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ABSTRACT

Owing to the ubiquity of computer software, software vulnerability detection
(SVD) has become an important problem in the software industry and in the field
of computer security. One of the most crucial issues in SVD is coping with the
scarcity of labeled vulnerabilities in projects that require the laborious manual la-
beling of code by software security experts. One possible way to address is to
employ deep domain adaptation which has recently witnessed enormous success
in transferring learning from structural labeled to unlabeled data sources. The gen-
eral idea is to map both source and target data into a joint feature space and close
the discrepancy gap of those data in this joint feature space. Generative adversarial
network (GAN) is a technique that attempts to bridge the discrepancy gap and also
emerges as a building block to develop deep domain adaptation approaches with
state-of-the-art performance. However, deep domain adaptation approaches using
the GAN principle to close the discrepancy gap are subject to the mode collaps-
ing problem that negatively impacts the predictive performance. Our aim in this
paper is to propose Dual Generator-Discriminator Deep Code Domain Adaptation
Network (Dual-GD-DDAN) for tackling the problem of transfer learning from la-
beled to unlabeled software projects in the context of SVD in order to resolve
the mode collapsing problem faced in previous approaches. The experimental re-
sults on real-world software projects show that our proposed method outperforms
state-of-the-art baselines by a wide margin.

1 INTRODUCTION

In the software industry, software vulnerabilities relate to specific flaws or oversights in software
programs which allow attackers to expose or alter sensitive information, disrupt or destroy a system,
or take control of a program or computer system (Dowd et al., 2006). The software vulnerability de-
tection problem has become an important issue in the software industry and in the field of computer
security. Computer software development employs of a vast variety of technologies and different
software development methodologies, and much computer software contains vulnerabilities.

This has necessitated the development of automated advanced techniques and tools that can effi-
ciently and effectively detect software vulnerabilities with a minimal level of human intervention.
To respond to this demand, many vulnerability detection systems and methods, ranging from open
source to commercial tools, and from manual to automatic methods have been proposed and imple-
mented. Most of the previous works in software vulnerability detection (SVD) (Neuhaus et al., 2007;
Shin et al., 2011; Yamaguchi et al., 2011; Almorsy et al., 2012; Li et al., 2016; Grieco et al., 2016;
Kim et al., 2017) have been developed based on handcrafted features which are manually chosen by
knowledgeable domain experts who may have outdated experience and underlying biases. In many
situations, handcrafted features normally do not generalize well. For example, features that work
well in a certain software project may not perform well in other projects (Zimmermann et al., 2009).
To alleviate the dependency on handcrafted features, the use of automatic features in SVD has been
studied recently (Li et al., 2018; Lin et al., 2018; Dam et al., 2018). These works have shown the
advantages of automatic features over handcrafted features in the context of software vulnerability
detection.

1



Under review as a conference paper at ICLR 2020

However, most of these approaches lead to another crucial issue in SVD research, namely the
scarcity of labeled projects. Labelled vulnerable code is needed to train these models, and the
process of labeling vulnerable source code is very tedious, time-consuming, error-prone, and chal-
lenging even for domain experts. This has led to few labeled projects compared with the vast volume
of unlabeled ones. A viable solution is to apply transfer learning or domain adaptation which aims
to devise automated methods that make it possible to transfer a learned model from the source do-
main with labels to the target domains without labels. Studies in domain adaptation can be broadly
categorized into two themes: shallow (Borgwardt et al., 2006; Gopalan et al., 2011) and deep do-
main adaptations (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Long et al., 2015; Shu et al., 2018;
French et al., 2018). These recent studies have shown the advantages of deep over shallow domain
adaptation (i.e., higher predictive performance and capacity to tackle structural data). Deep domain
adaptation encourages the learning of new representations for both source and target data in order to
minimize the divergence between them (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Long et al.,
2015; Shu et al., 2018; French et al., 2018). The general idea is to map source and target data to
a joint feature space via a generator, where the discrepancy between the source and target distribu-
tions is reduced. Notably, the work of (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Shu et al.,
2018) employed generative adversarial networks (GANs) (Goodfellow et al., 2014) to close the dis-
crepancy gap between source and target data in the joint space. However, most of aforementioned
works mainly focus on transfer learning in the computer vision domain. The work of (Nguyen et al.,
2019) is the first work which applies deep domain adaptation to SVD with promising predictive
performance on real-world source code projects. The underlying idea is to employ the GAN to close
the gap between source and target domain in the joint space and enforce the clustering assump-
tion (Chapelle & Zien, 2005) to utilize the information carried in the unlabeled target samples in a
semi-supervised context.

GANs are known to be affected by the mode collapsing problem (Goodfellow, 2016; Santurkar
et al., 2018). In particular, (Santurkar et al., 2018) recently studied the mode collapsing problem
and further classified this into the missing mode problem i.e., the generated samples miss some
modes in the true data, and the boundary distortion problem i.e., the generated samples can only
partly recover some modes in the true data. It is certain that deep domain adaptation approaches that
use the GAN principle will inherently encounter both the missing mode and boundary distortion
problems. Last but not least, deep domain adaptation approaches using the GAN principle also face
the data distortion problem. The representations of source and target examples in the joint feature
space degenerate to very small regions that cannot preserve the manifold/clustering structure in the
original space.

Our aim in this paper is to address not only deep domain adaptation mode collapsing problems but
also boundary distortion problems when employing the GAN as a principle in order to close the dis-
crepancy gap between source and target data in the joint feature space. Our two approaches are: i)
apply manifold regularization for enabling the preservation of manifold/clustering structures in the
joint feature space, hence avoiding the degeneration of source and target data in this space; and ii)
invoke dual discriminators in an elegant way to reduce the negative impacts of the missing mode and
boundary distortion problems in deep domain adaptation using the GAN principle as mentioned be-
fore. We name our mechanism when applied to SVD as Dual Generator-Discriminator Deep Code
Domain Adaptation Network (Dual-GD-DDAN). We empirically demonstrate that our Dual-GD-
DDAN can overcome the missing mode and boundary distortion problems which is likely to happen
as in Deep Code Domain Adaptation (DDAN) (Nguyen et al., 2019) in which the GAN was solely
applied to close the gap between the source and target domain in the joint space (see the discussion
in Sections 2.4 and 3.3, and the visualization in Figure 3). In addition, we incorporate the relevant
approaches – minimizing the conditional entropy and manifold regularization with spectral graph
– proposed in (Nguyen et al., 2019) to enforce the clustering assumption (Chapelle & Zien, 2005)
and arrive at a new model named Dual Generator-Discriminator Semi-supervised Deep Code Do-
main Adaptation Network (Dual-GD-SDDAN). We further demonstrate that our Dual-GD-SDDAN
can overcome the mode collapsing problem better than SCDAN in (Nguyen et al., 2019), hence
obtaining better predictive performance.

We conducted experiments using the data sets collected by (Lin et al., 2018), that consist of five
real-world software projects: FFmpeg, LibTIFF, LibPNG, VLC and Pidgin to compare our pro-
posed Dual-GD-DDAN and Dual-GD-SDDAN with the baselines. The baselines consider to include
VULD (i.e., the model proposed in (Li et al., 2018) without domain adaptation), MMD, DIRT-
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T, DDAN and SCDAN as mentioned (Nguyen et al., 2019) and D2GAN (Nguyen et al., 2017) (a
variant of the GAN using dual-discriminator to reduce the mode collapse for which we apply this
mechanism in the joint feature space). Our experimental results show that our proposed methods
are able to overcome the negative impact of the missing mode and boundary distortion problems
inherent in deep domain adaptation approaches when solely using the GAN principle as in DDAN
and SCDAN (Nguyen et al., 2019). In addition, our method outperforms the rival baselines in terms
of predictive performance by a wide margin.

2 DEEP CODE DOMAIN ADAPTATION WITH GAN

2.1 PROBLEM STATEMENT

A source domain data set S =
{(

xS1 , y1
)
, . . . ,

(
xSNS

, yNS

)}
where yi ∈ {−1, 1} (i.e., 1: vulnerable

code and -1: non-vulnerable code) and xSi =
[
xSi1, . . . ,x

S
iL

]
is a sequence of L embedding vectors,

and the target domain data set T =
{
xT1 , . . . ,x

T
NT

}
where xTi =

[
xTi1, . . . ,x

T
iL

]
is also a sequence

of L embedding vectors. We wish to bridge the gap between the source and target domains in the
joint feature space. This allows us to transfer a classifier trained on the source domain to predict
well on the target domain.

2.2 DATA PROCESSING AND EMBEDDING

We preprocess data sets before inputting into the deep neural networks. Firstly, we standardize
the source code by removing comments, blank lines and non-ASCII characters. Secondly, we map
user-defined variables to symbolic names (e.g., “var1”, “var2”) and user-defined functions to sym-
bolic names (e.g., “func1”, “func2”). We also replace integers, real and hexadecimal numbers with
a generic <num> token and strings with a generic <str> token. Thirdly, we embed statements in
source code into vectors. In particular, each statement x consists of two parts: the opcode and
the statement information. We embed both opcode and statement information to vectors, then con-
catenate the vector representations of opcode and statement information to obtain the final vector
representation i of statement x. For example, in the following statement (C programming lan-
guage) “if(func3(func4(num,num),&var2)!=var11)”, the opcode is if and the statement information
is (func3(func4(num,num),&var2)!=var11). To embed the opcode, we multiply the one-hot vector of
the opcode by the opcode embedding matrix. To embed the statement information, we tokenize it to
a sequence of tokens (e.g., (,func3,(,func4,(,num,num,),&,var2,),!=,var11,)), construct the frequency
vector of the statement information, and multiply this frequency vector by the statement informa-
tion embedding matrix. In addition, the opcode embedding and statement embedding matrices are
learnable variables.

2.3 DEEP CODE DOMAIN ADAPTATION WITH A BIDIRECTIONAL RNN

To handle sequential data in the context of domain adaptation of software vulnerability detection, the
work of (Nguyen et al., 2019) proposed an architecture referred to as the Code Domain Adaptation
Network (CDAN). This network architecture recruits a Bidirectional RNN to process the sequential
input from both source and target domains (i.e., xSi =

[
xSi1, . . . ,x

S
iL

]
and xTi =

[
xTi1, . . . ,x

T
iL

]
).

A fully connected layer is then employed to connect the output layer of the Bidirectional RNN with
the joint feature layer while bridging the gap between the source and target domains. Furthermore,
inspired by the Deep Domain Adaptation approach (Ganin & Lempitsky, 2015), the authors employ
the source classifier C to classify the source samples, the domain discriminator D to distinguish the
source and target samples and propose Deep Code Domain Adaptation (DDAN) whose objective
function is as follows:

J (G, D, C) =
1

NS

NS∑
i=1

`
(
C
(
G
(
x

S
i

))
, yi
)
+ λ

 1

NS

NS∑
i=1

log D
(
G
(
x

S
i

))
+

1

NT

NT∑
i=1

log
[
1−D

(
G
(
x

T
i

))]
(1)

where seeking the optimal generator G∗, the domain discriminator D∗, and the source classifier C∗
is found by solving:

(C∗, G∗) = argmin
C,G

J (G, D, C) andD∗ = argmax
D

J (G, D, C)
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Figure 1: An illustration of the missing mode and boundary distortion problems of DDAN. In the
joint space, the target distribution misses source mode 2, while the source distribution can only
partly cover the target mode 2 in the target distribution and the target distribution can only partly
cover the source mode 1 in the source distribution.

2.4 THE SHORTCOMINGS OF DDAN

We observe that DDAN suffers from several shortcomings. First, the data distortion problem (i.e.,
the source and target data in the joint space might collapse into small regions) may occur since there
is no mechanism in DDAN to circumvent this. Second, since DDAN is based on the GAN approach,
DDAN might suffer from the mode collapsing problem (Goodfellow, 2016; Santurkar et al., 2018).
In particular, (Santurkar et al., 2018) has recently studied the mode collapsing problem of GANs and
discovered that they are also subject to i) the missing mode problem (i.e., in the joint space, either
the target data misses some modes in the source data or vice versa) and ii) the boundary distortion
problem (i.e., in the joint space either the target data partly covers the source data or vice versa),
which makes the target distribution significantly diverge from the source distribution. As shown
in Figure 1, both the missing mode and boundary distortion problems simultaneously happen since
the target distribution misses source mode 2, while the source distribution can only partly cover the
target mode 2 in the target distribution and the target distribution can only partly cover the source
mode 1 in the source distribution.

3 OUR APPROACH: DUAL GENERATOR-DISCRIMINATOR DEEP CODE
DOMAIN ADAPTATION

3.1 KEY IDEA OF OUR APPROACH

We employ two discriminators (namely, DS and DT ) to classify the source and target examples and
vice versa and two separate generators (namely, GS and GT ) to map the source and target examples
to the joint space respectively. In particular, DS produces high values on the source examples in the
joint space (i.e., GS

(
xS
)
) and low values on the target examples in the joint space (i.e., GT

(
xT
)
),

while DT produces high values on the target examples in the joint space (i.e., GT
(
xT
)
) and low

values on the source examples (i.e., GS
(
xS
)
). The generator GS is trained to push GS

(
xS
)

to
the high value region of DT and the generator GT is trained to push GT

(
xT
)

to the high value
region of DS . Eventually, both DS

(
GS
(
xS
))

and DS

(
GT
(
xT
))

are possibly high and both
DT

(
GS
(
xS
))

and DT

(
GT
(
xT
))

are possibly high. This helps to mitigate the issues of missing
mode and boundary distortion since as in Figure 1, if the target mode 1 can only partly cover the
source mode 1, then DT cannot receive large values from source mode 1. Another important aspect
of our approach is to maintain the cluster/manifold structure of source and target data in the joint
space via the manifold regularization to avoid the data distortion problem.

3.2 DUAL GENERATOR-DISCRIMINATOR DEEP CODE DOMAIN ADAPTATION NETWORK

To address the two inherent problems in the DDAN mentioned in Section 2.4, we employ two
different generators GS and GT to map source and target domain examples to the joint space and
two discriminators DS and DT to distinguish source examples against target examples and vice
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versa together with the source classifier C which is used to classify the source examples with labels
as shown in Figure 2. We name our proposed model as Dual Generator-Discriminator Deep Code
Domain Adaptation Network (Dual-GD-DDAN).

Updating the discriminators The two discriminators DS and DT are trained to distinguish the
source examples against the target examples and vice versa as follows:

min
DS
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(1 + θ)
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NS∑
i=1

[
− log DS

(
GS

(
xS

i

))]
+

1
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i

))]])
(2)

min
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− log
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i

))]]
+

(1 + θ)

NT

[
−

NT∑
i=1

log DT

(
GT

(
xT

i

))])
(3)

where θ > 0. Note that a high value of θ encourages Ds and DT place higher values on GS
(
xS
)

and GT
(
xT
)

respectively.

Updating the source classifier The source classifier is employed to classify the source examples
with labels as follows:

min
C

1

NS

NS∑
i=1

`
(
C
(
GS
(
xSi
))
, yi
)

where ` specifies the cross-entropy loss function for the binary classification (e.g., using cross-
entropy).

Updating the generators The two generators GS and GT are trained to i) maintain the mani-
fold/cluster structures of source and target data in their original spaces to avoid the data distortion
problem and ii) move the target samples toward the source samples in the joint space and resolve
the missing mode and boundary distortion problems in the joint space.

To maintain the manifold/cluster structures of source and target data in their original spaces, we
propose minimizing the manifold regularization term as:

min
G
M (GS , GT ) (4)

whereM (GS , GT ) is formulated as:

M (GS , GT ) =

NS∑
i,j=1

µij

∥∥∥GS

(
xS

i

)
−GS

(
xS

j

)∥∥∥2 + NT∑
i,j=1

µij

∥∥∥GT

(
xT

i

)
−GT

(
xT

j

)∥∥∥2

where the weights are defined as µij = exp
{
−‖h (xi)− h (xj)‖2 /

(
2σ

2
)}

with h (x) =

concat
(←−
hL (x) ,

−→
hL (x)

)
where

−→
hL (x) and

←−
hL (x) are the last hidden states of the bidirectional

RNN with input x.

To move the target samples toward the source samples and resolve the missing mode and boundary
distortion problems in the joint space, we propose minimizing the following objective function:

min
D
K (GS , GT ) (5)

where K (GS , GT ) is defined as:

K (GS , GT ) =
1

NS

NS∑
i=1

[
− log

[
DT

(
GS

(
xS

i

))]]
+

1

NT

NT∑
i=1

[
− log

[
DS

(
GT

(
xT

i

))]]
(6)

Moreover, the source generator GS has to work out the representation that is suitable for the source
classifier, hence we need to minimize the following objective function:

min
GS

1

NS

NS∑
i=1

`
(
C
(
GS
(
xSi
))
, yi
)
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Figure 2: The architecture of our Dual Generator-Discriminator Deep Code Domain Adaptation
Network (Dual-GD-DDAN). The generators GS and GT take the sequential code tokens of the
source domain and target domain in vectorial form respectively and map this sequence to the joint
layer (i.e., the joint space). The discriminators DS and DT are invoked to discriminate the source
and target data. The source classifier C is trained on the source domain with labels. We note that the
source and target networks do not share parameters and are not identical.

Finally, to update GS and GT , we need to minimize the following objective function:

1

NS

NS∑
i=1

`
(
C
(
GS

(
xS

i

))
, yi
)
+ αM (GS , GT ) + βK (GS , GT )

where α, β > 0 are two non-negative parameters.

3.3 THE RATIONALE FOR OUR DUAL GENERATOR-DISCRIMINATOR DEEP CODE DOMAIN
ADAPTATION NETWORK APPROACH

Below we explain why our proposed Dual-GD-DDAN is able to resolve the two critical problems
that occur with the DDAN approach. First, if xSi and xSj are proximal to each other and are located
in the same cluster, then their representations h

(
xSi
)

and h
(
xSj
)

are close and hence, the weight µij
is large. This implies GS

(
xSi
)

and GS
(
xSj
)

are encouraged to be close in the joint space because

we are minimizing µij
∥∥GS (xSi )−GS (xSj )∥∥2 as shown in Eq. (4). This increases the chance of

the two representations residing in the same cluster in the joint space. Therefore, Dual-GD-DDAN
is able to preserve the clustering structure of the source data in the joint space. By using the same
argument, we reach the same conclusion for the target domain.

Second, following Eqs. (2, 3), the discriminator DS is trained to encourage large values for the
source modes (i.e., GS

(
xS
)
), while the discriminator DT is trained to produce large values for

the target modes (i.e., GT
(
xT
)
). Moreover, as in Eq. (6), Gs is trained to move the source do-

main examples xS to the high-valued region of DT (i.e., the target modes or GT
(
xT
)
) and GT is

trained to move the target examples xT to the high-valued region of DS (i.e., the source modes or
GS
(
xS
)
). As a consequence, eventually, the source modes (i.e., GS

(
xS
)
) and target modes (i.e.,

GT
(
xT
)
) overlap, while DS and DT place large values on both source (i.e., GS

(
xS
)
) and target

(i.e.,GT
(
xT
)
) modes. The mode missing problem is less likely to happen since, as shown in Figure

1, if the target data misses source mode 2, then DT cannot receive large values from source mode
2. Similarly, the boundary distortion problem is also less likely to happen since as in Figure 1, if the
target mode 1 can only partly cover the source mode 1, then DT cannot receive large values from
source mode 1. Therefore, Dual-GD-DDAN allows us to reduce the impact of the missing mode
and boundary distortion problems, hence making the target distribution more identical to the source
distribution in the joint space.

3.4 DUAL GENERATOR-DISCRIMINATOR SEMI-SUPERVISED DEEP CODE DOMAIN
ADAPTATION NETWORK

When successfully bridging the gap between the source and target domains in the joint layer (i.e.,
the joint space), the target samples can be regarded as the unlabeled portion of a semi-supervised

6



Under review as a conference paper at ICLR 2020

learning problem. Based on this observation, Nguyen et al. (Nguyen et al., 2019) proposed to
enforce the clustering assumption (Chapelle & Zien, 2005) by minimizing the conditional entropy
and using the spectral graph to inspire the smoothness of the source classifier C. Using our proposed
Dual-GD-DDAN, the conditional entropyH (C, GS , GT ) is defined as:

H (C, GS , GT ) = Ex∼PS [−C (GS (x)) log [C (GS (x))]] + Ex∼PS [− [1− C (GS (x))] log [1− C (GS (x))]]

+ Ex∼PT [−C (GT (x)) log [C (GT (x))]] + Ex∼PT [− [1− C (GT (x))] log [1− C (GT (x))]]

Let SG = (V, E) where the set of vertices V = S ∪ T be the spectral graph defined as in (Nguyen
et al., 2019). The smoothness-inspired term is defined as:

S (C, GS , GT ) =
∑

(u,v)∈E

µuvKL (Bu, Bv) =
∑

(u,v)∈E

µuv

[
C (u) log

C (u)

C (v)
+ (1− C (u)) log

1− C (u)

1− C (v)

]

where Bu specifies the Bernoulli distribution with P (y = 1 | u) = C (u) and P (y = −1 | u) =

1 − C (u). The weight µuv = exp
{
−‖u− v‖2 /

(
2σ2
)}

, and KL (Bu, Bv) specifies the

Kullback-Leibler divergence between two distributions. Here we note that u = GS
(
xS
)

and
v = GT

(
xT
)

are two representations of the source sample xS and the target sample xT in the
joint space. We incorporate these two terms into our Dual Generator-Discriminator mechanism to
propose Dual Generator-Discriminator Semi-supervised Deep Code Domain Adaptation Network
(Dual-GD-SDDAN) with the following objective function:

1

NS

NS∑
i=1

`
(
C
(
GS

(
xS

i

))
, yi
)
+ αM (GS , GT ) + βK (GS , GT ) + γH (C, GS , GT ) + λS (C, GS , GT )

where γ, λ are two non-negative parameters.

4 EXPERIMENTS

We present experimental results of applying our Dual-GD-DDAN approach to five real-world soft-
ware projects (Lin et al., 2018). We compare our proposed Dual-GD-DDAN with VulDeePecker
without domain adaptation, MMD, D2GAN, DIRT-T and DDAN using the architecture CDAN pro-
posed in (Nguyen et al., 2019). We further compare our proposed Dual Generator-Discriminator
Semi-supervised Deep Code Domain Adaptation (Dual-GD-SDDAN) and Semi-supervised Deep
Code Domain Adaptation (SCDAN) introduced in (Nguyen et al., 2019).

4.1 EXPERIMENTAL SETUP

4.1.1 EXPERIMENTAL DATA SET

We use the real-world data sets collected by (Lin et al., 2018), which contain the source code of
vulnerable and non-vulnerable functions obtained from five real-world software projects, namely
FFmpeg (#vul-funcs: 187, #non-vul-funcs: 5,427), LibTIFF (#vul-funcs: 81, #non-vul-funcs: 695),
LibPNG (#vul-funcs: 43, #non-vul-funcs: 551), VLC (#vul-funcs: 25, #non-vul-funcs: 5,548) and
Pidgin (#vul-funcs: 42, #non-vul-funcs: 8,268) where #vul-funcs and #non-vul-funcs is the number
of vulnerable and non-vulnerable functions respectively. The data sets contain both multimedia
(FFmpeg, VLC, Pidgin) and image (LibPNG, LibTIFF) application categories. In our experiment,
some of the data sets from the multimedia category were used as the source domain whilst other
data sets from the image category were used as the target domain (see Table 1).

4.1.2 MODEL CONFIGURATION

For training the eight methods – VulDeePecker, MMD, D2GAN, DIRT-T, DDAN, Dual-GD-DDAN,
SCDAN and Dual-GD-SDDAN – we use one-layer bidirectional recurrent neural networks with
LSTM cells where the size of hidden states is in {128, 256} for the generators. For the source
classifier and discriminators, we use deep feed-forward neural networks with two hidden layers
in which the size of each hidden layer is in {200, 300}. We embed the opcode and statement
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information in the {150, 150} dimensional embedding spaces respectively. We employ the Adam
optimizer (Kingma & Ba, 2014) with an initial learning rate in {0.001, 0.0001}. The mini-batch size
is 64. The trade-off parameters α, β, γ, λ are in {10−1, 10−2, 10−3}, θ is in {0, 1} and 1/(2σ2) is
in {2−10, 2−9}.
We split the data of the source domain into two random partitions containing 80% for training
and 20% for validation. We also split the data of the target domain into two random partitions.
The first partition contains 80% for training the models of VulDeePecker, MMD, D2GAN, DIRT-
T, DDAN, Dual-GD-DDAN, SCDAN and Dual-GD-SDDAN without using any label information
while the second partition contains 20% for testing the models. We additionally apply gradient
clipping regularization to prevent over-fitting in the training process of each model. We implement
eight mentioned methods in Python using Tensorflow which is an open-source software library for
Machine Intelligence developed by the Google Brain Team. We run our experiments on a computer
with an Intel Xeon Processor E5-1660 which had 8 cores at 3.0 GHz and 128 GB of RAM. For each
method, we run the experiments 5 times and then record the average predictive performance.

4.2 EXPERIMENTAL RESULTS

4.2.1 CODE DOMAIN ADAPTATION FOR A FULLY NON-LABELED TARGET PROJECT

Quantitative Results We first investigate the performance of our proposed Dual-GD-DDAN com-
pared with other methods including VulDeePecker (VULD) without domain adaptation (Li et al.,
2016), DDAN (Nguyen et al., 2019), MMD (Long et al., 2015), D2GAN (Nguyen et al., 2017) and
DIRT-T (Shu et al., 2018) with VAP applied in the joint feature layer using the architecture CDAN
introduced in (Nguyen et al., 2019). The VulDeePecker method is only trained on the source data
and then tested on the target data, while the MMD, D2GAN, DIRT-T, DDAN and Dual-GD-DDAN
methods employ the target data without using any label information for domain adaptation.

Table 1: Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall,
Precision and F1-measure of VulDeePecker (VULD), MMD, D2GAN, DIRT-T, DDAN and Dual-
GD-DDAN for predicting vulnerable and non-vulnerable code functions on the testing set of the
target domain (Best performance in bold).

Source→ Target Methods FNR FPR Recall Precision F1-measure

Pidgin→ LibPNG

VULD 42.86% 1.08% 57.14% 80% 66.67%
MMD 37.50% 0% 62.50% 100% 76.92%

D2GAN 33.33% 1.06% 66.67% 80% 72.73%
DIRT-T 33.33% 1.06% 66.67% 80% 72.73%
DDAN 37.50% 0% 62.50% 100% 76.92%

Dual-GD-DDAN 33.33% 0% 66.67% 100% 80%

FFmpeg→ LibTIFF

VULD 43.75% 6.72% 56.25% 50% 52.94%
MMD 28.57% 12.79% 71.43% 47.62% 57.14%

D2GAN 30.77% 6.97% 69.23% 64.29% 66.67%
DIRT-T 25% 9.09% 75% 52.94% 62.07%
DDAN 35.71% 6.98% 64.29% 60% 62.07%

Dual-GD-DDAN 12.5% 8.2% 87.5% 56% 68.29%

FFmpeg→ LibPNG

VULD 25% 2.17% 75% 75% 75%
MMD 12.5% 3.26% 87.5% 70% 77.78%

D2GAN 14.29% 2.17% 85.71% 75% 80%
DIRT-T 15.11% 2.2% 84.89% 80% 84.21%
DDAN 0% 3.26% 100% 72.73% 84.21%

Dual-GD-DDAN 0% 2.17% 100% 80% 88.89%

VLC→ LibPNG

VULD 57.14% 1.08% 42.86% 75% 54.55%
MMD 45% 4.35% 55% 60% 66.67%

D2GAN 28.57% 4.3% 71.43% 55.56% 62.5%
DIRT-T 50% 1.09% 50% 80% 61.54%
DDAN 33.33% 2.20% 66.67% 75% 70.59%

Dual-GD-DDAN 28.57% 2.15% 71.43% 71.43% 71.43%

Pidgin→ LibTIFF

VULD 35.29% 8.27% 64.71% 50% 56.41%
MMD 30.18% 12.35% 69.82% 50% 58.27%

D2GAN 40% 7.95% 60% 60% 60%
DIRT-T 38.46% 8.05% 61.54% 53.33% 57.14%
DDAN 27.27% 8.99% 72.73% 50% 59.26%

Dual-GD-DDAN 29.41% 6.76% 70.59% 57.14% 63.16%

In Table 1, the experimental results show that our proposed Dual-GD-DDAN achieves a higher per-
formance for detecting vulnerable and non-vulnerable functions for most performance measures,
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including FNR, FPR, Recall, Precision and F1-measure in almost cases of the source and target
domains, especially for F1-measure. Particularly, our Dual-GD-DDAN always obtains the highest
F1-measure in all cases. For example, for the case of the source domain (FFmpeg) and target do-
main (LibPNG), Dual-GD-DDAN achieves an F1-measure of 88.89% compared with an F1-measure
of 84.21%, 84.21%, 80%, 77.78% and 75% obtained with DDAN, DIRT-T, D2GAN, MMD and
VulDeePecker respectively.

Table 2: Accuracies obtained by the DDAN and Dual-GD-DDAN methods when predicting vulner-
able and non-vulnerable code functions on the source and target domains. Note that tr src, ts tar, tr
tar, ts src, and acc gap are the shorthands of train source, test target, train target, test source, and
accuracy gap respectively. For the accuracy gap, a smaller value is better.

Source→ Target Methods Accuracy Accuracy
Tr src / Ts tar/acc gap Tr tar / Ts src/ acc gap

Pidgin→ LibPNG DDAN 98.8% 96% 2.8% 97% 92% 5%
Dual-GD-DDAN 99% 97% 2% 97% 95% 2%

FFmpeg→ LibPNG
Methods Accuracy Accuracy

Tr src / Ts tar/acc gap Tr tar / Te src/acc gap
DDAN 95.9% 92% 3.9% 91% 83.3% 7.7%

Dual-GD-DDAN 97% 96% 1% 98% 95.6% 2.4%

4.2.2 BOUNDARY DISTORTION ANALYSIS

Quantitative Results To quantitatively demonstrate the efficiency of our proposed Dual-GD-
DDAN in alleviating the boundary distortion problem caused by using the GAN principle, we reuse
the experimental setting in Section 5.2 (Santurkar et al., 2018). The basic idea is, given two data
sets S1 and S2, to quantify the degree of cover of these two data sets. We train a classifier C1 on S1,
then test on S2 and another classifier C2 on S2, then test on S1. If these two data sets cover each
other well with reduced boundary distortion, we expect that if C1 predicts well on S1, then it should
predict well on S2 and vice versa if C2 predicts well on S2, then it should predict well on S1. This
would seem reasonable since if boundary distortion occurs (i.e., assume that S2 partly covers S1),
then C2 trained on S2 would struggle to predict S1 well which is much larger and possibly more
complex. Therefore, we can utilize the magnitude of the accuracies and the accuracy gap of C1 and
C2 when predicting their training and testing sets to assess the severity of the boundary distortion
problem.

Figure 3: A 2D t-SNE projection for the case of the FFmpeg→ LibPNG domain adaptation. The
blue and red points represent the source and target domains in the joint space respectively. In both
cases of the source and target domains, data points labeled 0 stand for non-vulnerable samples and
data points labeled 1 stand for vulnerable samples.

Inspired by this observation, we compare our Dual-GD-DDAN with DDAN using the representa-
tions of the source and target samples in the joint feature space corresponding to their best models.
In particular, for a given pair of source and target data sets and for comparing each method, we train
a neural network classifier on the best representations of the source data set in the joint space, then
predict on the source and target data set and do the same but swap the role of the source and target
data sets. We then measure the difference of the corresponding accuracies as a means of measuring
the severity of the boundary distortion. We choose to conduct such a boundary distortion analysis
for two pairs of the source (FFmpeg and Pidgin) and target (LibPNG) domains. As shown in Table 2,
all gaps obtained by our Dual-GD-DDAN are always smaller than those obtained by DDAN, while
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the accuracies obtained by our proposed method are always larger. We can therefore conclude that
our Dual-GD-DDAN method produces a better representation for source and target samples in the
joint space and is less susceptible to boundary distortion compared with the DDAN method.

Visualization We further demonstrate the efficiency of our proposed Dual-GD-DDAN in alleviat-
ing the boundary distortion problem caused by using the GAN principle. Using a t-SNE (Laurens &
Geoffrey, 2008) projection, with perplexity equal to 30, we visualize the feature distributions of the
source and target domains in the joint space. Specifically, we project the source and target data in
the joint space (i.e., G (x)) into a 2D space with domain adaptation (DDAN) and with dual-domain
adaptation (Dual-GD-DDAN). In Figure 3, we observe these cases when performing domain adapta-
tion from a software project (FFmpeg) to another (LibPNG). As shown in Figure 3, with undertaking
domain adaptation (DDAN, the left figure) and dual-domain adaptation (Dual-GD-DDAN, the right
figure), the source and target data sampled are intermingled especially for Dual-GD-DDAN. How-
ever, it can be observed that DDAN when solely applying the GAN is seriously vulnerable to the
boundary distortion issue. In particular, in the clusters/data modes 2, 3 and 4 (the left figure), the
boundary distortion issue occurs since the blue data only partly cover the corresponding red ones
(i.e., the source and target data do not totally mix up). Meanwhile, for our Dual-GD-DDAN, the
boundary distortion issue is much less vulnerable, and the mixing-up level of source and target data
is significantly higher in each cluster/data mode.

4.2.3 QUANTITATIVE RESULTS OF DUAL GENERATOR-DISCRIMINATOR SEMI-SUPERVISED
DEEP CODE DOMAIN ADAPTATION

In this section, we compare the performance of our Dual Generator-Discriminator Semi-supervised
Deep Code Domain Adaptation (Dual-GD-SDDAN) with Semi-supervised Deep Code Domain
Adaptation (SCDAN) (Nguyen et al., 2019) on four pairs of source and target domain including
FFmpeg→ LibTIFF, FFmpeg→ LibPNG, VLC→ LibPNG and Pidgin→ LibTIFF. In Table 3, the
experimental results show that our Dual-GD-SDDAN achieves a higher performance than SCDAN
for detecting vulnerable and non-vulnerable functions in terms of FPR, Precision and F1-measure
in almost cases of the source and target domains, especially for F1-measure. For example, to the
case of the source domain (VLC) and target domain (LibPNG), our Dual-GD-SDDAN achieves an
F1-measure of 76.19% compared with an F1-measure of 72.73% obtained with SCDAN. These re-
sults further demonstrate the ability of our Dual-GD-SDDAN for dealing with the mode collapsing
problem better than SCDAN (Nguyen et al., 2019), hence obtaining better predictive performance
in the context of software domain adaptation.

Table 3: Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall,
Precision and F1-measure of SCDAN and Dual-GD-SDDAN for predicting vulnerable and non-
vulnerable code functions on the testing set of the target domain (Best performance in bold).

Source→ Target Methods FPR FNR Recall Precision F1-measure

FFmpeg→ LibTIFF SCDAN 5.38% 14.29% 85.71% 57.14% 68.57%
Dual-GD-SDDAN 3.01% 35.29% 64.71% 73.33% 68.75%

FFmpeg→ LibPNG SCDAN 1.08% 12.5% 87.5% 87.5% 87.5%
Dual-GD-SDDAN 0% 17.5% 82.5% 100% 90.41%

VLC→ LibPNG SCDAN 1.06% 33.33% 66.67% 80% 72.73%
Dual-GD-SDDAN 4.39% 11.11% 88.89% 66.67% 76.19%

Pidgin→ LibTIFF SCDAN 5.56% 30% 70% 58.33% 63.64%
Dual-GD-SDDAN 2.98% 37.5% 62.5% 71.43% 66.67%

5 CONCLUSION

Software vulnerability detection (SVD) is an important problem in the software industry and in the
field of computer security. One of the most crucial issues in SVD is to cope with the scarcity of
labeled vulnerabilities in projects that require the laborious labeling of code by software security ex-
perts. In this paper, we propose the Dual Generator-Discriminator Deep Code Domain Adaptation
Network (Dual-GD-DDAN) method to deal with the missing mode and boundary distortion prob-
lems which arise from the use of the GAN principle when reducing the discrepancy between source
and target data in the joint space. We conducted experiments to compare our Dual-GD-DDAN
method with the state-of-the-art baselines. The experimental results show that our proposed method
outperforms these rival baselines by a wide margin in term of predictive performances.
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A MOTIVATING EXAMPLE

We give an example of source code functions obtained from the VLC and LibPNG projects, to
demonstrate that transfer learning for software vulnerability detection between different projects is
plausible and promising. Both C language functions obtained from the VLC and LibPNG projects
depicted in Figure 4 invoke the memcpy function which is used to copy one memory buffer to
another. The misuse of this function can cause a buffer overflow error if insufficient memory is
allocated in the target buffer for all of the data to be copied from the source buffer. Furthermore,
these functions also share rather similar semantic and syntactic relationships (i.e. the C language
programming syntax, loop structure etc). Therefore, a model that can capture the characteristics of
the first function in the first project should be able to confidently predict the second function in the
second project. It therefore makes sense to undertake transfer learning from the first project to the
second project.

Figure 4: An example of two source code functions (with some parts omitted for brevity) in the
C programming language obtained from the VLC (Left) and LibPNG project (Right). These two
source code examples highlight the same vulnerability due to the misuse of the memcpy function.

B RELATED WORK

In this section, we introduce work related to ours. First, we present the recent work in automatic
feature learning for software vulnerability detection. Finally, we present the recent work in deep
domain adaptation.

Automatic feature learning in software vulnerability detection minimizes intervention from security
experts (Li et al., 2018; Lin et al., 2018; Dam et al., 2018). Particularly, (Dam et al., 2018; Lin
et al., 2018) shared the same approach employing a Recurrent Neutral Network (RNN) to transform
sequences of code tokens to vectorial features for automatic feature learning, which are then fed
to a separate classifier (e.g., Support Vector Machine (Cortes & Vapnik, 1995) or Random Forest
(Breiman, 2001)) for classification purposes. However, owing to the independence of learning the
vector representations and training the classifier, it is likely that the resulting vector representations
of (Lin et al., 2018; Dam et al., 2018) may not fit well with classifiers to enhance the predictive per-
formance. To deal with this problem, the study introduced in (Li et al., 2018) combined the learning
of the vector representations and the training of a classifier in a deep neural network. This work
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leverages a bidirectional RNN to take sequential data as inputs and the outputs from the bidirec-
tional RNN are then fed to a deep feed-forward neural network for prediction.

Deep domain adaptation aims to bridge the gap between the source and target domains in a joint
space (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Shu et al., 2018; French et al., 2018). These
methods try to minimize a divergence (e.g., Jensen-Shannon divergence, f -divergence, maximum
mean discrepancy (MMD), or Wasserstein distance) between the source and target distributions in
the joint space. For instance, (Ganin & Lempitsky, 2015; Tzeng et al., 2015; Long et al., 2015;
Shu et al., 2018; French et al., 2018) minimize the Jensen-Shannon divergence between two relevant
distributions relying on the GAN principle (Goodfellow et al., 2014), while (Long et al., 2015)
minimizes the MMD and the work of (Courty et al., 2017) minimizes the Wasserstein distance
between two relevant distributions. The study proposed in (Nguyen et al., 2017) relies on the GAN
principle with using two discriminators aiming to tackle the problem of mode collapse encountered
in generative adversarial networks (GANs). In addition, most of aforementioned works proposed to
transfer a pretrained model on the data set ImageNet (Deng et al., 2009) to other image sources. The
work of (Purushotham et al., 2017) proposed to apply deep domain adaptation for multivariate time-
series data. This work based on the Variational RNN (Chung et al., 2015) and the GAN principle
was applied on the latent representation. Recently, relying on the GAN principle (Goodfellow et al.,
2014), the work of (Nguyen et al., 2019) proposed to tackle sequential inputs, particularly source
code, in software domain adaptation. The underlying idea is to use the GAN principle to close the
gap between the source and target domains in the joint space and enforce the clustering assumption
to utilize the information of unlabeled target samples in a semi-supervised learning context.

Leveraging semi-supervised learning with domain adaptation has been studied in shallow domain
adaptation (Kumar et al., 2010; Yao et al., 2015). DIRT-T (Shu et al., 2018) leveraged semi-
supervised context by enforcing the clustering assumption via minimizing the conditional entropy
and using virtual adversarial perturbation (VAP) (Miyato et al., 2018) to impose by smoothness over
the decision output. Another work of (Nguyen et al., 2019) proposed to leverage semi-supervised
context by enforcing the clustering assumption via minimizing the conditional entropy and manifold
regularization with spectral graph which was proven to be more appropriate to discrete sequential
data like source codes.
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