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ABSTRACT

Efficient exploration remains a challenging problem in reinforcement learning, es-
pecially for those tasks where rewards from environments are sparse. A commonly
used approach for exploring such environments is to introduce some “intrinsic”
reward. In this work, we focus on model uncertainty estimation as an intrinsic
reward for efficient exploration. In particular, we introduce an implicit generative
modeling approach to estimate a Bayesian uncertainty of the agent’s belief of the
environment dynamics. Each random draw from our generative model is a neu-
ral network that instantiates the dynamic function, hence multiple draws would
approximate the posterior, and the variance in the future prediction based on this
posterior is used as an intrinsic reward for exploration. We design a training algo-
rithm for our generative model based on the amortized Stein Variational Gradient
Descent. In experiments, we compare our implementation with state-of-the-art
intrinsic reward-based exploration approaches, including two recent approaches
based on an ensemble of dynamic models. In challenging exploration tasks, our
implicit generative model consistently outperforms competing approaches regard-
ing data efficiency in exploration.

1 INTRODUCTION

Reinforcement learning (RL) has enjoyed recent success in a variety of applications, including super-
human performance in Atari games (Mnih et al., 2013), robotic control (Lillicrap et al., 2015),
image-based control tasks (Hafner et al., 2019), and playing the game of Go (Silver et al., 2016).
Despite these achievements, many recent RL techniques still suffer from poor sample efficiency.
Agents are often trained for millions, or even billions of simulation steps before achieving a reason-
able performance (Burda et al., 2018a). This lack of statistical efficiency makes it difficult to apply
RL to real-world tasks, as the cost of acting in the real world is far greater than in a simulator. It
is then a problem of utmost importance, to design agents that make efficient use of collected data.
According to (Sutton & Barto, 2018), there are three key aspects in building a data-efficient agent
for reinforcement learning: generalization, exploration, and long-term consequence awareness. In
this work, we focus on the efficient exploration aspect. In particular, we focus on those challenging
environments with sparse external rewards, where exploration is commonly driven by some sort of
intrinsic reward. It is observed (Osband et al., 2017; 2018) that a Bayesian uncertainty1 estimate
plays an important role in efficient exploration in deep RL, but is unfortunately not appropriately
addressed in the majority of state-of-the-art RL algorithms.

In this work, we introduce a new framework of Bayesian uncertainty modeling for intrinsic reward-
based exploration in RL. Our framework characterizes the (epistemic) uncertainty in the agent’s
belief of the environment dynamics in a non-parametric way to enable flexibility and expressiveness.
The main component of our framework is a network generator, each draw of which is a neural
network that serves as the dynamic function for RL. Multiple draws then approximate a posterior
of the dynamic model and the variance in future state prediction based on this posterior is used
as an intrinsic reward for exploration. Recently, it has been shown (Ratzlaff & Fuxin, 2019) that
training such kind of generators can be done in classification problems and the resulting draws of

1As noted in (Osband et al., 2018), it is the (epistemic) uncertainty in agent’s belief, rather than the
(aleatoric) uncertainty of outcome which reflects the inherent randomness of the environment, that matters
the most regarding efficient exploration in RL.

1



Under review as a conference paper at ICLR 2020

networks can represent a rich distribution of networks that perform approximately equally well on
the classification task. For our goal of training this generator for the dynamic function, we propose
an algorithm to optimize the KL divergence between the implicit distribution (represented by draws
from the generator) and the true posterior of the dynamic model (given the agent’s experience) via
the amortized Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016; Feng et al., 2017).

Comparing with recent works (Pathak et al., 2019; Shyam et al., 2019) that maintain an ensem-
ble of dynamic models and use the divergence or disagreement among them as an intrinsic reward
for exploration, our implicit modeling of the posterior has several advantages: Firstly, it is a more
flexible framework for approximating the model posterior comparing with ensemble-based approx-
imation where the number of particles is fixed. Secondly, it is based on the principle of amortized
SVGD (Feng et al., 2017), where the KL divergence between the implicit posterior and the true pos-
terior is directly minimized in a nonparametric sense, and further projected to a finite-dimensional
parameter update. This is in contrast with existing ensemble-based methods that count on the ran-
dom initialization and/or bootstrapped experience sampling for the ensemble to approximate the
posterior. Thirdly, it is more memory efficient given that our method stores and updates only param-
eters of the generator, in contrast with parameters of every member network of the ensemble.

In our experiments, we compare our approach with several state-of-the-art intrinsic reward-based ex-
ploration approaches, including two recent approaches that also leverage the uncertainty in dynamic
models. In all the tasks we have tested, our implementation consistently outperforms competing
methods regarding data efficiency in exploration.

In summary, our contributions are:

• We propose a new framework for implicitly approximating the posterior of network param-
eters where the uncertainty of the network function can be used as an intrinsic reward for
efficient exploration in RL.

• We design an amortized SVGD-based training algorithm for the proposed framework and
apply it to approximate the implicit distribution of the dynamic model of the environment.

• We test our implementation on three challenging exploration tasks and compare with three
state-of-the-art intrinsic reward-based methods, two of which are also based on uncertainty
in dynamic models. The consistent superior performance of our method demonstrates the
effectiveness of the proposed framework in estimating Bayesian uncertainty in the dynamic
model for efficient exploration.

2 PROBLEM SETUP AND BACKGROUND

Consider a Markov Decision Process (MDP) represented as (S,A, P, r, ρ0), where S is the state
space, A is the action space. P : S × A × S → [0, 1] is the unknown dynamics model, specifying
the probability of transitioning to next state s′ from current state s by taking action a, as P (s′|s, a).
r : S ×A → R is the reward function, ρ0 : S → [0, 1] is the distribution of initial states. A policy is
a function π : S ×A → [0, 1], which outputs a distribution over the action space for given state s.

2.1 EXPLORATION IN REINFORCEMENT LEARNING

In online decision-making problems, such as multi-arm bandits and reinforcement learning, a funda-
mental dilemma in an agent’s choice is exploitation versus exploration. Exploitation refers to making
the best decision given current information, while exploration refers to gathering more information
about the environment. In standard reinforcement learning setting where the agent receives an ex-
ternal reward for each transition step, common recipes for exploration/exploitation trade-off include
naive methods such as ε-greedy (Sutton & Barto, 2018) and optimistic initialization (Lai & Robbins,
1985), posterior guided methods such as upper confidence bounds (Auer, 2002; Dani et al., 2008)
and Thompson sampling (Thompson, 1933). In the situation we focus on, where external rewards
are sparse or disregarded, the above trade-off narrows down to the pure exploration problem of effi-
ciently accumulating information about the environment. The common approach is to explore in a
task-agnostic way under some “intrinsic” reward. An exploration policy can then be trained in the
standard RL way where dense rewards are available. Existing methods construct intrinsic rewards
from visitation frequency of the state (Bellemare et al., 2016), prediction error of the dynamic model
as “curiosity” (Pathak et al., 2017), diversity of visited states (Eysenbach et al., 2018), etc.
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Figure 1: Architecture of the layer-wise
generator of the dynamic model. Inde-
pendent noise samples {z1, · · · , zN} are
drawn from a standard Gaussian with di-
agonal covariance, and input to layer-
wise generators {G1, · · · , GN}. Each
generator Gj outputs parameters θj for
the corresponding j-th layer of the neu-
ral network representing the dynamic
model.

2.2 DYNAMIC MODEL UNCERTAINTY AS INTRINSIC REWARD

Following the guiding principle of modeling Bayesian uncertainty in online decision making, two
recent methods (Pathak et al., 2019; Shyam et al., 2019) train an ensemble of dynamic models and
use the variation/information gain as an intrinsic reward for exploration. In this work, we follow the
similar idea of exploiting the uncertainty in the the dynamic model, but emphasize on the implicit
posterior modeling in contrast with directly training an ensemble of dynamic models.

Let f denote the dynamics model (usually represented by a neural network) we want to learn based
on the agent experience D. We design a generator module G which takes a random draw from the
normal distribution and outputs a sample vector of parameters θ that determines f (denoted as fθ).
If samples from G represent the posterior distribution p(fθ|D), then given (st, at), the uncertainty
in the output of the dynamics model can be computed by the following variance among a set of
samples {θi}mi=1 from G, and used as an intrinsic reward rin for learning an exploration policy,

rint =
∑m

i=1

∥∥∥∥fθi(st, at)−
1

m

∑m

`=1
fθ`

(st, at)

∥∥∥∥2 . (1)

In learning the exploration policy, this intrinsic reward can be computed with either actual rollouts
in the environment or simulated rollouts generated by the estimeted dynamic model.

3 POSTERIOR APPROXIMATION VIA AMORTIZED SVGD

In this section, we introduce the core component of our exploration agent, the dynamic model gener-
ator G. In the following subsections, we first introduce the design of this generator and then describe
its training algorithm in detail. A summary of our algorithm is given in the last subsection.

3.1 IMPLICIT POSTERIOR GENERATOR

As shown in Fig. 1, the dynamic model is defined as a N -layer neural network function fθ(s, a),
with input (state, action) pair (s, a) and model parameters θ = (θ1, · · · , θN ), where θj represents
network parameters of the j-th layer. The generator module G consists of exactly N layer-wise
generators, {G1, · · · , GN}, where each Gj takes a random noise vector zj ∈ Rd and outputs the
corresponding parameter vector θj = Gj(z

j ; ηj), where ηj are the parameters of Gj . Note that zj’s
are generated independently from a d-dimensional standard normal distribution, rather than jointly.

As mentioned in §1, this framework has advantages in flexibility and efficiency, comparing with
ensemble-based methods (Shyam et al., 2019; Pathak et al., 2019), since it maintains only parameters
of the N generators, i.e., η = (η1, · · · , ηN ), and enables drawing an arbitrary number of sample
networks to approximate the posterior of the dynamic model.

3.2 TRAINING WITH AMORTIZED STEIN VARIATIONAL GRADIENT DESCENT

We now introduce the training algorithm of the generator module G. Assuming that the true poste-
rior of the dynamic model given agent’s experience D is p(f |D), and the implicit distribution of fθ
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captured by G is q(fθ). We want q(fθ) to be as close as possible to p(f |D), such closeness is com-
monly measured by the KL divergence DKL [q(fθ)‖p(f |D)]. Traditional approach for finding q that
minimizes DKL [q(fθ)‖p(f |D)] is variational inference, where an evidence lower bound (ELBO) is
maximized. Recently, a nonparametric variational inference framework, Stein Variational Gradient
Descent (SVGD) (Liu & Wang, 2016), was proposed, which represents q with a set of particles
rather than making any parametric assumptions, and approximates the functional gradient descent
w.r.t. DKL [q(fθ)‖p(f |D)] by iterative particle evolvement. We apply SVGD to our sampled net-
work functions, and follow the idea of amortized SVGD (Feng et al., 2017) to project the functional
gradients to the parameter space of η by back-propagation through the generators.

Given a set of dynamic functions {fθi
}mi=1 sampled from G, SVGD updates each function by

fθi
← fθi

+ εφ∗(fθi
), i = 1, · · · ,m,

where ε is a step size, and φ∗ is the function in the unit ball of a reproducing kernel Hilbert space
(RKHS) H that maximally decreases the KL divergence between the distribution q represented by
{fθi
}mi=1 and the target posterior p,

φ∗ = max
φ∈H

{
− d

dε
DKL(q||p), s.t.||φ||H ≤ 1

}
.

This optimization problem has a closed form solution,

φ∗(fθi) = Ef∼q [∇f log p(f)k(f, fθi) +∇fk(f, fθi)] ,

where k(·, ·) is the positive definite kernel associated with the RKHS. We use a Gaussian kernel for
our implementation. The log-likelihood term for fθ corresponds to the negation of the regression
loss of future state prediction for all transitions in D, i.e., −L(fθ) = −

∑
(s,a,s′)∈D L(fθ(s, a), s′).

Given that fθ is determined by θ, the corresponding SVGD update rule for each sampled θi is,

θi ← θi + εφ∗(θi), i = 1, · · · ,m,

where
φ∗(θi) = Eθ∼G [−∇θL(fθ)k(θ,θi) +∇θk(θ,θi)] . (2)

Given that θi’s are generated by G(z;η), the update rule for η can be obtained by by the chain rule,

η ← η + ε

m∑
i=1

∇ηG(zi;η)φ∗(θi), (3)

where φ∗(θi) can be computed by (2) using empirical expectation from sampled batch {θi}mi=1,

φ∗(θi) =
1

m

m∑
`=1

{
−
[∑

(s,a,s′)∈D
∇θ`

L(fθ`
(s, a), s′)

]
k(θ`,θi) +∇θ`

k(θ`,θi)

}
. (4)

Algorithm 1: Exploration with an Implicit Dis-
tribution
Initialize Generator Gη , parameters T,m
Initialize Policy π, Experience buffer D
while True do

while episode not done: do
fΘ ← G(z;η), z ∼ N (0, Id)
η ← evaluate (3), (4) on D
Dπ ← D or D̃ ∼ MDP(fΘ)
Rπ ← rin(fθ, s, a|(s, a) ∼ Dπ) by (1)
π ← update policy on (Dπ, Rπ)
DT ← rollout π for T steps
D ← D ∪DT

end
end

Algorithm 1 shows our procedure in psue-
docode. Starting with a buffer D of random
transitions, our algorithm samples a set of dy-
namic models fΘ = {fθi} from the genera-
tor G, and updates the generator parameters η
using amortized SVGD (3) and (4). For pol-
icy update, the intrinsic reward (1) is evaluated
on either the actual experience D or the simu-
lated experience D̃ generated by fθi

. The ex-
ploration policy is then updated using a model-
free RL algorithm on the collected experience
Dπ and intrinsic rewards Rπ . The updated ex-
ploration policy is then used to rollout in the
environment for T steps so that new transitions
are collected and added to the buffer D for sub-
sequent iterations.
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3.3 SUMMARY OF THE EXPLORATION ALGORITHM

To condense what we have proposed so far, we summarize in Algorithm 1 the procedure used to
train the generator of dynamic models and the exploration policies. We repeat the process, with the
agent acting in the environment under the exploration policy and collecting new experience.

4 EXPERIMENTS

In this section we conduct experiments to compare our approach to existing state-of-the-art in effi-
cient exploration with intrinsic reward. For our propose, only the task-agnostic setting is considered,
where the agent explores the environment irrespective of the downstream task. Task agnostic explo-
ration is essential when external rewards are sparse and there is large uncertainty in the environment.

4.1 TOY TASK: NCHAIN

Figure 2: NChain task.

As a sanity check, we first follow MAX (Shyam et al., 2019) to evaluate our method on a stochastic
version of the toy environment NChain. As shown in Figure 2, the chain is a finite sequence of
N states. Each episode starts from state 1 and lasts for N + 9 steps. For each step, the agent can
move forward to the next state in the chain or backward to the previous state. Attempting to move
off the edge of the chain results in the agent staying still. Reward is only afforded to the agent at
the edge states: 0.01 for reaching state 0, and 1.0 for reaching state N − 1. In addition, there is
uncertainty built into the environment: each state is designated as a flip-state with probability 0.5.
When acting from a flip-state, the agent’s actions are reversed, i.e., moving forward will result in
movement backward, and vice-versa. Given the (initially) random dynamics and a sufficiently long
chain, we expect an agent using an ε-greedy exploration strategy to exploit only the small reward of
state 0. In contrast, agents with exploration policies which actively reduce uncertainty can efficiently
discover every state in the chain. Figure 3 shows that our agent navigates the chain in less than 15
episodes, while indeed, the ε-greedy agent (double DQN) does not make meaningful progress.

Figure 3: Results on the 40-link chain environment. Each line is the mean of three runs, with the
shaded regions corresponding to ±1 standard deviation. Both our method and MAX actively reduce
uncertainty in the chain, and therefore are able to quickly explore to the end of the chain. ε-greedy
DQN fails to explore more than 40% of the chain.

4.2 CONTINUOUS CONTROL ENVIRONMENTS

We also consider three challenging continuous control tasks in which efficient exploration is known
to be difficult. In each environment, the dynamics are nonlinear and cannot be solved with simpler
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(efficient) tabular approaches. As stated above, external reward is completely removed; the agent is
motivated purely by the uncertainty in its belief of the environment.

Experimental setup

To validate the effectiveness of our method, we compare with several state-of-the-art formulations
of intrinsic reward. Specifically, we conduct experiments comparing the following methods:

• (Ours) The proposed intrinsic reward, using the estimated variance of an implicit distribu-
tion of the dynamic model.

• (ICM) Error between predicted next state and observed next state (Pathak et al., 2017).

• (Disagreement) Variance of predictions from an ensemble of dynamic models (Pathak et al.,
2019).

• (MAX) Jensen-Renyi information gain of the dynamic function (Shyam et al., 2019).

• (Random) Pure random exploration as a naive baseline.

Implementation details

Given our goal is to compare the performance across different intrinsic rewards, we fix the model
architecture, training pipeline, and hyperparameters across all methods.2 The dynamic models are 4
layer fully connected neural networks. For the purpose of computing the information gain, dynamic
models for MAX predict both mean and variance of the next state, while for other methods, Dynamic
models predict only the mean. Our generator as well as the dynamic models for other methods are
optimized using Adam (Kingma & Ba, 2014) with a learning rate of 1e−4. To learn exploration
policies, we use the Soft Actor Critic (Haarnoja et al., 2018) algorithm for all methods. For MAX,
ICM, and Disagreement, we use ensembles of 32 dynamic models respectively to compute the in-
trinsic reward. Since our method trains a generator of dynamic models instead, we fix the number
of models we sample from the generator at m = 32 for a fair comparison. Further implementation
details can be found in the supplementary material.

4.2.1 ACROBOT CONTROL

(a) Acrobot System (b) Acrobot Task Results

Figure 4: (a) The Acrobat system. (b) Performance of each method on the Acrobot environment
(average of three seeds). The length of each horizontal bar indicates the number of environment steps
each agent/method takes to swing the acrobot to fully horizontal on both (left and right) directions.

Our first environment is a modified continuous control version of the Acrobot. As shown in Fig-
ure 4(a), the Acrobot environment begins with a hanging down pendulum which consists of two links
connected by an actuated joint. Normally, an action a ∈ {−1, 0, 1} applies or not (a = 0) a unit
force on the joint in the left or right direction. We modify the environment such that a continuous
action a ∈ [−1, 1] applies a force F = |a| in the corresponding direction.

To focus on efficient exploration, we test the ability of each exploration method to sweep the entire
lower hemisphere: positioning the acrobot completely horizontal towards both (left and right) direc-
tions. Given this is a relatively simple task and can be solved by random exploration, as shown in

2We use the codebase of MAX as a basis and implement Ours, ICM, and Disagreement intrinsic rewards
under the same framework.
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Figure 4(b), all four intrinsic reward methods solve it within just hundreds of steps and our method
is the most efficient one. The takeaway here is that in relatively simple environments where there
might be little room for improvement over state-of-the-art, our method still achieves a better per-
formance due to its flexibility and efficiency in approximating the model posterior. We will see in
subsequent experiments that this observation scales well with more difficult environments.

4.2.2 ANT MAZE NAVIGATION

Next, we evaluate on the Ant Maze environment (Figure 5(a)). In this control task, the agent provides
torques to each of the 8 joints of the ant. The provided observation contains the pose of the torso
as well as the angles and velocities of each joint. The agent’s performance is measured by the
percentage of the U-shaped maze explored during evaluation. Figure 5(b) shows the result of each
method over three seeds. Our agent consistently navigates to the end of the maze at the time when
other methods have only explored 60% or less. While MAX (Shyam et al., 2019) also navigates the
maze, the more advanced uncertainty modeling scheme of our method allows our agent to better
estimate the state novelty, which leads to a considerably quicker exploration.

(a) Ant Maze (b) Ant Navigation Task Results

Figure 5: (a) The Ant Maze environment. (b) Performance of each method with mean and ±1
standard deviation (shaded region) over three seeds. x-axis is the number of steps the ant has moved,
y-axis is the percentage of the U-shaped maze that has been explored. Our method (red) is able to
navigate to the end of the maze when competing methods have only explored no more than 60%.

4.2.3 ROBOTIC MANIPULATION

The final task is an exploration task in a robotic manipulation environment, HandManipulateBlock.
As shown in Figure 6(a), a robotic hand is given a palm-sized block for manipulation. The agent has
actuation control of the 20 joints that make up the hand, and its exploration performance is measured
by the percentage of possible rotations of the cube that the agent performs.3 In particular, the state
of the cube is represented by Cartesian coordinates along with a quaternion to represent the rotation.
We transform the quaternion to Euler angles and discretize the resulting state space by 45 degree
intervals. The agent is evaluated based on how many of these states are visited.

This task is more challenging than previous tasks, having larger state space and action space. In order
to explore in this environment, an agent must also learn how to rotate the block without dropping it.
Figure 6(b) shows the performance of each method over three seeds. Our method outperforms all
competing methods with a clear margin regarding exploration efficiency.

5 RELATED WORK

Efficient Exploration remains a major challenge in deep reinforcement learning (Fortunato et al.,
2017; Burda et al., 2018b; Eysenbach et al., 2018; Burda et al., 2018a), and there is no consensus on
the correct way to explore an environment. One practical guiding principle for efficient exploration
is the reduction of agent’s epistemic uncertainty of the environment (Chaloner & Verdinelli, 1995;

3This is different from the original goal of this environment since we want to evaluate task-agnostic explo-
ration rather than goal-based.
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(a) Robotic Hand (b) Manipulation Task Results

Figure 6: (a) The Robotic Hand task in motion. (b) Performance of each method with mean and ±1
standard deviation (shaded region) over three seeds. x-axis is the number of manipulation steps, y-
axis is the number of rotation states of the block that has been explored. Our method (red) explores
clearly faster than all other methods.

Osband et al., 2017). Osband et al. (2016) uses a bootstrap ensemble of DQNs, where the pre-
dictions of the ensemble are used as an estimate of the agent’s uncertainty over the value function.
Osband et al. (2018) proposed to augment the predictions of a DQN agent by adding the contribution
from a prior to the value estimate. In contrast to our method, these approaches seek to estimate the
uncertainty in the value function, while we focus on exploration with intrinsic reward by estimating
the uncertainty of the dynamic model.

Methods for constructing intrinsic rewards for exploration have become the subject of increased
study. One well-known approach is to use the prediction error of an inverse dynamics model as an
intrinsic reward (Pathak et al., 2017; Schmidhuber, 1991). Schmidhuber (1991) and Sun et al.
(2011) proposed using the learning progress of the agent as an intrinsic reward. Count based meth-
ods (Bellemare et al., 2016; Ostrovski et al., 2017) give a reward proportional to the visitation count
of a state. Houthooft et al. (2016) formulate exploration as a variational inference problem, and
use Bayesian neural networks to maintain the agent’s belief over the transition dynamics. Mohamed
& Rezende (2015) and Salge et al. (2014) proposed using intrinsic reward based on the mutual
information between an action and the induced next state.

The most closely-related work to ours are two recent methods (Pathak et al., 2019; Shyam et al.,
2019) that compute intrinsic rewards from an ensemble of dynamic models. Disagreement among
the ensemble members in next-state predictions is computed as an intrinsic reward. Shyam et al.
(2019) also uses active exploration (Schmidhuber, 2003; Chua et al., 2018), in which the agent is
trained in a surrogate MDP, to maximize intrinsic reward before acting in the real environment. Our
method follows the similar idea of exploiting the uncertainty in the dynamic model, but instead
suggests an implicit generative modeling of the posterior of the dynamic function, which enables a
more flexible approximation of the posterior uncertainty with better sample efficiency.

There has been a wealth of research on nonparametric particle-based variational inference meth-
ods (Liu & Wang, 2016; Dai et al., 2016; Ambrogioni et al., 2018), where a certain number of
particles are maintained to represent the variational distribution, and updated by solving an opti-
mization problem. Notably, we make use of the amortized SVGD (Feng et al., 2017) to optimize
our generator for approximately sampling from the posterior of the dynamic model.

6 CONCLUSION

In this work, we introduced a novel method for representing the agent’s uncertainty of the environ-
ment dynamics. We formulated an intrinsic reward based on the uncertainty given by an approximate
posterior of the dynamic model to enable efficient exploration in difficult environments, Through ex-
periments in control, navigation, and manipulation, we demonstrated that our method is consistently
more sample efficient than the baseline methods. Future work includes investigating the efficacy
of learning an approximate posterior of the agent’s value or policy model, as well as more efficient
sampling techniques.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Luca Ambrogioni, Umut Guclu, Yagmur Gucluturk, and Marcel van Gerven. Wasserstein variational
gradient descent: From semi-discrete optimal transport to ensemble variational inference. arXiv
preprint arXiv:1811.02827, 2018.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
Science, pp. 273–304, 1995.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pp. 4754–4765, 2018.

Bo Dai, Niao He, Hanjun Dai, and Le Song. Provable bayesian inference via particle mirror descent.
In Artificial Intelligence and Statistics, pp. 985–994, 2016.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein variational
gradient descent. arXiv preprint arXiv:1707.06626, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Vime: Variational information maximizing exploration. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29,
pp. 1109–1117. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6591-vime-variational-information-maximizing-exploration.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

9

http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf
http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf


Under review as a conference paper at ICLR 2020

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In Advances in neural information processing systems, pp. 2378–2386, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsi-
cally motivated reinforcement learning. In Advances in neural information processing systems,
pp. 2125–2133, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng Wen. Deep exploration via randomized
value functions. arXiv preprint arXiv:1703.07608, 2017.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 8617–8629, 2018.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS FOR CONTINUOUS ENVIRONMENTS

Here we describe in more detail the various implementation choices we used for our method as well
as for the baselines.

Toy Chain Environment

The chain environment was implemented based on the NChain-v0 gym environment. We altered
NChain-v0 to contain 40 states instead of 10 to reduce the possibility of solving the environment
with random actions. We also modified the stochastic ’slipping’ state behavior by fixing the behav-
ior of the states respect to reversing an action. For both our method and MAX, we use ensembles
of 5 deterministic neural networks with 4 layers, each are 256 units wide with tanh nonlinearities.
As usual, our ensembles are sampled from the generator at each timestep, while MAX uses a static
ensemble. We generate each layer in the target network with generators composed of two hidden
layers, 64 units each with ReLU nonlinearities. Both models are trained by minimizing the regres-
sion loss on the observed data. We optimize using Adam with a learning rate of 10−4, and weight
decay of 10−6. We use Monte Carlo Tree Search (MCTS) to find exploration policies for use in
the environment. We build the tree with 25 iterations of 10 random trajectories, and UCB-1 as the
selection criteria. Crucially, during rollouts, we query the dynamic models instead of the simulator,
and we compute the corresponding intrinsic reward. For MAX we use the Jensen Shannon diver-
gence while our method uses the variance in the predictions of our samples. We take actions in the
environment based on the children with the highest value. The tree is then discarded after one step,
after which, the dynamic models are fit for 10 additional epochs.

Continuous Control Environments

For each method, we kept the implementation details consistent across the environments Acrobot,
Ant Maze, and Block Manipulation. The common details of each exploration method are as follows.
Each method uses (or samples) ensembles to approximate environment dynamics. Models in the en-
semble are composed of 32 networks with 4 hidden layers, 512 units wide with ReLU nonlinearities,
except for MAX which uses swish4. ICM, Disagreement, and our method use ensembles of deter-
ministic models, while MAX uses probabilistic networks which output a Gaussian distribution over
next states. The approximate dynamic models (ensembles/generators) are optimized with Adam,
using a minibatch size of 256, a learning rate of 10−4, and weight decay of 10−4.

For our dynamic model, each layer generator is composed of two hidden layers, 64 units wide and
ReLU nonlinearity. The output dimensionality of each generator is equal to the product of the input
and output dimensionality of the corresponding layer in the dynamic model. To sample one dynamic
model, each generator takes as input an independent draw from z ∼ Z where Z = N (0, I32) where
I is a 32 dimensional identity matrix. We sample ensembles of arbitrary sizem by instead providing
a batch {z}mi=1 as input. To train the generator such that we can sample accurate transition models
we update according to Equation 4; we compute the regression error on the data, as well as the
repulsive term using an appropriate kernel. For all experiments we used a standard Gaussian kernel
k(θ, θi) = exp

(
− 1
h ||θ − θi||

2
2

)
where h is the median of the pairwise distances between sampled

particles {θ}mi=1. Because we sample functions fθ instead of data points, the pairwise distance is
computed by using the likelihood of the data x under the model: log fθ(x).

For MAX, we used the code provided from (Shyam et al., 2019). Each member in the approximate
dynamic model ensemble is a probabilistic neural network that predicts a Gaussian distribution
(with diagonal covariance) over next states. The exploration policies are trained with SAC, given
an experience buffer of rollouts D̄ = {s, a, s′} ∪ Rπ performed by dynamic models, where Rπ
is the intrinsic reward: the Jensen-Renyi divergence between next state predictions of the dynamic
model. the policy trained with SAC acts in the environment to maximize the intrinsic reward, and
in doing so collects additional transitions that serve as training data for the dynamic models for the
subsequent training phase.

4Swish refers to the nonlinearity proposed by (Ramachandran et al., 2017) which is expressed as a scaled
sigmoid function: y = x+ sigmoid(βx)

11



Under review as a conference paper at ICLR 2020

For Disagreement (Pathak et al., 2019), we follow the author’s implementation, changing minimal
details. The intrinsic reward is formulated as the predictive variance of the approximate dynamic
model, where the model is given by a bootstrap ensemble. In this work, we report results using
two versions of this method. The proposed intrinsic reward specifically is formulated in a manner
quite similar to our own, however, an ensemble is used instead of a distribution for the approximate
posterior. In section §4 we report results only using the intrinsic reward, instead of the full proposed
method which makes use of a differentiable reward function, which treats the reward as a supervised
loss. We do this because the form of the approximate dynamic model does not preclude the use
of different policy optimization techniques. Nonetheless, in the next section §A.2 we report results
using the full method as proposed, on each continuous control experiment.

A.2 ADDITIONAL RESULTS

Here we report additional results comparing with Disagreement, including the original policy op-
timization method with a differentiable reward function used in (Pathak et al., 2019). We repeat
our main experiments, comparing our method to both disagreement purely as an intrinsic reward, as
well as the full method using the differentiable reward function for policy optimization. For the full
method we use the author’s official implementation for the following experiments. This is in contrast
to the method reported in the main text where we only implement the intrinsic reward. Figures 7, 8,
and 9 show results on the Acrobot, Ant Maze, and Block Manipulation environments, respectively.
In each figure, lines correspond to the mean of three seeds, and shaded regions denote ± one stan-
dard deviation. In each experiment, we can see that treating the intrinsic reward as a supervised loss
(gray) improves on the baseline disagreement intrinsic reward (green). However, our method (red)
remains the most sample efficient in these experiments.

Figure 7: Performance of each exploration method on the Acrobot environment.

Figure 8: Performance of each exploration method on the Ant Maze environment.
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Figure 9: Performance of each exploration method on the Block Manipulation environment.
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