
Under review as a conference paper at ICLR 2020

LEARNING EFFECTIVE EXPLORATION STRATEGIES
FOR CONTEXTUAL BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

In contextual bandits, an algorithm must choose actions given observed contexts,
learning from a reward signal that is observed only for the action chosen. This
leads to an exploration/exploitation trade-off: the algorithm must balance taking
actions it already believes are good with taking new actions to potentially discover
better choices. We develop a meta-learning algorithm, MÊLÉE, that learns an
exploration policy based on simulated, synthetic contextual bandit tasks. MÊLÉE
uses imitation learning against these simulations to train an exploration policy that
can be applied to true contextual bandit tasks at test time. We evaluate on both a
natural contextual bandit problem derived from a learning to rank dataset as well
as hundreds of simulated contextual bandit problems derived from classification
tasks. MÊLÉE outperforms seven strong baselines on most of these datasets by
leveraging a rich feature representation for learning an exploration strategy.

1 INTRODUCTION

In a contextual bandit problem, an agent attempts to optimize its behavior over a sequence of rounds
based on limited feedback (Kaelbling, 1994; Auer, 2003; Langford & Zhang, 2008). In each round,
the agent chooses an action based on a context (features) for that round, and observes a reward for
that action but no others (§2). Contextual bandit problems arise in many real-world settings like
online recommendations and personalized medicine. As in reinforcement learning, the agent must
learn to balance exploitation (taking actions that, based on past experience, it believes will lead to
high instantaneous reward) and exploration (trying actions that it knows less about).

In this paper, we present a meta-learning approach to automatically learn a good exploration mech-
anism from data. To achieve this, we use synthetic supervised learning data sets on which we can
simulate contextual bandit tasks in an offline setting. Based on these simulations, our algorithm,
MÊLÉE (MEta LEarner for Exploration)1, learns a good heuristic exploration strategy that should
ideally generalize to future contextual bandit problems. MÊLÉE contrasts with more classical ap-
proaches to exploration (like ε-greedy or LinUCB; see §6), in which exploration strategies are con-
structed by expert algorithm designers. These approaches often achieve provably good exploration
strategies in the worst case, but are potentially overly pessimistic and are sometimes computationally
intractable.

At training time (§ 3.2), MÊLÉE simulates many contextual bandit problems from fully labeled
synthetic data. Using this data, in each round, MÊLÉE is able to counterfactually simulate what
would happen under all possible action choices. We can then use this information to compute regret
estimates for each action, which can be optimized using the AggreVaTe imitation learning algo-
rithm (Ross & Bagnell, 2014). Our imitation learning strategy mirrors that of the meta-learning
approach of Bachman et al. (2017) in the active learning setting. We present a simplified, stylized
analysis of the behavior of MÊLÉE to ensure that our cost function encourages good behavior (§4).
Empirically, we use MÊLÉE to train an exploration policy on only synthetic datasets and evaluate
this policy on both a contextual bandit task based on a natural learning to rank dataset as well as
three hundred simulated contextual bandit tasks (§5.2). We compare the trained policy to a number
of alternative exploration algorithms, and show the efficacy of our approach (§5.3).

1Code release: the code is available online https://www.dropbox.com/sh/
dc3v8po5cbu8zaw/AACu1f_4c4wIZxD1e7W0KVZ0a?dl=0

1

https://www.dropbox.com/sh/dc3v8po5cbu8zaw/AACu1f_4c4wIZxD1e7W0KVZ0a?dl=0
https://www.dropbox.com/sh/dc3v8po5cbu8zaw/AACu1f_4c4wIZxD1e7W0KVZ0a?dl=0

Under review as a conference paper at ICLR 2020

2 PRELIMINARIES: CONTEXTUAL BANDITS AND POLICY OPTIMIZATION

Contextual bandits is a model of interaction in which an agent chooses actions (based on contexts)
and receives immediate rewards for that action alone. For example, in a simplified news personaliza-
tion setting, at each time step t, a user arrives and the system must choose a news article to display
to them. Each possible news article corresponds to an action a, and the user corresponds to a context
xt. After the system chooses an article at to display, it can observe, for instance, the amount of time
that the user spends reading that article, which it can use as a reward rt(at).

Formally, we largely follow the setup and notation of Agarwal et al. (2014). Let X be an input
space of contexts (users) and [K] = {1, . . . ,K} be a finite action space (articles). We consider
the statistical setting in which there exists a fixed but unknown distribution D over pairs (x, r) ∈
X×[0, 1]K , where r is a vector of rewards (for convenience, we assume all rewards are bounded in
[0, 1]). In this setting, the world operates iteratively over rounds t = 1, 2, Each round t:

1. The world draws (xt, rt) ∼ D and reveals context xt.
2. The agent (randomly) chooses action at ∈ [K] based on xt, and observes reward rt(at).

The goal of an algorithm is to maximize the cumulative sum of rewards over time. Typically the
primary quantity considered is the average regret of a sequence of actions a1, . . . , aT to the behavior
of the best possible function in a prespecified class F :

λ(a1, . . . , aT) = max
f∈F

1

T

T∑
t=1

[
rt(f(xt))− rt(at)

]
(1)

An agent is call no-regret if its average regret is zero in the limit of large T .

To produce a good agent for interacting with the world, we assume access to a function class F and
to an oracle policy optimizer for that function class. For example, F may be a set of single layer
neural networks mapping user features x ∈ X to predicted rewards for actions a ∈ [K]. Formally,
the observable record of interaction resulting from round t is the tuple (xt, at, rt(at), pt(at)) ∈
X×[K]×[0, 1]×[0, 1], where pt(at) is the probability that the agent chose action at, and the full history
of interaction is ht = 〈(xi, ai, ri(ai), pi(ai))〉ti=1. The oracle policy optimizer, POLOPT, takes as
input a history of user interactions and outputs an f ∈ F with low expected regret.

A standard example of a policy optimizer is to combine inverse propensity scaling (IPS) with a re-
gression algorithm (Dudik et al., 2011). Here, given a history h, each tuple (x, a, r, p) in that history
is mapped to a multiple-output regression example. The input for this regression example is the same
x; the output is a vector of K costs, all of which are zero except the ath component, which takes
value r/p. This mapping is done for all tuples in the history, and a supervised learning algorithm
on the function class F is used to produce a low-regret regressor f . This is the function returned by
the policy optimizer. IPS, and other estimators that have lower-variance than IPS (such as the direct
method and the doubly-robust estimator), have the property of being unbiased (in experiments, we
use the direct method largely for its simplicity).

3 APPROACH: LEARNING AND EFFECTIVE EXPLORATION STRATEGY

In order to have an effective approach to the contextual bandit problem, one must be able to both
optimize a policy based on historic data and make decisions about how to explore. The explo-
ration/exploitation dilemma is fundamentally about long-term payoffs: is it worth trying something
potentially suboptimal now in order to learn how to behave better in the future? A particularly simple
and effective form of exploration is ε-greedy: given a function f output by POLOPT, act according to
f(x) with probability (1− ε) and act uniformly at random with probability ε. Intuitively, one would
hope to improve on such a strategy by taking more (any!) information into account; for instance,
basing the probability of exploration on f ’s uncertainty. In this section, we describe MÊLÉE, first
by describing how it operates at test time when applied to a new contextual bandit problem (§3.1),
and then by describing how to train it using synthetic simulated contextual bandit problems (§3.2).

2

Under review as a conference paper at ICLR 2020

3.1 TEST TIME BEHAVIOR OF MÊLÉE

Our goal in this paper is to learn how to explore from experience. The training procedure for
MÊLÉE will use offline supervised learning problems to learn an exploration policy π, which takes
two inputs: a function f ∈ F and a context x, and outputs an action. In our example, f will be the
output of the policy optimizer on all historic data, and x will be the current user. This is used to
produce an agent which interacts with the world, maintaining an initially empty history buffer h, as:

1. The world draws (xt, rt) ∼ D and reveals context xt.
2. The agent computes ft ← POLOPT(h) and a greedy action ãt = π(ft, xt).
3. The agent plays at = ãt with probability (1− µ), and at uniformly at random otherwise.
4. The agent observes rt(at) and appends (xt, at, rt(at), pt) to the history h, where pt =
µ/K if at 6= ãt; and pt = 1− µ+ µ/K if at = ãt.

Here, ft is the function optimized on the historical data, and π uses it and xt to choose an action.
Intuitively, π might choose to use the prediction ft(xt) most of the time, unless ft is quite uncertain
on this example, in which case π might choose to return the second (or third) most likely action
according to ft. The agent then performs a small amount of additional µ-greedy-style exploration:
most of the time it acts according to π but occasionally it explores some more. In practice (§5), we
find that setting µ = 0 is optimal in aggregate, but non-zero µ is necessary for our theory (§4).

Importantly, we wish to train π using one set of tasks (for which we have fully supervised data on
which to run simulations) and apply it to wholly different tasks (for which we only have bandit feed-
back). To achieve this, we allow π to depend representationally on ft in arbitrary ways: for instance,
it might use features that capture ft’s uncertainty on the current example (see §5.1 for details). We
additionally allow π to depend in a task-independent manner on the history (for instance, which
actions have not yet been tried): it can use features of the actions, rewards and probabilities in the
history but not depend directly on the contexts x. This is to ensure that π only learns to explore and
not also to solve the underlying task-dependent classification problem. Because π needs to learn to
be task independent, we found that if ft’s predictions were uncalibrated, it was very difficult for π
to generalize well to unseen tasks. Therefore, we additionally allow π to depend on a very small
amount of fully labeled data from the task at hand, which we use to allow π to calibrate ft’s pre-
dictions. In our experiments we use only 30 fully labeled examples, but alternative approaches to
calibrating ft that do not require this data would be preferable.

3.2 TRAINING MÊLÉE BY IMITATION LEARNING

The meta-learning challenge is: how do we learn a good exploration policy π? We assume we have
access to fully labeled data on which we can train π; this data must include context/reward pairs,
but where the reward for all actions is known. This is a weak assumption: in practice, we use
purely synthetic data as this training data; one could alternatively use any fully labeled classification
dataset (Beygelzimer & Langford, 2009). Under this assumption about the data, it is natural to think
of π’s behavior as a sequential decision making problem in a simulated setting, for which a natural
class of learning algorithms to consider are imitation learning algorithms (Daumé et al., 2009; Ross
et al., 2011; Ross & Bagnell, 2014; Chang et al., 2015).2

Informally, at training time, MÊLÉE will treat one of these synthetic datasets as if it were a contextual
bandit dataset. At each time step t, it will compute ft by running POLOPT on the historical data,
and then ask: for each action, what would the long time reward look like if I were to take this action.
Because the training data for MÊLÉE is fully labeled, this can be evaluated for each possible action,
and a policy π can be learned to maximize these rewards. More formally, in imitation learning, we
assume training-time access to an expert, π?, whose behavior we wish to learn to imitate at test-time.
From this, we can define an optimal reference policy π?, which effectively “cheats” at training time
by looking at the true labels. The learning problem is then to estimate π to have as similar behavior
to π? as possible, but without access to those labels.

The imitation learning algorithm we use is AggreVaTe (Ross & Bagnell, 2014) (closely related to
DAgger (Ross et al., 2011)), and is instantiated for the contextual bandits meta-learning problem in
Alg 1. AggreVaTe learns to choose actions to minimize the cost-to-go of the expert rather than the

2In other work on meta-learning, such problems are often cast as full reinforcement-learning problems. We
opt for imitation learning instead because it is computationally attractive and effective when a simulator exists.

3

Under review as a conference paper at ICLR 2020

Algorithm 1 MÊLÉE (supervised training sets {Sm}, hypothesis class F , exploration rate µ, num-
ber of validation examples NVal, feature extractor Φ)

1: for round n = 1, 2, . . . , N do
2: initialize meta-dataset D = {}, choose S at random from {Sm}, and set history h0 = {}
3: partition and permute S randomly into train Tr and validation Val where |Val| = NVal
4: for round t = 1, 2, . . . , |Tr| do
5: let (xt, rt) = Trt
6: for each action a = 1, . . . ,K do
7: optimize ft,a = POLOPT(F , ht−1 ⊕ (xt, a, rt(a), 1− K−1

K µ)) on augmented history
8: roll-out: estimate ĉa, the cost-to-go of a, using rt(a) and a roll-out policy πout on ft,a
9: end for

10: compute ft = POLOPT(F , ht−1)
11: aggregate D ← D ⊕ (Φ(ft, xt, ht−1,Val), 〈ĉ1, . . . , ĉK〉)
12: roll-in: at ∼ µ

K1K + (1− µ)πn−1(ft, xt) with probability pt, where 1 is the ones-vector
13: append history ht ← ht−1 ⊕ (xt, at, rt(at), pt)
14: end for
15: update πn = LEARN(D)
16: end for
17: return {πn}Nn=1

zero-one classification loss of mimicking its actions. On the first iteration AggreVaTe collects data
by observing the expert perform the task, and in each trajectory, at time t, explores an action a in
state s, and observes the cost-to-go Q of the expert after performing this action.

Following the AggreVaTe template, MÊLÉE operates in an iterative fashion, starting with an arbi-
trary π and improving it through interaction with an expert. Over N rounds, MÊLÉE selects random
training sets and simulates the test-time behavior on that training set. The core functionality is to
generate a number of states (ft, xt) on which to train π, and to use the supervised data to estimate
the value of every action from those states. MÊLÉE achieves this by sampling a random supervised
training set and setting aside some validation data from it (line 3). It then simulates a contextual
bandit problem on this training data; at each time step t, it tries all actions and “pretends” like they
were appended to the current history (line 7) on which it trains a new policy and evaluates it’s roll-
out value (line 8). This yields, for each t, a new training example for π, which is added to π’s
training set (line 11); the features for this example are features of the classifier based on true history
(line 10) (and possibly statistics of the history itself), with a label that gives, for each action, the
corresponding cost-to-go of that action (the cas computed in line 8). MÊLÉE then must commit to a
roll-in action to actually take; it chooses this according to a roll-in policy (line 12).

Roll-in actions. The distribution over states visited by MÊLÉE depends on the actions taken, and
in general it is good to have that distribution match what is seen at test time. This distribution is
determined by a roll-in policy (line 12), controlled in MÊLÉE by exploration parameter µ ∈ [0, 1].
As µ → 1, the roll-in policy approaches a uniform random policy; as µ → 0, the roll-in policy
becomes deterministic. When the roll-in policy does not explore, it acts according to π(ft, .).

Roll-out values. The ideal value to assign to an action (from the perspective of the imitation
learning procedure) is that total reward (or advantage) that would be achieved in the long run if
we took this action and then behaved according to our final learned policy. Unfortunately, during
training, we do not yet know the final learned policy. Thus, a surrogate roll-out policy πout is
used instead. A convenient, and often computationally efficient alternative, is to evaluate the value
assuming all future actions were taken by the expert (Langford & Zadrozny, 2005; Daumé et al.,
2009; Ross & Bagnell, 2014). In our setting, at any time step t, the expert has access to the fully
supervised reward vector rt for the context xt. When estimating the roll-out value for an action a,
the expert will return the true reward value for this action rt(a) and we use this as our estimate for
the roll-out value.

4

Under review as a conference paper at ICLR 2020

4 THEORETICAL GUARANTEES

We analyze MÊLÉE, showing that the no-regret property of AGGREVATE can be leveraged in our
meta-learning setting for learning contextual bandit exploration. In particular, we first relate the
regret of the learner in line 16 to the overall regret of π. This will show that, if the underlying
classifier improves sufficiently quickly, MÊLÉE will achieve sublinear regret. We then show that for
a specific choice of underlying classifier (BANDITRON), this is achieved. MÊLÉE is an instantiation
of AGGREVATE (Ross & Bagnell, 2014); as such, it inherits AGGREVATE’s regret guarantees.

Theorem 1 (Thm 2.2 of Ross & Bagnell (2014), adapted) After N rounds, if LEARN (line 15)
is no-regret algorithm, then as N → ∞, with probability 1, it holds that J(π̄) ≤ J(π?) +

2T
√
Kε̂class(T), where J(·) is the reward of the exploration policy, π̄ is the average policy returned,

and ε̂class(T) is the average regression regret for each πn accurately predicting ĉ, where

ε̂class(T) = min
π∈Π

1

N
Êt∼U(T),s∼dtπi

N∑
i=1

[
Q?T−t+1(s, π)−min

a
Q?T−t+1(s, a)

]
(2)

is the empirical minimum expected cost-sensitive classification regret achieved by policies in the
class Π on all the data over the N iterations of training when compared to the Bayes optimal
regressor, for U(T) the uniform distribution over {1, . . . , T}, dtπ the distribution of states at time t
induced by executing policy π, and Q? the cost-to-go of the expert.

Thus, achieving low regret at the problem of learning π on the training data it observes (“D” in
MÊLÉE), i.e. ε̂class(T) is small, translates into low regret in the contextual-bandit setting. At first
glance this bound looks like it may scale linearly with T . However, the bound in Theorem 1 is
dependent on ε̂class(T). Note however, that s is a combination of the context vector xt and the clas-
sification function ft. As T → ∞, one would hope that ft improves significantly and ε̂class(T)
decays quickly. Thus, sublinear regret may still be achievable when f learns sufficiently quickly as
a function of T . For instance, if f is optimizing a strongly convex loss function, online gradient de-
scent achieves a regret guarantee of O(log T

T) (Hazan et al., 2016, Theorem 3.3), potentially leading
to a regret for MÊLÉE of O(

√
(log T)/T).

The above statement is informal (it does not take into account the interaction between learning f
and π). However, we can show a specific concrete example: we analyze MÊLÉE’s test-time behavior
when the underlying learning algorithm is BANDITRON. BANDITRON is a variant of the multiclass
Perceptron that operates under bandit feedback. Details of this analysis (and proofs, which directly
follow the original BANDITRON analysis) are given in Appendix A; here we state the main result.
Let γt = Pr[rt(π(ft, xt) = 1)|xt] − Pr[rt(ft(xt)) = 1|xt] be the edge of π(ft, .) over f , and
let Γ = 1

T

∑T
t=1 E

1
1+Kγt

be an overall measure of the edge. For instance if π simply returns f ’s
prediction, then all γt = 0 and Γ = 1. We can then show the following:

Theorem 2 Assume that for the sequence of examples, (x1, r1), (x2, r2), . . . , (xT , rT), we have,
for all t, ||xt|| ≤ 1. Let W ? be any matrix, let L be the cumulative hinge-loss of W ?, let µ be
a uniform exploration probability, and let D = 2 ||W ?||2F be the complexity of W ?. Assume that
Eγt ≥ 0 for all t. Then the number of mistakes M made by MÊLÉE with BANDITRON as POLOPT
satisfies:

EM ≤ L+KµT + 3 max
{
DΓ/µ,

√
DTKΓµ

}
+
√
DLΓ/µ (3)

where the expectation is taken with respect to the randomness of the algorithm.

Note that under the assumption Eγt ≥ 0 for all t, we have Γ ≤ 1. The analysis gives the same
mistake bound for BANDITRON but with the factor of Γ, hence this result improves upon the BAN-
DITRON analysis only when Γ < 1 (in the realizable setting, the number of mistakes is analogous
to the regret). This result is highly stylized and the assumption that Eγt ≥ 0 is overly strong. This
assumption ensures that π never decreases the probability of a “correct” action. It does, however,
help us understand the behavior of MÊLÉE, qualitatively: First, the quantity that matters in Theo-
rem 2, Etγt is (in the 0/1 loss case) exactly what MÊLÉE is optimizing: the expected improvement
for choosing an action against ft’s recommendation. Second, the benefit of using π within BAN-
DITRON is a local benefit: because π is trained with expert rollouts, as discussed in §4, the primary
improvement in the analysis is to ensure that π does a better job predicting (in a single step) than

5

Under review as a conference paper at ICLR 2020

ft does. An obvious open question is whether it is possible to base the analysis on the regret of π
(rather than its error) and whether it is possible to extend beyond the BANDITRON.

5 EXPERIMENTAL SETUP AND RESULTS

Using a collection of synthetically generated classification problems, we train an exploration policy
π using MÊLÉE (Alg 1). This exploration policy learns to explore on the basis of calibrated proba-
bilistic predictions from f together with a predefined set of exploration features (§5.1). Once π is
learned and fixed, we follow the test-time behavior described in §3.1 to evaluate π on a set of con-
textual bandit problems. We evaluate MÊLÉE on a natural learning to rank task (§5.3.1). To ensure
that the performance of MÊLÉE generalizes beyond this single learning to rank task, we additionally
perform thorough evaluation on 300 “simulated” contextual bandit problems, derived from standard
classification tasks (§5.3.2).

In all cases, the underlying classifier f is a linear model trained with a policy optimizer that runs
stochastic gradient descent (details are in §A.2). We seek to answer two questions experimentally:
(1) How does MÊLÉE compare empirically to alternative (expert designed) exploration strategies?
(2) How important are the additional features used by MÊLÉE in comparison to using calibrated
probability predictions from f as features?

5.1 TRAINING DETAILS FOR THE EXPLORATION POLICY

Exploration Features. In our experiments, the exploration policy is trained based on features Φ
(Alg 1, line 11). These features are allowed to depend on the current classifier ft, and on any part of
the history except the inputs xt in order to maintain task independence. We additionally ensure that
its features are independent of the dimensionality of the inputs, so that π can generalize to datasets
of arbitrary dimensions. The specific features we use are listed below; these are largely inspired by
Konyushkova et al. (2017) but adapted and augmented to our setting.

The features of ft that we use are: a) predicted probability p(at|ft,xt); b) entropy of the predicted
probability distribution; c) a one-hot encoding for the predicted action ft(xt). The features of ht−1

that we use are: a) current time step t; b) normalized counts for all previous actions predicted so
far; c) average observed rewards for each action; d) empirical variance of the observed rewards for
each action in the history. In our experiments, we found that it is essential to calibrate the predicted
probabilities of the classifier ft. We use a very small held-out dataset, of size 30, to achieve this.
We use Platt’s scaling (Platt, 1999; Lin et al., 2007) method to calibrate the predicted probabilities.
Platt’s scaling works by fitting a logistic regression model to the classifier’s predicted scores.

Training Datasets. In our experiments, we follow Konyushkova et al. (2017) (and also Peters et al.
(2014), in a different setting) and train the exploration policy π only on synthetic data. This is possi-
ble because the exploration policy π never makes use of x explicitly and instead only accesses it via
ft’s behavior on it. We generate datasets with uniformly distributed class conditional distributions.
The datasets are always two-dimensional. Details are in §A.1.

5.2 EVALUATION METHODOLOGY

For evaluation, we use progressive validation (Blum et al., 1999), which is exactly computing the
reward of the algorithm. Specifically, to evaluate the performance of an exploration algorithm A on
a dataset S of size n, we compute the progressive validation return G(A) = 1

n

∑n
t=1 rt(at) as the

average reward up to n, where at is the action chosen by the algorithm A and rt is the true reward.

Because our evaluation is over 300 datasets, we report aggregate results in two forms. The simpler
one is Win/Loss Statistics: We compare two exploration methods on a given dataset by counting the
number of statistically significant wins and losses. An exploration algorithm A wins over another
algorithm B if the progressive validation return G(A) is statistically significantly larger than B’s
return G(B) at the 0.01 level using a paired sample t-test. We also report cumulative distributions
of rewards for each algorithm, following Zhang et al. (2019). In particular, for a given relative
reward value (x ∈ [0, 1]), the corresponding CDF value for a given algorithm is the fraction of
datasets on which this algorithm achieved reward at least x. We compute relative reward by Min-

6

Under review as a conference paper at ICLR 2020

Max normalization: linearly transforming reward y to y′ = y−min
max−min , where min & max are the

minimum & maximum rewards among all exploration algorithms.

In our experiments, we compare to the following baseline exploration methods, keeping the policy
optimization method fixed (details in §A.4): ε-greedy (Sutton, 1996); ε-decreasing (Sutton & Barto,
1998); EG ε-greedy (Li et al., 2010b); τ -first. We additionally compare to three state-of-the-art
exploration methods: LinUCB (Li et al., 2010a); Cover (Agarwal et al., 2014); and its variant
Cover-NU (Bietti et al., 2018). We select the best hyperparameters following Bietti et al. (2018).

5.3 EXPERIMENTAL RESULTS

5.3.1 LEARNING TO RANK

We evaluate MÊLÉE on a natural learning to rank dataset. The dataset we consider is the Microsoft
Learning to Rank dataset, variant MSLR-10K from Qin & Liu (2013) 3. The dataset consists of
feature vectors extracted from query-url pairs along with relevance judgment labels. The relevance
judgments are obtained from a retired labeling set of a commercial web search engine (Microsoft
Bing), which take 5 values from 0 (irrelevant) to 4 (perfectly relevant). In our experiments, we
limit the number of labels to the two extremes: 0 and 4. A query-url pair is represented by a 136-
dimensional feature vector. The dataset is highly imbalanced as the number of irrelevant queries is
much larger than the number of relevant ones. To address this, we sample the number of irrelevant
queries to match that of the relevant ones. To avoid correlations between the observed query-url
pairs, we group the queries by the query ID, and sample a single query from each group. We convert
relevance scores to losses with 0 indicating a perfectly relevant document, and 1 an irrelevant one.

Figure 1 shows the evaluation results on a subset of the MSLR-10K dataset. Since the performance
is closely matched between the different exploration algorithms, we repeat the experiment 16 times
with randomly shuffled permutations of the MSLR-10K dataset. Figure 1 (left) shows the learning
curve of the trained policy π as well as the baselines. Here, we see that MÊLÉE quickly achieves
high reward, after about 100 examples the two strongest baselines catch up. By 200 examples all
approaches have asymptoted. We exclude LinUCB from these runs because the required matrix
inversions made it too computationally expensive.4 Figure 1 shows statistically-significant win/loss
differences for each of the algorithms, across these 16 shuffles. Each row/column entry shows the
number of times the row algorithm won against the column, minus the number of losses. MÊLÉE is
the only algorithm that always wins more than it loses against other algorithms, and outperforms the
nearest competition (ε-decreasing) by 3 points.

5.3.2 SIMULATED CONTEXTUAL BANDIT TASKS

We additionally perform an exhaustive evaluation on simulated contextual bandit tasks to ensure
that the performance of MÊLÉE generalizes beyond learning to rank. Following Bietti et al. (2018),
we use a collection of 300 binary classification datasets from openml.org for evaluation; the
precise list and download instructions is in §A.3. These datasets cover a variety of different domains
including text & image processing, medical, and sensory data. We convert classification datasets
into cost-sensitive classification problems by using a 0/1 encoding. Given these fully supervised
cost-sensitive multi-class datasets, we simulate the contextual bandit setting by only revealing the
reward for the selected actions.

In Figure 2 (left), we show a representative learning curve. Here, we see that as more data becomes
available, all the approaches improve (except τ -first, which has ceased to learn after 2% of the
data). MÊLÉE, in particular, is able to very quickly achieve near-optimal performance (in around 40
examples) in comparison to the best baseline which takes at least 200. In Figure 2 (right), we show
the CDFs for the different algorithms. To help read this, at x = 1.0, MÊLÉE has a relative reward
at least 1.0 on more than 40% of datasets, while ε-decreasing and ε-greedy achieve this on about
30% of datasets. We find that the two strongest baselines are ε-decreasing and ε-greedy (better when
reward differences are small, toward the left of the graph). The two curves for ε-decreasing and ε-
greedy coincide. This happens because the exploration probability ε0 for ε-decreasing decays rapidly
approaching zero with a rate of 1

t , where t is the index of the current round. MÊLÉE outperforms

3https://www.microsoft.com/en-us/research/project/mslr/
4In a single run of LinUCB we observed that its performance is on par with ε-greedy.

7

openml.org
https://www.microsoft.com/en-us/research/project/mslr/

Under review as a conference paper at ICLR 2020

0 50 100 150 200
Time

0.0

0.2

0.4

0.6

0.8
Pr

og
re

ss
iv

e
Re

wa
rd

M
EL

EE

-g
re

ed
y

-d
ec

re
as

in
g

EG

-g
re

ed
y

-fi
rs

t

Co
ve

r

Co
ve

r-n
u

MELEE

-greedy

-decreasing

EG -greedy

-first

Cover

Cover-nu

0 5 3 16 16 16 16

-5 0 -3 16 15 16 16

-3 3 0 16 15 16 16

-16 -16 -16 0 8 16 16

-16 -15 -15 -8 0 11 11

-16 -16 -16 -16 -11 0 -6

-16 -16 -16 -16 -11 6 0

12

6

0

6

12

MELEE, : 0.0 -decreasing, 0: 0.1 EG -greedy -greedy, : 0.0 LinUCB -first, : 0.02 Cover, Bag Size: 16, : 0.1
MELEE, : 0.0 -decreasing, 0: 0.1 EG -greedy -greedy, : 0.0 LinUCB -first, : 0.02 Cover, Bag Size: 16, : 0.1

Figure 1: Results for the Learning to Rank task. (Left) Learning curve on the MSLR-10K dataset:
x-axis shows the number of queries observed, and y-axis shows the progressive reward. (Right)
Win/Loss counts for all pairs of algorithms over 16 random shuffles for the MSLR-10K dataset.

0 100 200
Time

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og

re
ss

iv
e

Re
wa

rd

0.0 0.2 0.4 0.6 0.8 1.0
Relative Reward (Higher is Better)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Co

un
ts

(Left) A representative
learning curve on dataset
#1144. (Right) Compar-
ison of all exploration
algorithms using the
empirical cumulative
distribution function of
the relative progressive
validation return G
(upper-right is optimal)
on 300 classification
problems. The CDF
curves for ε-decreasing
and ε-greedy coincide.

MELEE, : 0.0 -decreasing, 0: 0.1 EG -greedy -greedy, : 0.0 LinUCB -first, : 0.02 Cover, Bag Size: 16, : 0.1
MELEE, : 0.0 -decreasing, 0: 0.1 EG -greedy -greedy, : 0.0 LinUCB -first, : 0.02 Cover, Bag Size: 16, : 0.1

Figure 2: Behavior of MÊLÉE in comparison to baseline and state-of-the-art exploration algorithms.

the baselines in the “large reward” regimes (right of graph) but under-performs ε-decreasing and
ε-greedy in low reward regimes (left of graph).

In Figure 3, we show statistically-significant win/loss differences for each of the algorithms. Here,
each (row, column) entry shows the number of times the row algorithm won against the column,
minus the number of losses. MÊLÉE is the only algorithm that always wins more than it loses
against other algorithms, and outperforms the nearest competition (ε-decreasing) by 23 points.

To understand more directly how MÊLÉE compares to ε-decreasing, in the left plot of Figure 4, we
show a scatter plot of rewards achieved by MÊLÉE (x-axis) and ε-decreasing (y-axis) on each of the
300 datasets, with statistically significant differences highlighted in red and insignificant differences
in blue. Points below the diagonal line correspond to better performance by MÊLÉE (147 datasets)
and points above to ε-decreasing (124 datasets). The remaining 29 had no statistically significant
difference.

8

Under review as a conference paper at ICLR 2020

M
EL

EE

-g
re

ed
y

-d
ec

re
as

in
g

EG

-g
re

ed
y

Lin
UC

B

-fi
rs

t

Co
ve

r

Co
ve

r-n
u

MELEE

-greedy

-decreasing

EG -greedy

LinUCB

-first

Cover

Cover-nu

0 30 23 167 126 160 166 182

-30 0 2 176 136 144 174 185

-23 -2 0 177 136 141 176 184

-167 -176 -177 0 -56 -3 57 48

-126 -136 -136 56 0 59 91 77

-160 -144 -141 3 -59 0 33 31

-166 -174 -176 -57 -91 -33 0 -19

-182 -185 -184 -48 -77 -31 19 0 160

80

0

80

160

Figure 3: Win/Loss counts for all pairs of algorithms (columns match the rows).

0.0 0.2 0.4 0.6 0.8 1.0
Reward for MELEE, : 0.0

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
 fo

r
-d

ec
re

as
in

g,

0:
0.

1

MELEE wins on 147 datasets
-decreasing wins on 124 datasets

0.0 0.2 0.4 0.6 0.8 1.0
Reward for MELEE with All Features

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
 fo

r M
EL

EE
 w

ith
 C

al
ib

ra
tio

n
On

ly

All features wins on 85 datasets
Calibration wins on 61 datasets

(Left) MÊLÉE vs ε-
decreasing; every point
represents one dataset; the
x-axis shows the reward of
MÊLÉE, the y-axis shows
ε-decreasing, and red
dots represent statistically
significant runs.
(Right) MÊLÉE vs MÊLÉE
using only the calibrated
prediction probabilities (x-
axis). MÊLÉE gets an ad-
ditional leverage when us-
ing all the features.

Figure 4: Scatterplots comparing MÊLÉE to the best baseline and to a variant with fewer features.

Finally, we consider the effect that the additional features have on MÊLÉE’s performance. In partic-
ular, we consider a version of MÊLÉE with all features (this is the version used in all other exper-
iments) with an ablated version that only has access to the (calibrated) probabilities of each action
from the underlying classifier f . The comparison is shown as a scatter plot in Figure 4 (right). Here,
we can see that the full feature set does provide lift over just the calibrated probabilities, with a
win-minus-loss improvement of 24 by adding additional features from which to learn to explore.

6 RELATED WORK AND DISCUSSION

The field of meta-learning is based on the idea of replacing hand-engineered learning heuristics
with heuristics learned from data. One of the most relevant settings for meta-learning to ours is
active learning, in which one aims to learn a decision function to decide which examples, from a
pool of unlabeled examples, should be labeled. Past approaches to meta-learning for active learning
include reinforcement learning-based strategies (Woodward & Finn, 2017; Fang et al., 2017), imita-
tion learning-based strategies (Bachman et al., 2017), and batch supervised learning-based strategies
(Konyushkova et al., 2017). Similar approaches have been used to learn heuristics for optimiza-
tion (Li & Malik, 2016; Andrychowicz et al., 2016), multiarm (non-contextual) bandits Maes et al.
(2012), and neural architecture search (Zoph & Le, 2016), recently mostly based on (deep) rein-
forcement learning. While meta-learning for contextual bandits is most similar to meta-learning for
active learning, there is a fundamental difference that makes it significantly more challenging: in
active learning, the goal is to select as few examples as you can to learn, so by definition the horizon

9

Under review as a conference paper at ICLR 2020

is short; in contextual bandits, learning to explore is fundamentally a long-horizon problem, because
what matters is not immediate reward but long term learning.

In reinforcement learning, Gupta et al. (2018) investigated the task of meta-learning an exploration
strategy for a distribution of related tasks by learning a latent exploration space. Similarly, Xu et al.
(2018) proposed a teacher-student approach for learning to do exploration in off-policy reinforce-
ment learning. While these approaches are effective if the distribution of tasks is very similar and the
state space is shared among different tasks, they fail to generalize when the tasks are different. Our
approach targets an easier problem than exploration in full reinforcement learning environments,
and can generalize well across a wide range of different tasks with completely unrelated features
spaces.

There has also been a substantial amount of work on constructing “good” exploration policies, in
problems of varying complexity: traditional bandit settings (Karnin & Anava, 2016), contextual
bandits (Fraud et al., 2016) and reinforcement learning (Osband et al., 2016). In both bandit set-
tings, most of this work has focused on the learning theory aspect of exploration: what exploration
distributions guarantee that learning will succeed (with high probability)? MÊLÉE, lacks such guar-
antees: in particular, if the data distribution of the observed contexts (φ(ft)) in some test problem
differs substantially from that on which MÊLÉE was trained, we can say nothing about the quality
of the learned exploration. Nevertheless, despite fairly substantial distribution mismatch (synthetic
→ real-world), MÊLÉE works well in practice, and our stylized theory (§4) suggests that there may
be an interesting avenue for developing strong theoretical results for contextual bandit learning with
learned exploration policies, and perhaps other meta-learning problems.

In conclusion, we presented MÊLÉE, a meta-learning algorithm for learning exploration policies in
the contextual bandit setting. MÊLÉE enjoys no-regret guarantees, and empirically it outperforms
alternative exploration algorithm in most settings. One limitation of MÊLÉE is the computational
resources required during the offline training phase on the synthetic datasets. In the future, we will
work on improving the computational efficiency for MÊLÉE in the offline training phase and scale
the experimental analysis to problems with larger number of classes.

REFERENCES

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Tam-
ing the monster: A fast and simple algorithm for contextual bandits. In In Proceedings of the 31st
International Conference on Machine Learning (ICML-14, pp. 1638–1646, 2014.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981–3989, 2016.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of Ma-
chine Learning Research, 3:397–422, 2003.

Philip Bachman, Alessandro Sordoni, and Adam Trischler. Learning algorithms for active learning.
In ICML, 2017.

Alina Beygelzimer and John Langford. The offset tree for learning with partial labels. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 129–138. ACM, 2009.

Alberto Bietti, Alekh Agarwal, and John Langford. A Contextual Bandit Bake-off. working paper
or preprint, May 2018.

Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for k-fold and progres-
sive cross-validation. In Proceedings of the twelfth annual conference on Computational learning
theory, pp. 203–208. ACM, 1999.

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-6125. doi:
10.1023/A:1010933404324.

10

Under review as a conference paper at ICLR 2020

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé, III, and John Langford.
Learning to search better than your teacher. In Proceedings of the 32Nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML, pp. 2058–2066.
JMLR.org, 2015.

Hal Daumé, III, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
Learning, 75(3):297–325, Jun 2009. ISSN 1573-0565. doi: 10.1007/s10994-009-5106-x.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. arXiv preprint arXiv:1106.2369,
2011.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement learning
approach. In EMNLP, 2017.

Raphal Fraud, Robin Allesiardo, Tanguy Urvoy, and Fabrice Clrot. Random forest for the contex-
tual bandit problem. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of
Machine Learning Research, pp. 93–101, Cadiz, Spain, 09–11 May 2016. PMLR.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. arXiv preprint arXiv:1802.07245,
2018.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2016.

Leslie Pack Kaelbling. Associative reinforcement learning: Functions ink-dnf. Machine Learning,
15(3):279–298, 1994.

Sham M. Kakade, Shai Shalev-Shwart, and Ambuj Tewari. Efficient bandit algorithms for online
multiclass prediction. In ICML, 2008.

Zohar S Karnin and Oren Anava. Multi-armed bandits: Competing with optimal sequences. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 29, pp. 199–207. Curran Associates, Inc., 2016.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In
Advances in Neural Information Processing Systems, 2017.

John Langford and Bianca Zadrozny. Relating reinforcement learning performance to classification
performance. In Proceedings of the 22nd international conference on Machine learning, pp.
473–480. ACM, 2005.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Advances in Neural Information Processing Systems 20, pp. 817–824. Curran
Associates, Inc., 2008.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pp. 661–670, New York, NY, USA, 2010a. ACM. ISBN 978-1-
60558-799-8. doi: 10.1145/1772690.1772758.

Wei Li, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin. Exploitation and
exploration in a performance based contextual advertising system. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10,
pp. 27–36, New York, NY, USA, 2010b. ACM.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on platt’s probabilistic outputs for
support vector machines. Machine Learning, 68(3):267–276, Oct 2007. ISSN 1573-0565. doi:
10.1007/s10994-007-5018-6.

11

Under review as a conference paper at ICLR 2020

Francis Maes, Louis Wehenkel, and Damien Ernst. Meta-learning of exploration/exploitation strate-
gies: The multi-armed bandit case. In International Conference on Agents and Artificial Intelli-
gence, pp. 100–115. Springer, 2012.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 29, pp. 4026–4034. Curran Associates, Inc.,
2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. The Journal of Machine Learning Research, 15(1):2009–2053,
2014.

John C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pp. 61–74. MIT Press,
1999.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

Stéphane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and J Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learn-
ing Research, pp. 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in neural information processing systems, pp. 1038–1044, 1996.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Mark Woodward and Chelsea Finn. Active one-shot learning. arXiv preprint arXiv:1702.06559,
2017.

Tianbing Xu, Qiang Liu, Liang Zhao, Wei Xu, and Jian Peng. Learning to explore with meta-policy
gradient. arXiv preprint arXiv:1803.05044, 2018.

Chicheng Zhang, Alekh Agarwal, Hal Daumé, III, John Langford, and Sahand N Negahban. Warm-
starting contextual bandits: Robustly combining supervised and bandit feedback. In ICML, 2019.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

http://arxiv.org/abs/1306.2597

Under review as a conference paper at ICLR 2020

Supplementary Material For:
Learning Effective Exploration Strategies for Contextual Bandits

A STYLIZED TEST-TIME ANALYSIS FOR BANDITRON: DETAILS

The BANDITRONMÊLÉE algorithm is specified in Alg 2. The is exactly the same as the typical test
time behavior, except it uses a BANDITRON-type strategy for learning the underlying classifier f in
the place of POLOPT. POLICYELIMINATIONMETA takes as arguments: π (the learned exploration
policy) and µ ∈ (0, 1/(2K)) an added uniform exploration parameter. The BANDITRON learns a
linear multi-class classifier parameterized by a weight matrix of size K×D, where D is the input
dimensionality. The BANDITRON assumes a pure multi-class setting in which the reward for one
(“correct”) action is 1 and the reward for all other actions is zero.

At each round t, a prediction ât is made according to ft (summarized by W t). We then define an
exploration distribution that “most of the time” acts according to π(ft, .), but smooths each action
with µ probability. The chosen action at is sampled from this distribution and a binary reward is
observed. The weights of the BANDITRON are updated according to the BANDITRON update rule
using Ũ t.

Algorithm 2 BANDITRONMÊLÉE (g, µ)

1: initialize W 1 = 0 ∈ RK×D
2: for rounds t = 1 . . . T : do
3: observe xt ∈ RD
4: compute ât = ft(xt) = argmaxk∈K

(
W txt

)
k

5: define Qµ(a) = µ+ (1−Kµ)1[a = π(W t, xt)]
6: sample at ∼ Qµ
7: observe reward rt(at) ∈ {0, 1}
8: define Ũ t ∈ RK×D as:

Ũ ta,· = xt

(
1[rt(at)=1]1[at=a]

Qµ(a) − 1[ât = a]
)

9: update W t+1 = W t + Ũ t

10: end for

The only difference between BANDITRONMÊLÉE and the original BANDITRON is the introduction
of π in the sampling distribution. The original algorithm achieves the following mistake bound
shown below, which depends on the notion of multi-class hinge-loss. In particular, the hinge-loss
of W on (x, r) is `(W, (x, r)) = maxa 6=a? max

{
0, 1− (Wx)a? + (Wx)a

}
, where a? is the a for

which r(a) = 1. The overall hinge-loss L is the sum of ` over the sequence of examples.

Theorem 3 (Thm. 1 and Corr. 2 of Kakade et al. (2008)) Assume that for the sequence of exam-
ples, (x1, r1), (x2, r2), . . . , (xT , rT), we have, for all t, ||xt|| ≤ 1. Let W ? be any matrix, let L be
the cumulative hinge-loss of W ?, and let D = 2 ||W ?||2F be the complexity of W ?. The number of
mistakes M made by the BANDITRON satisfies

EM ≤ L+KµT + 3 max

{
D

µ
,
√
DTKµ

}
+
√
DL/µ (4)

where the expectation is taken with respect to the randomness of the algorithm. Furthermore, in
a low noise setting (there exists W ? with fixed complexity d and loss L ≤ O(

√
DKT)), then by

setting µ =
√
D/(TK), we obtain EM ≤ O(

√
KDT).

We can prove an analogous result for BANDITRONMÊLÉE. The key quantity that will control how
much π improves the execution of BANDITRONMÊLÉE is how much π improves on ft when ft is
wrong. In particular, let γt = Pr[rt(π(ft, xt) = 1)|xt] − Pr[rt(ft(xt)) = 1|xt] be the edge of
π(ft, .) over f , and let Γ = 1

T

∑T
t=1 E

1
1+Kγt

be an overall measure of the edge. (If π does nothing,
then all γt = 0 and Γ = 1.) Given this quantity, we can prove the following Theorem 2.

Proof: [sketch] The proof is a small modification of the original proof of Theorem 3. The only
change is that in the original proof, the following bound is used: Et||Ũ t||2/||xt||2 = 1+1/µ ≤ 2/µ.

13

Under review as a conference paper at ICLR 2020

We use, instead: Et||Ũ t||2/||xt||2 ≤ 1 + Et 1
µ+γt

≤
2Et 1

1+γt

µ . The rest of the proof goes through
identically. �

A.1 DETAILS OF SYNTHETIC DATASETS

We generate datasets with uniformly distributed class conditional distributions. We generate 2D
datasets by first sampling a random variable representing the Bayes classification error. The Bayes
error is sampled uniformly from the interval 0.0 to 0.5. Next, we generate a balanced dataset where
the data for each class lies within a unit rectangle and sampled uniformly. We overlap the sampling
rectangular regions to generate a dataset with the desired Bayes error selected in the first step.

A.2 IMPLEMENTATION DETAILS

Our implementation is based on scikit-learn (Pedregosa et al., 2011). We fix the training time ex-
ploration parameter µ to 0.1. We train the exploration policy π on 82 synthetic datasets each of size
3000 with uniform class conditional distributions, a total of 246k samples (§A.1). We train π using
a linear classifier Breiman (2001) and set the hyper-parameters for the learning rate, and data scal-
ing methods using three-fold cross-validation on the whole meta-training dataset. For the classifier
class F , we use a linear model trained with stochastic gradient descent. We standardize all features
to zero mean and unit variance, or scale the features to lie between zero and one. To select between
the two scaling methods, and tune the classifier’s learning rate, we use three-fold cross-validation
on a small fully supervised training set of size 30 samples. The same set is used to calibrate the
predicted probabilities of ft.

A.3 LIST OF DATASETS

The datasets we used can be accessed at https://www.openml.org/d/<id>. The list of
(id, size) pairs below shows the (id for the datasets we used and the dataset size in number of
examples:

(46,100) (716, 100) (726, 100) (754, 100) (762, 100) (768, 100) (775, 100) (783, 100) (789, 100)
(808, 100) (812, 100) (828, 100) (829, 100) (850, 100) (865, 100) (868, 100) (875, 100) (876, 100)
(878, 100) (916, 100) (922, 100) (932, 100) (1473, 100) (965, 101) (1064, 101) (956, 106) (1061,
107) (771, 108) (736, 111) (448, 120) (782, 120) (1455, 120) (1059, 121) (1441, 123) (714, 125)
(867, 130) (924, 130) (1075, 130) (1141, 130) (885, 131) (444, 132) (921, 132) (974, 132) (719,
137) (1013, 138) (1151, 138) (784, 140) (1045, 145) (1066, 145) (1125, 146) (902, 147) (1006, 148)
(969, 150) (955, 151) (1026, 155) (745, 159) (756, 159) (1085, 159) (1054, 161) (748, 163) (747,
167) (973, 178) (463, 180) (801, 185) (1164, 185) (788, 186) (1154, 187) (941, 189) (1131, 193)
(753, 194) (1012, 194) (1155, 195) (1488, 195) (446, 200) (721, 200) (1124, 201) (1132, 203) (40,
208) (733, 209) (796, 209) (996, 214) (1005, 214) (895, 222) (1412, 226) (820, 235) (851, 240)
(464, 250) (730, 250) (732, 250) (744, 250) (746, 250) (763, 250) (769, 250) (773, 250) (776, 250)
(793, 250) (794, 250) (830, 250) (832, 250) (834, 250) (863, 250) (873, 250) (877, 250) (911, 250)
(918, 250) (933, 250) (935, 250) (1136, 250) (778, 252) (1442, 253) (1449, 253) (1159, 259) (450,
264) (811, 264) (336, 267) (1152, 267) (53, 270) (1073, 274) (1156, 275) (880, 284) (1121, 294)
(43, 306) (818, 310) (915, 315) (1157, 321) (1162, 322) (925, 323) (1140, 324) (1144, 329) (1011,
336) (1147, 337) (1133, 347) (337, 349) (59, 351) (1135, 355) (1143, 363) (1048, 369) (860, 380)
(1129, 384) (1163, 386) (900, 400) (906, 400) (907, 400) (908, 400) (909, 400) (1025, 400) (1071,
403) (1123, 405) (1160, 410) (1126, 412) (1122, 413) (1127, 421) (764, 450) (1065, 458) (1149,
458) (1498, 462) (724, 468) (814, 468) (1148, 468) (1150, 470) (765, 475) (767, 475) (1153, 484)
(742, 500) (749, 500) (750, 500) (766, 500) (779, 500) (792, 500) (805, 500) (824, 500) (838, 500)
(855, 500) (869, 500) (870, 500) (879, 500) (884, 500) (886, 500) (888, 500) (896, 500) (920, 500)
(926, 500) (936, 500) (937, 500) (943, 500) (987, 500) (1470, 500) (825, 506) (853, 506) (872, 506)
(717, 508) (1063, 522) (954, 531) (1467, 540) (1165, 542) (1137, 546) (335, 554) (333, 556) (947,
559) (949, 559) (950, 559) (951, 559) (826, 576) (1004, 600) (334, 601) (1158, 604) (770, 625)
(997, 625) (1145, 630) (1443, 661) (774, 662) (795, 662) (827, 662) (931, 662) (292, 690) (1451,
705) (1464, 748) (37, 768) (1014, 797) (970, 841) (994, 846) (841, 950) (50, 958) (1016, 990)
(31, 1000) (715, 1000) (718, 1000) (723, 1000) (740, 1000) (743, 1000) (751, 1000) (797, 1000)
(799, 1000) (806, 1000) (813, 1000) (837, 1000) (845, 1000) (849, 1000) (866, 1000) (903, 1000)
(904, 1000) (910, 1000) (912, 1000) (913, 1000) (917, 1000) (741, 1024) (1444, 1043) (1453, 1077)

14

https://www.openml.org/d/<id>

Under review as a conference paper at ICLR 2020

(1068, 1109) (934, 1156) (1049, 1458) (1454, 1458) (983, 1473) (1128, 1545) (1130, 1545) (1138,
1545) (1139, 1545) (1142, 1545) (1146, 1545) (1161, 1545) (1166, 1545) (1050, 1563) (991, 1728)
(962, 2000) (971, 2000) (978, 2000) (995, 2000) (1020, 2000) (1022, 2000) (914, 2001) (1067,
2109) (772, 2178) (948, 2178) (958, 2310) (312, 2407) (1487, 2534) (737, 3107) (953, 3190) (3,
3196) (1038, 3468) (871, 3848) (728, 4052) (720, 4177) (1043, 4562) (44, 4601) (979, 5000) (1460,
5300) (1489, 5404) (1021, 5473) (1069, 5589) (980, 5620) (847, 6574) (1116, 6598) (803, 7129)
(1496, 7400) (725, 8192) (735, 8192) (752, 8192) (761, 8192) (807, 8192)

A.4 BASELINE EXPLORATION ALGORITHMS

Our experiments aim to determine how MÊLÉE compares to other standard exploration strategies.
In particular, we compare to:

ε-greedy: With probability ε, explore uniformly at random; with probability 1 − ε act greedily
according to ft (Sutton, 1996). Experimentally, we found ε = 0 optimal on average, consistent
with the results of Bietti et al. (2018).

ε-decreasing: selects a random action with probabilities εi, where εi = ε0/t, ε0 ∈]0, 1] and t is the
index of the current round. In our experiments we set ε0 = 0.1. (Sutton & Barto, 1998)

Exponentiated Gradient ε-greedy: maintains a set of candidate values for ε-greedy exploration.
At each iteration, it runs a sampling procedure to select a new ε from a finite set of candidates.
The probabilities associated with the candidates are initialized uniformly and updated with the
Exponentiated Gradient (EG) algorithm. Following Li et al. (2010b), we use the candidate set
{εi = 0.05×i+ 0.01, i = 1, · · · , 10} for ε.

LinUCB: Maintains confidence bounds for reward payoffs and selects actions with the highest
confidence bound. It is impractical to run “as is” due to high-dimensional matrix inversions. We
use diagonal approximation to the covariance when the dimensions exceeds 150. (Li et al., 2010a)

τ -first: Explore uniformly on the first τ fraction of the data; after that, act greedily.
Cover: Maintains a uniform distribution over a fixed number of policies. The policies are used to

approximate a covering distribution over policies that are good for both exploration and exploita-
tion (Agarwal et al., 2014).

Cover Non-Uniform: similar to Cover, but reduces the level of exploration of Cover to be more
competitive with the Greedy method. Cover-Nu doesn’t add extra exploration beyond the actions
chose by the covering policies (Bietti et al., 2018).

In all cases, we select the best hyperparameters for each exploration algorithm following Bietti et al.
(2018). These hyperparameters are: the choice of ε in ε-greedy, τ in τ -first, the number of bags, and
the tolerance ψ for Cover and Cover-NU. We set ε = 0.0, τ = 0.02, bag size = 16, and ψ = 0.1.

15

	Introduction
	Preliminaries: Contextual Bandits and Policy Optimization
	Approach: Learning and Effective Exploration Strategy
	Test Time Behavior of Mêlée
	Training Mêlée by Imitation Learning

	Theoretical Guarantees
	Experimental Setup and Results
	Training Details for the Exploration Policy
	Evaluation Methodology
	Experimental Results
	Learning to Rank
	Simulated Contextual Bandit Tasks

	Related Work and Discussion
	Stylized test-time analysis for Banditron: Details
	Details of Synthetic Datasets
	Implementation Details
	List of Datasets
	Baseline Exploration Algorithms

