methods. SVD again performs better than Tensor Train.

We present the Portuguese-English translation results on Table 3. This task presents a problem
where the embedding matrix constitutes the majority of the parameters of the neural network. The
embedding dimension is smaller (256) compared to the other two tasks but embedding compres-
sion yields a BLEU score increase in all methods except Structured Embedding. This is due to a
regularization effect from the compression. Our model again achieves the highest BLEU score.

On these three experiments we demonstrate that our funneling decomposition method with embed-
ding distillation consistently yields higher BLEU scores compared to the competing methods.

5.2 ABLATION STUDY

We present different experiments to demonstrate the effect of 1) Model Initialization, 2) Embedding
Distillation, 3) Fine-tuning strategies, 4) Compression capability and 5) Extension and generality of
our method.

Initialization We do an ablation study on all the three language pairs defined in Section 4.1, to
conclude, if random initialization is better than model based initialization. We conclude that model
based initialization, consistently performs better (Table 4).

2https://www.tensorflow.org/
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Model Param Emb.
Params

Emb.
Compression Rate

WMT En-De
(BLEU)

Transformer Base 63M 18.94M 1.0x 27.08

Smaller Transformer Network (400) 46M 14.8M 1.28x 26.72
SVD with rank 64 46M 2.40M 7.89x 26.32
GroupReduce (Chen et al. (2018)) 46M 2.40M 7.88x 26.75
Structured Embedding (Shi & Yu (2018)) 46M 2.40M 7.89x 26.34
Tensor Train (Khrulkov et al. (2019)) 46M 2.44M 7.75x 26.19

Distilled Embedding (Ours) 46M 2.40M 7.89x 26.97

Table 2: Machine translation accuracy in terms of BLEU for WMT En-De on newstest2014.

Model Param Emb.
Params

Emb.
Compression Rate

IWSLT Pt-En
(BLEU)

Transformer Small 11M 8.19M 1.0x 41.43

Smaller Transformer Network (136) 5M 4.35M 1.88x 40.71
SVD with rank 64 5M 2.06M 3.96x 42.37
GroupReduce (Chen et al. (2018)) 5M 2.06M 3.96x 42.13
Structured Embedding (Shi & Yu (2018)) 5M 2.06M 3.97x 41.27
Tensor Train (Khrulkov et al. (2019)) 5M 2.06M 3.96x 42.34

Distilled Embedding (Ours) 5M 2.06M 3.96x 42.62

Table 3: Machine translation accuracy in terms of BLEU for IWSLT Pt-En.

Embedding Distillation Table 5 presents different compression rates on the Pt-En task, and em-
bedding distillation performs better across all of them. In Table 4, we see that across all language
pairs when we initialize our model using weights from the funneling decomposition, we improve
when using Embedding Distillation during finetuning. We performed embedding distillation with
random initialization only on the smaller Pt-En dataset and observed that Embedding Distillation
improves BLEU score.

Compression Rate We demonstrate in Table 5 that it is possible to compress the embedding up to
15.86x with only a 2% drop in BLEU score for Pt-En.

Re-training Fine-tuning is an important component in our method and we demonstrate through
our experiments that at convergence most of the techniques are close in performance. Table 6 shows
that freezing embedding weights and re-training the network weights or vice versa leads to a sharp
drop in BLEU score, thus, we need to re-train all the weights. The use of a non-linearity and adding
embedding distillation also improves BLEU score after finetuning.

Extension We experimented with applying two key lessons from our method, namely, using a
non-linear function and embedding distillation, to a model initialized with group partitions of the

Model Params Emb.
Params

Emb.
CR

Random Initialization Model Initialization
No

Distillation
Emb.

Distillation
No

Distillation
Emb.

Distillation

En-Fr 46M 2M 7.87x 37.04 - 37.54 37.78
En-De 46M 2M 7.89x 26.07 - 26.7 26.97
Pt-En 5M 2M 3.96x 42.29 42.36 42.5 42.62

Table 4: Comparison of different methods for Funneling (64), CR refers to the compression rate.
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Params Emb.
Params

Emb.
CR

No
Distillation

Emb.
Distillation

11M 8M 1.0x 41.43 -
5M 2M 3.96x 42.50 42.62
4M 1M 7.93x 42.44 42.60
4M 516k 15.86x 40.42 40.60

Table 5: Comparison of different compression rates with bottleneck sizes of 64, 32 and 16 accord-
ingly for IWSLT Pt-En.

Model BLEU

Funneling with Emb. Distillation 42.60
Funneling (with non-linearity) 42.44
Funneling (with retraining all weights) 42.34
Funneling (Freeze non-emb. weights) 33.34
Funneling (Freeze emb. weights) 20.49

Table 6: BLEU score for IWSLT Pt-En with
compression rate 7.93x.

Model BLEU

Group Funneling
(Rand. Initialized + Emb. Distil.) 42.52

Group Funneling
(Rand. Initialized) 42.49

GroupReduce 42.13

Table 7: GroupFunneling (i.e. GroupReduce
+ Funneling) on IWSLT Pt-En.

GroupReduce method (Chen et al., 2018), we refer to this method as GroupFunneling. Table 7
shows that, GroupFunneling achieves a higher BLEU score on Pt-En compared to GroupReduce.

6 DISCUSSION

Importance of Non-linearity We postulate that only a subset of word vector dimensions, explains
most of the variance, for most word vectors in the embedding matrix. Thus, using ReLU activation
might help in regularizing the less important dimensions for a given word vector.

Importance Reconstruction Loss We propose that the embedding reconstruction might suffer
from adding the ReLU activation function. Thus, adding a loss for embedding reconstruction helps
in grounding the embedding and not loose a lot of information. Thus, the amount of regularization
is controlled by the hyper-parameter α. Our intuition is partly justified by results shown in Table
A.2, as reconstruction loss performs worse without the ReLU activation function.

7 CONCLUSION AND FUTURE WORK

In this paper we proposed Distilled Embedding, a low-rank matrix decomposition with non-linearity
in the bottleneck layer for a shared word-embedding and vocabulary projection matrix. We also in-
troduce knowledge distillation of the embedding during fine-tuning using the full embedding matrix
as the teacher and the decomposed embedding as the student. We compared our proposed approach
with state-of-the-art methods for compressing word-embedding matrix. We did extensive experi-
ments using three different sizes of datasets and showed that our approach the state-of-the art meth-
ods on the challenging task of machine translation. For future work, we will apply our approach to
compress feed-forward and multi-head attention layers of the transformer network.
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A APPENDIX

A.1 ADDITIONAL HYPER-PARAMETERS

WMT En-Fr Smaller Transformer Network denotes a network with the same configuration as
Transformer Base but with hidden size dmodel of 416. For GroupReduce, to match the same com-
pression rate we used number of clusters c being equal to 10 and minimum rank rmin to be 22.
For SVD, we decided to set the rank to 64. For Tensor Train, we set the embedding shape to be
[25, 32, 40]×[8, 8, 8] and the Tensor Train Rank to be 90. For structured embedding we use group
size as 32 and number of clusters as 2048, we then use the quantization matrix and learn the clusters
from scratch.

WMT En-De Smaller Transformer Network denotes a network with the same configuration as
Transformer Base but with hidden size dmodel of 400. For GroupReduce, to match the same com-
pression rate we used number of clusters c being equal to 10 and minimum rank rmin to be 23.
For SVD, we decided to set the rank to 64. For Tensor Train, we set the embedding shape to be
[25, 37, 40]×[8, 8, 8] and the Tensor Train Rank to be 90. For structured embedding we use group
size as 32 and number of clusters as 2376, we then use the quantization matrix and learn the clusters
from scratch.

IWSLT Pt-En Smaller Transformer Network denotes a network with the same configuration as
Transformer Small but with hidden size dmodel of 136. For GroupReduce, to match the same com-
pression rate we used number of clusters c being equal to 15 and minimum rank rmin to be 30.
For SVD, we decided to set the rank to 64. For Tensor Train, we set the embedding shape to be
[25, 32, 40]×[8, 4, 8] and the Tensor Train Rank to be 125. For structured embedding we use group
size as 32 and number of clusters as 4048, we then use the quantization matrix and learn the clusters
from scratch.

A.2 ADDITIONAL RESULTS

Parameters Embedding FFN Multi-head attention Linear

Number 26M 25M 14M 5M

Percentage 37% 36% 20% 7%

Table A.1: Parameters in the Transformer Base model (Vaswani et al. (2017)) based on a 50k dic-
tionary size and tied input and output embedding.

Model BLEU

SVD with rank 64 37.44
SVD with rank 64 with Recon. Loss (alpha 0.1) 37.29

Table A.2: Comparison of SVD with and without reconstruction loss on En-Fr translation.

Model En-Fr
Recon. Loss

En-De
Recon. Loss

Pt-En
Recon. Loss

SVD 2.247 2.447 1.199
GroupReduce 2.247 2.445 1.173
Funneling 2.238 2.441 1.194

Table A.3: Reconstruction losses for all language pairs.
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