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ABSTRACT

Recommendation is a prevalent application of machine learning that affects many
users; therefore, it is crucial for recommender models to be accurate and inter-
pretable. In this work, we propose a method to both interpret and augment the
predictions of black-box recommender systems. In particular, we propose to ex-
tract feature interaction interpretations from a source recommender model and
explicitly encode these interactions in a target recommender model, where both
source and target models are black-boxes. By not assuming the structure of the
recommender system, our approach can be used in general settings. In our ex-
periments, we focus on a prominent use of machine learning recommendation:
ad-click prediction. We found that our interaction interpretations are both in-
formative and predictive, i.e., significantly outperforming existing recommender
models. What’s more, the same approach to interpreting interactions can provide
new insights into domains even beyond recommendation.

1 INTRODUCTION

Despite their impact on users, state-of-the-art recommender systems are becoming increasingly in-
scrutable. For example, the models that predict if a user will click on an online advertisement are
often based on function approximators that contain complex components in order to achieve optimal
recommendation accuracy. The complex components come in the form of modules for better learn-
ing relationships between features, such as interactions between user and ad features (Cheng et al.,
2016; Guo et al., 2017; Wang et al., 2017; Lian et al., 2018; Song et al., 2018). Although efforts
have been made to understand the feature relationships, there is still no method that can interpret
the feature interactions learned by a generic recommender system, nor is there a strong commercial
incentive to do so.

In this work, we identify and leverage feature interactions that represent how a recommender system
generally behaves. We propose a novel approach, Global Interaction Detection and Encoding for
Recommendation (GLIDER), which detects feature interactions that span globally across multiple
data-instances from a source recommender model, then explicitly encodes the interactions in a target
recommender model, both of which can be black-boxes. GLIDER achieves this by first utilizing
feature interaction detection with a data-instance level interpretation method called LIME (Ribeiro
et al., 2016) over a batch of data samples. GLIDER then explicitly encodes the collected global
interactions into a target model via sparse feature crossing.

In our experiments on ad-click recommendation, we found that the interpretations generated by
GLIDER are informative, and the detected global interactions can significantly improve the tar-
get model’s prediction performance, even in a setting where the source and target models are the
same. Because our interaction interpretation method is very general, we also show that interpreta-
tion interpretations are informative in domains outside of recommendation, such as image and text
classification.

Our contributions are as follows:

1. We propose GLIDER to detect and explicitly encode global feature interactions in black-
box recommender systems.

2. Through experiments, we demonstrate the overall interpretability of detected feature inter-
actions and show that they can be leveraged to improve recommendation accuracy.
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Figure 1: A simplified overview of GLIDER. 1 GLIDER uses interaction detection and LIME
together to interpret feature interactions learned by a source black-box (recommender) model at a
data instance, denoted by the green plus sign. 2 GLIDER identifies interactions that consistently
appear over multiple data samples, then explicitly encodes these interactions in a target black-box
recommender model frec.

2 RELATED WORKS

Interaction Interpretations: A variety of methods exist to detect feature interactions learned in
specific models but not black-box models. For example, RuleFit (Friedman et al., 2008) and Ad-
ditive Groves (Sorokina et al., 2008), and Tree-Shap (Lundberg et al., 2018) detect interactions
learned in trees, and Neural Interaction Detection (Tsang et al., 2017) detects interactions learned
in a multilayer perceptron. Some methods have attempted to interpret feature groups in black-box
models, such as Anchors (Ribeiro et al., 2018), Agglomerative Contextual Decomposition (Singh
et al., 2019), and Context-Aware methods (Singla et al., 2019); however, these methods were not
intended to identify feature interactions.

Explicit Interaction Representation: There are increasingly methods for explicitly representing
interactions in models. Cheng et al. (2016), Guo et al. (2017), Wang et al. (2017), and Lian et al.
(2018) directly incorporate multiplicative cross terms in neural network architectures and Song et al.
(2018) use attention as an interaction module, all of which are intended to improve the neural net-
work’s function approximation. This line of work found that predictive performance can improve
with dedicated interaction modeling. Luo et al. (2019) followed up by detecting interactions in data
then explicitly encoding them via feature crossing. Our work approaches this problem from a model
interpretation standpoint to show that interaction interpretations are also useful in explicit encoding.

Black-Box Local vs. Global Interpretations: Data-instance level local interpretation methods are
more flexible at explaining general black-box models; however, global interpretations, which cover
multiple data instances, have become increasingly desirable to better summarize model behavior.
Locally Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) and Integrated
Gradients (Sundararajan et al., 2017) are some of most used methods to locally interpret any classi-
fier and neural predictor respectively. There are some methods for global black-box interpretations,
such as shuffle-based feature importance (Fisher et al., 2018), submodular pick (Ribeiro et al., 2016),
and visual concept extraction (Kim et al., 2018). §4.1 of this paper discusses local interaction inter-
pretations, and §4.2 explains how we extract and utilize global interaction interpretations.

3 NOTATIONS AND BACKGROUND

Notations: Vectors are represented by boldface lowercase letters, such as x or w. The i-th entry of
a vector x is denoted by xi. For a set S, its cardinality is denoted by |S|.
Let d be the number of features in a dataset. An interaction, I, is a subset of all input features:
I ⊆ {1, 2, . . . , d}, where interaction order |I| is always≥ 2. A higher-order interaction always has
order ≥ 3. For a vector x ∈ Rd, let xI ∈ R|I| be restricted to the dimensions of x specified by I.

Let a black-box model be f(·) : Rp → R. In classification tasks, we assume f is a class logit.

Feature Interactions: By definition, a model f learns a statistical (non-additive) feature interaction
I if and only if f cannot be decomposed into a sum of |I| arbitrary subfunctions δi, each not
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depending on a corresponding interaction variable (Friedman et al., 2008; Sorokina et al., 2008;
Tsang et al., 2017), i.e., f(xI) 6=

∑
i∈I δi(xI\{i}).

For example, a multiplication between two features, x1 and x2, is a feature interaction because it
cannot be represented as an addition of univariate functions, i.e., x1x2 6= δ1(x2) + δ2(x1).

Recommendation Systems: A recommender system, frec(·), is a model of two feature types: dense
numerical features and sparse categorical features. Since the one-hot encoding of categorical feature
xc can be high-dimensional, it is commonly represented in a low-dimensional embedding ec =
one hot(xc)vc via embedding matrix vc.

4 GLIDER: GLOBAL INTERACTION DETECTION AND ENCODING FOR
RECOMMENDATION

We now discuss the different components of GLIDER, starting from data-instance level (local) in-
terpretations of interactions in §4.1, then global interaction detection in §4.2, and finally explicitly
encoding the global interactions in §4.3. While our methodology is focused on recommender sys-
tems, it is not necessarily limited to this model type. Nonetheless, recommender systems are inter-
esting because they have pervasive application in real-world systems, and their features are often
very sparse. By sparse features, we mean features with many categories, e.g., millions of user IDs.
The sparsity makes interaction detection challenging especially when applied directly on raw data
because the one-hot encoding of sparse features creates an extremely large space of potential feature
combinations (Fan et al., 2015).

4.1 INTERACTION DETECTION AND LIME

LIME Perturbation and Inference: Given a data instance x ∈ Rp, LIME proposed to perturb the
data instance by sampling a separate binary representation x′ ∈ {0, 1}d of the same data instance.
Let ξ : {0, 1}d → Rp be the map from the binary representation to the perturbed data instance.
Starting from a binary vector of all ones that map to the original features values in the data instance,
LIME uniformly samples the number of random features to switch to 0 or the “off” state. In the data
instance, “off” could correspond to a 0 embedding vector for categorical features or mean value over
a batch for numerical features. It is possible for d < p by grouping features in the data instance to
correspond to single binary features in x′. A key step in LIME interpretations is obtaining black-box
predictions for the perturbed data instances to generate a dataset with binary inputs and prediction
targets: D = {(x′(i), y(i)) | y(i) = f(ξ(x′(i))),x′(i) ∈ {0, 1}d}.
Feature Interaction Detection: We use datasetD to detect feature interactions learned by the black-
box model f at data instance x. Feature interaction detection methods vary in type and capability.
For example, some methods detect feature interactions by fitting models on a dataset, and some
methods like FAST (Lou et al., 2013) directly extract interaction statistics from the data. MADEX is
agnostic to the interaction detection method used.

Because f can be an arbitrary function and can generate highly nonlinear targets in D via LIME
sampling, we focus on detecting interactions that could have generic forms. In light of this, we use a
state-of-the-art method called Neural Interaction Detection (NID), which accurately and efficiently
detects generic non-additive and arbitrary-order statistical feature interactions (Tsang et al., 2017).
NID detects these interactions by training a lasso-regularized multilayer perceptron (MLP) on a
dataset, then identifying the features that have high-magnitude weights to common hidden units.
NID is efficient by greedily testing the top-interaction candidates of every order at each of h first-
layer hidden units, enabling higher-order interaction detection in O(hd) tests within one MLP.

Scope: We can now define a function, MADEX(f,x), that inputs black-box f and data instance x, and
outputs S = {Ii}ki=1, a set of k top detected feature interactions. MADEX stands for “Model-Agnostic
Dependency Explainer”. As the name suggests, MADEX is not limited to recommender models; it can
also be used for general black-box models.

In some cases, it is necessary to identify a k threshold. Because of the importance of speed for local
interpretations, we simply use a linear regression with additional multiplicative terms to approximate
the gains given by interactions in S, where k starts at 0 and is incremented until the linear model’s
predictions stop improving.
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Algorithm 1 Global Interaction Detection in GLIDER

Input: dataset B, recommender model frec
Output: G = {(Ii, ci)}: global interactions Ii and their counts ci over the dataset

1: G ← initialize occurrence dictionary for global interactions
2: for each data sample x within dataset B do
3: S ← MADEX(frec,x)
4: G ← increment the occurrence count of Ij ∈ S, ∀j = 1, 2, . . . , |S|
5: sort G by most frequently occurring interactions
6: [optional] prune subset interactions in G within a target number of interactions K

4.2 GLOBAL INTERACTION DETECTION

In this section, we discuss the first step of GLIDER. As defined in §4.1, MADEX takes as input a
black-box model f and data instance x. In the context of this section, MADEX inputs a recommender
system frec and data instance x = [x1, x2, . . . , xd]. xi is the i-th feature field and is either a dense or
sparse feature. d is both the total number of feature fields and the number of perturbation variables.
We define global interaction detection as repeatedly running MADEX over a batch of data instances,
then counting the occurrences of the same detected interactions, shown in Alg. 1. The occurrence
counts are not only a useful way to rank global interaction detections, but also a sanity check to rule
out the chance that the detected feature combinations are random selections.

One potential concern with Alg. 1 is that it could be slow depending on the speed of MADEX. In
our experiments, the entire process took less than 3 hours when run in serial over a batch of 1000
samples with ∼ 40 features on a 32-CPU server. In addition, this algorithm is fully parallelizable
and only needs to be run once to obtain the summary of global interactions.

4.3 TRUNCATED FEATURE CROSSES

In order to explicitly encode a global interaction I in a black-box frec, we use feature crossing
on sparse features to generate a synthetic sparse feature representing I. This synthetic feature is
sometimes called a cross feature (Wang et al., 2017; Luo et al., 2019) or conjunction feature (Rosales
et al., 2012; Chapelle et al., 2015). If the interaction I involves dense features, we bucketize the
dense features before crossing them.

In this context, a cross feature is an n-ary Cartesian product between n sparse features. If we denote
X1, X2, . . . , Xn as the set of IDs for each respective feature x1, x2, . . . , xn, then their cross feature
takes on all possible values in

X1 × · · · ×Xn = {(x1, . . . , xn) | xi ∈ Xi,∀i = 1, . . . , n}

Accordingly, the cardinality of this cross feature is |X1|×· · ·×|Xn| and can be extremely large, yet
many combinations of values in the cross feature are likely unseen in the training data. Therefore,
we generate a truncated form of the cross feature with only seen combinations of values, x(i)

I , where
i is a sample index in the training data, and x

(i)
I is represented as a sparse ID in the cross feature.

We further reduce the cardinality by requiring the same cross feature ID to occur more that T times
in a batch of samples, or set to a default ID otherwise. These truncation steps significantly reduce
the embedding sizes of each cross feature while maintaining their representation power. Once cross
features are included in frec, it can be trained just like the original frec.

4.4 MODEL DISTILLATION VS. ENHANCEMENT

There are dual perspectives of GLIDER: as a method for model distillation or model enhancement.
If a strong reference model is used to detect global interactions which are then encoded in more
resource-constrained target models, then GLIDER adopts a teacher-student type distillation process.
If interaction encoding augments the same model where the interactions were detected from, then
GLIDER tries to enhance the model’s ability to represent the interactions. It is simple to use GLIDER
for either approach - the only factor being which model is augmented.
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Figure 2: Occurrence counts / 1000 vs.
rank of detected interactions from AutoInt
on Criteo and Avazu datasets

Table 2: Detected global interactions from the Au-
toInt baseline on Avazu data. “C14” is an anony-
mous feature.

Rank Count /
1000 Interaction

1 423 {hour, device ip}
2 126 {hour, site id}
3 85 {site id, C14}
4 54 {site id, site domain}
5 44 {hour, site id, device ip}
6 44 {app id, C14}
7 40 {site domain, device ip}
8 40 {hour, device id}
9 28 {app id, device conn type}
10 28 {site id, device model}

5 EXPERIMENTS

5.1 SETUP

In our experiments, we study the effectiveness of GLIDER on real-world data. The hyperparameters
for local interaction interpretation in our experiments are as follows. For all experiments, we use
5000 perturbation samples to train the models used for interaction detection. We use NID as the
interaction detector, which requires training an MLP to detect each set of interactions. The MLPs
for §5.3 have architectures of 50-30-10 first-to-last hidden layer sizes, and in §5.2, architectures of
256-128-64. We apply an `1 regularization of λ1 = 5e−5, and the learning rate is 5e−3. In general,
models are trained with early stopping on the validation set.

For LIME perturbations, we need to establish what a binary 0 maps to via ξ in the raw data instance
(§4.1). In domains involving embeddings, i.e., sparse features and word embeddings, the 0 (“off”)
state is the zeroed embedding vector. For dense features, it is the mean feature value over a batch;
for images, the mean of each RGB of the image. For our DNA experiment, we use a random nu-
cleotide other than the original one. These settings correspond to what is used in literature (Ribeiro
et al., 2016; 2018). In our graph experiment, the nodes within the neighborhood of a test node are
perturbed, where each node is zeroed during perturbation.

5.2 EXPERIMENTS ON CTR RECOMMENDATION

Table 1: CTR dataset statistics

Dataset # Samples # Features Total # Sparse IDs

Criteo 45, 840, 617 39 998, 960
Avazu 40, 428, 967 23 1, 544, 428

In this section, we provide experiments
with GLIDER on models trained for click-
through-rate (CTR) prediction. The rec-
ommender models we study include com-
monly reported baselines, which all use
neural networks: Wide&Deep (Cheng
et al., 2016), DeepFM (Guo et al.,
2017), Deep&Cross (Wang et al., 2017),
xDeepFM (Lian et al., 2018), and AutoInt (Song et al., 2018).

AutoInt is the reported state-of-the-art in academic literature, so we use the model settings and data
splits provided by AutoInt’s official public repository1. For all other recommender models, we use
public implementations2 with the same original architectures reported in literature, set all embedding
sizes to 16, and tune the learning rate and optimizer to try to reach or surpass the test logloss reported
by the AutoInt paper (on AutoInt’s data splits). From tuning, we use the Adagrad optimizer (Duchi
et al., 2011) with learning rates in {0.01, 0.001}.
The datasets we use are benchmark CTR datasets with the largest number of features: Criteo3 and
Avazu4, whose data statistics are shown in Table 1. Criteo and Avazu both contain 40+ millions
of user records on clicking ads, with Criteo being the primary benchmark in CTR research (Cheng

1https://github.com/shichence/AutoInt
2https://github.com/shenweichen/DeepCTR
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.kaggle.com/c/avazu-ctr-prediction
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Table 3: Test prediction performance by encoding top-K global interactions in baseline recom-
mender systems on the Criteo and Avazu datasets. K are 40 and 20 for Criteo and Avazu respec-
tively. “+ GLIDER” means the inclusion of detected global interactions to corresponding baselines.
The “Setting” column is labeled relative to the source of detected interactions: AutoInt.

Setting Model Criteo Avazu

AUC logloss AUC logloss

Distillation Wide&Deep 0.8069 0.4447 0.7714 0.3859
+ GLIDER 0.8080 0.4439 0.7734 0.3847

DeepFM 0.8081 0.4435 0.7761 0.3864
+ GLIDER 0.8092 0.4425 0.7770 0.3853

Deep&Cross 0.8076 0.4440 0.7770 0.3844
+ GLIDER 0.8080 0.4436 0.7778 0.3826

xDeepFM 0.8079 0.4441 0.7769 0.3835
+ GLIDER 0.8093 0.4425 0.7773 0.3828

Enhancement AutoInt 0.8083 0.4434 0.7774 0.3811
+ GLIDER 0.8093 0.4424 0.7773 0.3811

Table 4: # parameters of the models in Table 3.
M denotes million.

Model Criteo Avazu

Wide&Deep 18.1M 27.3M
+ GLIDER 19.1M (+5.6%) 27.8M (+2.0%)

DeepFM 17.5M 26.7M
+ GLIDER 18.1M (+3.5%) 27.1M (+1.3%)

Deep&Cross 17.5M 26.1M
+ GLIDER 18.7M (+6.8%) 26.7M (+2.0%)

xDeepFM 18.5M 27.6M
+ GLIDER 21.6M (+16.9%) 29.0M (+5.1%)

AutoInt 16.4M 25.1M
+ GLIDER 17.2M (+4.9%) 25.2M (+0.5%)
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Figure 3: Test logloss vs. K of AutoInt
on the Criteo dataset. Results over 5 tri-
als are shown.

et al., 2016; Guo et al., 2017; Wang et al., 2017; Lian et al., 2018; Song et al., 2018; Luo et al.,
2019).

5.2.1 GLOBAL INTERACTION DETECTION

For each dataset, we train a baseline AutoInt model, frec, then run global interaction detection via
Algorithm 1 on a batch of 1000 samples from the validation set. A full global detection experiment
finishes between 2-3 hours when run in serial on either Criteo or Avazu datasets in a 32-CPU Intel
Xeon E5-2640 v2 @ 2.00GHz server, and significant speed-ups can be achieved by fully paralleliz-
ing Algorithm 1. The detection results across datasets are shown in Figure 2 as plots of detection
counts versus rank. Because the Avazu dataset contains non-anonymized features, we directly show
its top-10 detected global interactions in Table 2.

From Figures 2, we see that the top interactions are detected very frequently across data instances,
once appearing across more than half of the batch. In Table 2, the top-interactions can be explained.
For example, the interaction between “hour” (in UTC time) and “device ip” makes sense because
users - here identified by an IP address - have ad-click behaviors dependent on their time zones. We
hypothesize that the global interaction detections are also informative for modeling purposes.

5.2.2 INTERACTION ENCODING

Based on our results from the previous section (§5.2.1), we turn our attention to explicitly encoding
the detected global interactions via truncated feature crosses (detailed in §4.3). In order to generate
valid cross feature IDs, we bucketize dense features into a maximum of 100 bins before crossing
them and require that final cross feature IDs occur more than T = 100 times over a training batch
of one million samples.

We take AutoInt’s top-K global interactions on each dataset from §5.2.1 with subset interactions
excluded (Algorithm 1, line 6) and encode the interactions in each baseline model including AutoInt
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Table 5: Prediction performance (mean-squared error; lower is better) with (k > 0) and without
(k = 0) interactions for random data instances in the test sets of respective black-box models.
k = L corresponds to the interaction at a rank threshold. 2 ≤ k < L are excluded because not all
instances have 2 or more interactions. Only results with detected interactions are shown. At least
80% (≥ 320) of the data instances possessed interactions over 10 trials for each model/performance
statistic.

k DNA-CNN Sentiment-LSTM ResNet152 GCN

linear LIME 0 9.8e−3± 9e−4 0.101± 7e−3 0.25± 0.07 0.080± 3.0e−4
MADEX 1 8e−3± 1e−3 0.056± 9e−3 0.22± 0.06 0.062± 8.1e−3
MADEX L 6e−3± 1e−3 0.024± 7e−3 0.16± 0.05 0.038± 9.6e−3

itself. There is consensus that 0.001 logloss or AUC improvements are significant in CTR predic-
tion tasks (Cheng et al., 2016; Guo et al., 2017; Wang et al., 2017; Song et al., 2018). K is tuned on
valiation sets, and model hyperparameters are the same between a baseline and one with encoded
interactions. We set K = 40 for Criteo and K = 20 for Avazu.

We found that using GLIDER can often reach or exceed the 0.001 significance level, especially for
the main Criteo benchmark dataset, as shown in Table 3. These performance gains are obtained at
limited increases in model parameters, which are shown in Table 4. The limited extra parameters
was made possible by the truncations applied to our feature crosses. In Figure 3, we also show how
the test performance of AutoInt varies with different K on the Criteo dataset.

One one hand, the evidence that AutoInt’s detected interactions can improve other baselines’ perfor-
mance suggests the viability of interaction distillation. On the other hand, evidence that AutoInt’s
performance on Criteo can improve using its own detected interactions suggests that AutoInt may
benefit from learning interactions more explicitly. In either model distillation or enhancement set-
tings, we found that GLIDER performs especially well on industry production models trained on
large private datasets with thousands of features.

5.3 INTERPRETATIONS ON OTHER DOMAINS

Since the proposed interaction interpretations by GLIDER are not entirely limited to recommender
systems, we demonstrate interpretations on more general black-box models. Specifically, we exper-
iment with the function MADEX(·) defined in §4.1, which inputs a black-box f , data-instance x, and
outputs a set of interactions. The models we use are trained very different tasks: ResNet152– an
image classifier pretrained on ImageNet ‘14 (Russakovsky et al., 2015; He et al., 2016), Sentiment-
LSTM– a 2-layer bi-directional long short-term memory network (LSTM) trained on the Stanford
Sentiment Treebank (SST) (Socher et al., 2013; Tai et al., 2015), DNA-CNN– a 2-layer 1D con-
volutional neural network (CNN) trained on MYC-DNA binding data (Mordelet et al., 2013; Yang
et al., 2013; Alipanahi et al., 2015; Zeng et al., 2016; Wang et al., 2018), and GCN– a 3-layer Graph
Convolutional Network trained on the Cora dataset (Kipf & Welling, 2016; Sen et al., 2008).

We first provide quantitative validation for the detected interactions of all four models in §5.3.1,
followed by qualitative results for ResNet152, Sentiment-LSTM, and DNA-CNN in §5.3.2. .

5.3.1 QUANTITATIVE

To provide quantitative validation of interaction interpretations of black-box models, we evaluate
the predictive power of the interactions at the data instance level. As suggested in §4.1 and §4.3,
encoding feature interactions is a way to increase a model’s function representation, but this also
means that prediction performance gains over simpler first-order models (e.g., linear regression) is
a way to test the significance of the detected interactions. In this section, we use neural network
function approximators for each top-interaction from the ranking {Ii} given by MADEX’s interaction
detector (in this case NID). Similar to the k-thresholding description in §4.1, we start at k = 0,
which is a linear regression, then increment k with added MLPs for each Ii among {Ii}ki=1 until
validation performance stops improving, denoted at k = L. The MLPs all have architectures of
30-10 first-to-last hidden layer sizes and use the binary perturbation dataset D (introduced in §4.1).

Test prediction performances are shown in Table 5 for k ∈ {0, 1, L}. The average number of features
of D between the black-box models ranges from 16 to 189. Our quantitative validation shows that
adding feature interactions for DNA-CNN, Sentiment-LSTM, and ResNet152, and adding node in-
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teractions for GCN result in significant performance gains when averaged over 40 randomly selected
data instances in the test set.

5.3.2 QUALITATIVE

top prediction: desktop computer

Original image LIME selection MADEX 1 MADEX 2 MADEX 3

top prediction: football helmet

top prediction: entertainment center

top prediction: loupe, jeweler's loupe

(a) ResNet152 interpretations

Original sentence predi-
ction LIME selection

MADEX

I1 I2
The film is really
not so much bad

as bland.
neg. the, so, much,

bad, bland
film, not, bad,

bland

A very average
science fiction

film.
neg. very, average science, fiction a, very,

average

I like Frank
the pug, though. pos. I, Frank,

the, pug I, like, pug

(b) Sentiment-LSTM interpretations

Figure 4: Qualitative results of the detected interactions by
MADEX and the selected features by LIME’s original linear
regression (“LIME selection”) on (a) ResNet152 and (b)
Sentiment-LSTM. The interpretations between MADEX and
LIME selection are complementary.
.

For our qualitative analysis, we pro-
vide interaction interpretations via
MADEX(·) of ResNet152, Sentiment-
LSTM, and DNA-CNN on test exam-
ples. The interpreations are given by
S = {Ii}ki=1, a set of k detected in-
teractions, where are shown in Fig-
ures 4a and 4b for ResNet152 and
Sentiment-LSTM respectively. In-
teractions that have majority over-
lap among S are merged, i.e., over-
lap coefficient > 0.5 (Vijaymeena
& Kavitha, 2016). For reference,
we also show the selected features
by LIME’s original linear regression,
which takes the top-5 features that at-
tribute towards the predicted class5.

In Figure 4a, the MADEX columns
show selected features from the de-
tected interactions between Quick-
shift superpixels (Vedaldi & Soatto,
2008; Ribeiro et al., 2016). We see
that the interactions can form a single
region or multiple regions of the im-
age, and they are complementary to
LIME’s feature selection. For exam-
ple, the interpretations of the “deskop
computer” classification show that
interaction detection finds one of the
computers and feature selection finds
the other. For Sentiment-LSTM in-
terpretations in Figure 4b, we also see
that MADEX’s interactions can comple-
ment LIME’s selected features. Here,
the interactions show salient combi-
nations of words, such as “science
fiction” and “I like pug”.

In our experiments on DNA-CNN, we consistently detected the interaction between “CACGTG”
nucleotides, which form a canonical DNA sequence (Staiger et al., 1989). The interaction was
detected 76.5% out of 187 CACGTG appearances in the test set.

6 CONCLUSION

We proposed GLIDER that detects and explicitly encodes global feature interactions in black-box
recommender systems. In our experiments, we found that the detected global interactions are infor-
mative and that explicitly encoding interactions can improve the accuracy of CTR predictions. We
further validated interaction interpretations on image, text, and graph classifiers. We hope GLIDER
encourages investigation into the complex interaction behaviors of recommender models to under-
stand why certain feature interactions are very predictive. For future research, we wish to understand
how feature interactions play a role in the integrity of automatic recommendations.

5Based on LIME’s official code: https://github.com/marcotcr/lime
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A EFFECT OF EXTRA PARAMETERS BY INTERACTION ENCODINGS VS.
ENLARGED EMBEDDINGS

In this section, we study whether increasing embedding size can obtain similar prediction perfor-
mance gains as explicitly encoding interactions via GLIDER. We increase the embedding dimension
sizes of every sparse feature in baseline recommender models to match the total number of model
parameters of baseline + GLIDER as close as possible. The embedding sizes we used to obtain
similar parameter counts are shown in Table 6. For the Avazu dataset, most of the embedding sizes
remain unchanged because they were already the target size. The corresponding prediction perfor-
mances of all models are shown in Table 7. We observed that directly increasing embedding size /
parameter counts generally did not give the same level of performance gains that GLIDER provided.

Table 6: Comparison of # model parameters between baseline models with enlarged embeddings
and original baselines + GLIDER (from Tables 3 and 4). The models with enlarged embeddings
are denoted by the asterick (*). The embedding dimension of sparse features is denoted by “emb.
size”. Percent differences are relative to baseline* models. M denotes million, and the ditto mark
(”) means no change in the above line.

Model Criteo Avazu

emb. size # params emb. size # params

Wide&Deep* 17 19.1M 16 27.3M
Wide&Deep 16 18.1M 16 ”
+ GLIDER 16 19.1M (−0.1%) 16 27.8M (+2.0%)

DeepFM* 17 18.5M 16 26.7M
DeepFM 16 17.5M 16 ”
+ GLIDER 16 18.1M (−2.1%) 16 27.1M (+1.3%)

Deep&Cross* 17 15.5M 16 26.1M
Deep&Cross 16 17.5M 16 ”
+ GLIDER 16 18.7M (+0.8%) 16 26.7M (+2.0%)

xDeepFM* 19 21.5M 17 29.1M
xDeepFM 16 18.5M 16 27.6M
+ GLIDER 16 21.6M (+0.5%) 16 29.0M (−0.5%)

AutoInt* 17 17.4M 16 25.1M
AutoInt 16 16.4M 16 ”
+ GLIDER 16 17.2M (−1.2%) 16 25.2M (+0.5%)

Table 7: Test prediction performance coresponding to the models shown in Table 6

Model Criteo Avazu

AUC logloss AUC logloss

Wide&Deep* 0.8074 0.4443 0.7714 0.3859
Wide&Deep 0.8069 0.4447 ” ”
+ GLIDER 0.8080 0.4439 0.7734 0.3847

DeepFM* 0.8085 0.4432 0.7761 0.3864
DeepFM 0.8081 0.4435 ” ”
+ GLIDER 0.8092 0.4425 0.7770 0.3853

Deep&Cross* 0.8081 0.3445 0.7770 0.3844
Deep&Cross 0.8076 0.4440 ” ”
+ GLIDER 0.8080 0.4436 0.7778 0.3826

xDeepFM* 0.8079 0.4439 0.7772 0.3835
xDeepFM 0.8079 0.4441 0.7769 0.3835
+ GLIDER 0.8093 0.4425 0.7773 0.3828

AutoInt* 0.8087 0.4431 0.7774 0.3811
AutoInt 0.8083 0.4434 ” ”
+ GLIDER 0.8093 0.4424 0.7773 0.3811
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B ADDITIONAL QUALITATIVE RESULTS FOR RESNET152

top prediction: bassoon

Original image LIME selection MADEX 1 MADEX 2 MADEX 3

top prediction: American black bear, black bear

top prediction: lighter, light, igniter, ignitor

top prediction: face powder

top prediction: miniskirt, mini

top prediction: feather boa, boa

top prediction: miniature schnauzer

top prediction: mouse, computer mouse

top prediction: rhinoceros beetle

top prediction: laptop, laptop computer

top prediction: shoji

top prediction: street sign

top prediction: Band Aid

top prediction: pelican

Figure 5: Additional qualitative results, following Figure 4a, on random test images in ImageNet.
Overlapping interactions with overlap coefficient ≥ 0.5 are merged to reduce |{Ii}| per test image.
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