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ABSTRACT

Learning with noisy labels is a common problem in supervised learning. Existing
approaches require practitioners to specify noise rates, i.e., a set of parameters
controlling the severity of label noises in the problem. In this work, we introduce
a technique to learn from noisy labels that does not require a priori specification
of the noise rates. In particular, we introduce a new family of loss functions that
we name as peer loss functions. Our approach then uses a standard empirical risk
minimization (ERM) framework with peer loss functions. Peer loss functions as-
sociate each training sample with a certain form of “peer” samples, which evaluate
a classifier’ predictions jointly. We show that, under mild conditions, performing
ERM with peer loss functions on the noisy dataset leads to the optimal or a near
optimal classifier as if performing ERM over the clean training data, which we do
not have access to. To our best knowledge, this is the first result on “learning with
noisy labels without knowing noise rates” with theoretical guarantees. We pair
our results with an extensive set of experiments, where we compare with state-of-
the-art techniques of learning with noisy labels. Our results show that peer loss
functions based method consistently outperforms the baseline benchmarks. Peer
loss provides a way to simplify model development when facing potentially noisy
training labels, and can be promoted as a robust candidate loss function in such
situations.

1 INTRODUCTION

The quality of supervised learning models depends on the training data {(xn, yn)}Nn=1. In practice,
label noise can arise due to a host of reasons. For instance, the observed labels ỹns may represent
human observations of a ground truth label. In this case, human annotators may observe the label
imperfectly due to differing degrees of expertise or measurement error, see e.g., medical examples
such as labeling MRI images from patients. Many prior approaches to this problem in the machine
learning literature aim to develop algorithms to learn models that are robust to label noise (Bylander,
1994; Cesa-Bianchi et al., 1999; 2011; Ben-David et al.; Scott et al., 2013; Natarajan et al., 2013;
Scott, 2015). Typical approaches require a priori knowledge of noise rates, i.e., a set of parameters
that control the severity of label noise. Working with unknown noise rates is difficult in practice:
Often, one must estimate the noise rates from data, which may require additional data collection
(Natarajan et al., 2013; Scott, 2015; van Rooyen & Williamson, 2015) (e.g., be a redundant set of
noisy labels for each sample point, or a set of ground truth labels for tuning these parameters) and
may introduce estimation error that can affect the final model in less predictable ways.

In this paper, we introduce a new family of loss functions, peer loss functions, to empirical risk
minimization (ERM), for a broad class of learning with noisy labels problems. Peer loss functions
operate under different noise rates without requiring either a priori knowledge of the embedded
noise rates, or an estimation procedure. This family of loss functions builds on approaches developed
in the peer prediction literature (Miller et al., 2005; Dasgupta & Ghosh, 2013; Shnayder et al., 2016),
which studies how to elicit information from self-interested agents without verification. Typical
approaches in the peer prediction literature design scoring functions to score each reported data
using another noisy reference answer, without accessing ground truth information. We borrow this
idea and the associated scoring functions via making a connection through treating each classifier’s
prediction as an agent’s private information to be elicited and evaluated, and the noisy label as an
imperfect reference from a “noisy label agent”. The peer loss takes a form of evaluating classifiers’
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prediction using noisy labels on both the targeted samples and a particular form of “peer” samples,
which turns to capture the true risk of the classifier, up to an affine transformation.

The main contributions of this work are:

1. To the best of our knowledge, this is the first work proposing a loss function that i) is robust to label
noises with formal theoretical guarantees and ii) requires no prior knowledge of the noise rates.
We believe having the second feature above is a non-trivial progress, and features a promising
solution to deploy in a noisy training environment.

2. We present formal results showing that performing ERM with a peer loss function can recover an
optimal, or a near optimal classifier f∗ as if performing ERM on the clean data (Theorem 3, 4, 5).
We also provide analysis for peer loss functions’ risk guarantees (Theorem 6 and 8).

3. We present extensive experimental results to validate the usefulness of peer loss (Section 5 and
Appendix). This result is encouraging as it is able to remove the long-standing requirement of
learning error rates of noises before any of the existing methods can be applied.

4. We will contribute to the community by publishing our codes and implementations.

1.1 RELATED WORK

Learning from Noisy Labels Our work fits within a stream of research on learning with noisy
labels. A large stream of research on this topic works with the random classification noise (RCN)
model, where observed labels are flipped independently with probability p ∈ [0, 1

2 ] (Bylander, 1994;
Cesa-Bianchi et al., 1999; 2011; Ben-David et al.; Scott et al., 2013; Natarajan et al., 2013; Scott,
2015). Recently, learning with asymmetric noisy data (or also referred as class-conditional ran-
dom classification noise (CCN)) for binary classification problems has been rigorously studied in
(Stempfel & Ralaivola, 2009; Scott et al., 2013; Natarajan et al., 2013; Scott, 2015; van Rooyen &
Williamson, 2015; Menon et al., 2015). For a more thorough survey of classical results on learning
with noisy data, please refer to (Frénay & Verleysen, 2014). More recent developments include an
importance re-weighting algorithm (Liu & Tao, 2016), a noisy deep neural network learning setting
(Sukhbaatar & Fergus, 2014), and learning from massive noisy data for image classification (Xiao
et al., 2015), among many others.

Peer Prediction Our work also builds on the literature for peer prediction (Prelec, 2004; Miller
et al., 2005; Witkowski & Parkes, 2012; Radanovic & Faltings, 2013; Witkowski et al., 2013; Das-
gupta & Ghosh, 2013; Shnayder et al., 2016; Liu & Chen, 2017). The seminal work (Miller et al.,
2005) established that strictly proper scoring rule (Gneiting & Raftery, 2007) could be adopted in the
peer prediction setting for eliciting truthful reports from self-interested agents. There have been a se-
quence of follow-up works that have been done to relax the assumptions imposed therein (Witkowski
& Parkes, 2012; Radanovic & Faltings, 2013; Witkowski et al., 2013; Radanovic et al., 2016; Liu
& Chen, 2017). Most relevant to us is (Dasgupta & Ghosh, 2013; Shnayder et al., 2016) where a
correlated agreement (CA) type of mechanism was proposed. CA evaluates a report’s correlations
with another reference agent - its specific form inspired our peer loss.

2 PRELIMINARIES

Notations and preliminaries: For positive integer n, denote by [n] := {1, 2, ..., n}. Suppose
(X,Y ) ∈ X × Y are drawn from a joint distribution D, with their marginal distributions denoted
as PX ,PY respectively. We assume X ⊆ Rd, and Y = {−1,+1}, that is we consider a binary
classification problem. There are N training samples (x1, y1), ..., (xN , yN ) drawn i.i.d. from D.

Instead of observing yns, the learner can only collect a noisy set of training labels ỹns, generated
according to yns and a certain error rate model, that is we observe a dataset {(xn, ỹn)}Nn=1. We
assume a uniform error model for all the training samples we collect, in that errors in ỹns follow the
same error rate model: denoting the random variable for noisy labels as Ỹ and we denote

e+1 := P(Ỹ = −1|Y = +1), e−1 := P(Ỹ = +1|Y = −1)

such that 0 ≤ e+1 + e−1 < 1. e−1 + e+1 < 1 is not unlike the condition imposed in the existing
learning literature (Natarajan et al., 2013), and it simply implies that the noisy labels are positively
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correlating with the true labels (informative about the true labels). Label noises are conditional
independent from the features, that is the error rate is uniform across xns: P(Ỹ = y′|Y = y) =

P(Ỹ = y′|X,Y = y),∀y, y′ ∈ {−1,+1}. Denote the distribution of the noisy data (X, Ỹ ) as D̃.

f : X → R is a real-valued decision function, and its risk w.r.t. the 0-1 loss is defined as
E(X,Y )∼D[1(f(X), Y )]. The Bayes optimal classifier f∗ is the one that minimizes the 0-1 risk:
f∗ = argminf E(X,Y )∼D[1(f(X), Y )]. Denote this optimal risk as R∗. Instead of minimizing the
above 0-1 risk, the learner often uses a surrogate loss function ` : R × {−1,+1} → R+, and find
a f ∈ F that minimizes the following error: E(X,Y )∼D[`(f(X), Y )]. We denote the following risk
measures: RD(f) = E(X,Y )∼D[1(f(X), Y )], R`,D(f) = E(X,Y )∼D[`(f(X), Y )]. When there
is no confusion, we will also short-hand E(X,Y )∼D[`(f(X), Y )] as ED[`(f(X), Y )]. Using D to
denote a dataset collected from distribution D (correspondingly D̃ := {(xn, ỹn)}Nn=1 for D̃), the
empirical risk measure for f is defined as R̂`,D(f) = 1

|D|
∑

(x,y)∈D `(f(x), y) .

2.1 LEARNING WITH NOISY LABELS

Typical methods for learning with noisy labels include developing bias removal surrogates loss func-
tion methods to learn with noisy data (Natarajan et al., 2013). For instance, Natarajan et al. (2013)
tackle this problem by defining an “un-biased” surrogate loss functions over ` to help “remove”
noise, when e−1 + e+1 < 1: ˜̀(t, y) :=

(1−e−y)·`(t,y)−ey·`(t,−y)
1−e−1−e+1

,∀t, y. ˜̀is identified such that when
a prediction is evaluated against a noisy label using this surrogate loss function, the prediction is as
if evaluated against the ground-truth label using ` in expectation. Hence the loss of the prediction is
“unbiased”, that is ∀ prediction t, EỸ |y[˜̀(t, Ỹ )] = `(t, y) [Lemma 1, (Natarajan et al., 2013)].

One important note to make is most, if not all, existing solutions require the knowledge of error
rates e−1, e+1. Previous works either assumed the knowledge of it, or needed additional clean
labels or redundant noisy labels to estimate them. This becomes the bottleneck of applying these
great techniques in practice. Our work is also motivated by the desire to remove this limitation.

2.2 PEER PREDICTION: INFORMATION ELICITATION WITHOUT VERIFICATION

Peer prediction is a technique developed to truthfully elicit information when there is no ground
truth verification. Suppose we are interested in eliciting private observations about a binary event
y ∈ {−1,+1} generated according to a random variable Y . There are K agents indexed by [K].
Each of them holds a noisy observation of y, denoted as y(i) ∈ {−1,+1}, i ∈ [K]. We would like to
elicit the y(i)s, but they are completely private and we won’t observe y to evaluate agents’ reports.
Denote by r(i) the reported data from each agent i. It is completely possible that r(i) 6= y(i) if
agents are not compensated properly for their information. Results in peer prediction have proposed
scoring or reward functions that evaluate an agent’s report using the reports of other peer agents. For
example, a peer prediction mechanism may reward agent i for her report r(i) using S(r(i), r(j))
where r(j) is the report of a randomly selected reference agent j ∈ [K]\{i}. The scoring function
S is designed so that truth-telling is a strict Bayesian Nash Equilibrium (implying other agents
truthfully report their y(j)), that is, ∀i

Ey(j)[S(y(i), y(j))|y(i)] > Ey(j)[S(r(i), y(j))|y(i)], ∀r(i) 6= y(i). (1)

There is a rich literature on proposing and studying peer prediction scoring functions, but we will
focus on the following knowledge-free peer prediction mechanism, which only require a minimal
amount of prior knowledge of the data sources to implement.

Correlated Agreement (Shnayder et al., 2016; Dasgupta & Ghosh, 2013) (CA) is a recently estab-
lished peer prediction mechanism for a multi-task setting 1. CA is also the core and the focus of our
subsequent sections on developing peer prediction based loss functions. This mechanism builds on
a ∆ matrix that captures the stochastic correlation between the two sources of predictions y(i) and
y(j). Denote the following mapping function: g(1) = −1, g(2) = +1, ∆ ∈ R2×2 is then defined as
a squared matrix with its entries defined as follows:

∆(k, l) = P
(
y(i) = g(k), y(j) = g(l)

)
− P

(
y(i) = g(k)

)
P
(
y(j) = g(l)

)
, k, l = 1, 2

1We provide other examples of peer prediction functions in the Appendix.
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The intuition of above ∆ matrix is that each (i, j) entry of ∆ captures the marginal correla-
tion between the two predictions. M ∈ R2×2 is defined as the sign matrix of ∆: M :=
Sgn(∆), where Sgn(x) = 1, x > 0; Sgn(x) = 0, o.w. Define the following score matrix

MS : {−1,+1} × {−1,+1} → {0, 1} : MS(y, y′) =: M(g−1(y), g−1(y′)), (2)

where g−1 is the inverse function of g. CA requires each agent i to perform multiple tasks: denote
agent i’s observations for the N tasks as y1(i), ..., yN (i). Ultimately the scoring function S(·) for
each task k that is shared between i, j is defined as follows: randomly draw two other tasks kp1 , k

p
2 ,

S
(
yk(i), yk(j)

)
:=MS

(
yk(i), yk(j)

)
−MS

(
ykp1 (i), ykp2 (j)

)
, kp1 6= kp2 6= k

Note a key difference between the first and second MS terms is that the second term is defined
for two independent peer tasks kp1 , k

p
2 (as the reference answers). It was established in (Shnayder

et al., 2016) that if y(j) is categorical w.r.t. y(i): P(y(j) = y′|y(i) = y) < P(y(j) = y′),∀i, j ∈
[K], y′ 6= y then S(·) is strictly truthful (Theorem 4.4, Shnayder et al. (2016)).

3 LEARNING WITH NOISY DATA: THE PEER PREDICTION APPROACH

In this section, we show that peer prediction scoring functions, when specified properly, will adopt
Bayes optimal classifier as their maximizers (or minimizers for the corresponding loss form).

We first state our problem of learning with noisy labels as a peer prediction problem. The connec-
tion is made by firstly rephrasing the two data sources, the classifiers and the noisy labels, from
agents’ perspective. For a task y ∈ {−1,+1}, say +1 for example, denote the noisy labels Ỹ as
R(X), X ∼ PX|Y=1. In general, R(X) can be interpreted as the agent that observes ỹ1, ..., ỹN
for a set of randomly drawn feature vectors x1, ..., xN : ỹn ∼ R(X). Suppose the agent’s observa-
tions are defined as follows (similar to the definition of e+1, e−): PX(R(X) = −1|Y = +1) =
e+1, PX(R(X) = +1|Y = −1) = e−1. Denote another agent whose observations “mimic” the
Bayes optimal classifier f∗. Again denote this optimal classifier agent as R∗(X) := f∗(X):

PX(R∗(X) = −1|Y = +1) = e∗+1, PX(R∗(X) = +1|Y = −1) = e∗−1

Elicited report as the classifier prediction

Max reward = Min loss

Reference report as the noisy label

Figure 1: Illustration of our idea. S
is the peer prediction function; our
`peer is to “evaluate” a classifier’s
prediction using a noisy reference.

Suppose we would like to elicit predictions from the opti-
mal classifier agent R∗, while the reports from the noisy la-
bel agent R will serve as the reference reports. Both R and
R∗ are randomly assigned a task x, and each of them ob-
serves a signal R(x) and R∗(x) respectively. Denote the re-
port from agent R∗ as r∗. A scoring function S : R×R→ R
is called to induce strictly truthfulness if the following fact
holds: EX

[
S
(
R∗(X), R(X)

)]
> EX

[
S
(
r∗, R(X)

)]
, ∀r∗ 6=

R∗(X). Taking the negative of S(·) (changing a reward score
one aims to maximize to a loss to minimize) we also have
EX
[
−S
(
R∗(X), R(X)

)]
< EX

[
−S
(
r∗, R(X)

)]
, ∀r∗ 6=

R∗(X), implying when taking −S(·) as the loss function,
minimizing −S(·) w.r.t. R will return us the Bayes optimal
classifier f∗. Our idea can be summarized easily using Fig. 1

When there is no ambiguity, we will shorthand R(X), R∗(X) as R,R∗, with keeping in mind that
R,R∗ encode the randomness in X . Suppose S(·) is able to elicit the Bayes optimal classifier f∗
(R∗) using R, we have the following theorem formally:
Theorem 1. f∗ = argminf E(X,Ỹ )∼D̃

[
−S(f(X), R)

]
.

This proof can be done via showing that any non-optimal Bayes classifier corresponds to a mis-
reporting strategy, thus establishing its non-optimality. We emphasize that it is not super restrictive
to have a strictly truthful peer prediction scoring function S. We provide discussions in Appendix.

4 PEER LOSS FUNCTION

We now present peer loss, a family of loss functions inspired by a particular peer prediction mecha-
nism, the correlated agreement (CA), as presented in Section 2.2. We are going to show that peer loss
is able to induce the minimizer of a concept class F , under a broad set of non-restrictive conditions.
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To give a gentle start, we repeat the setting of CA for our classification problem in the setting we
introduced above in Section 3.

∆ and scoring matrix First recall that ∆ ∈ R2×2 is a squared matrix with entries defined between
R∗ (also the f∗) and R (i.e., the noisy labels Ỹ ):

∆(k, l) = P
(
f∗(X) = g(k), Ỹ = g(l)

)
− P

(
f∗(x) = g(k)

)
P
(
Ỹ = g(l)

)
, k, l = 1, 2

Recall g(·) is simply a mapping function: g(1) = −1, g(2) = +1. Then the following scoring
matrix M ∈ Rn×n, sign matrix of ∆, M := Sgn(∆) is computed.
Example 1. Consider a binary class label case: P(Y = −1) = 0.4,P(Y = +1) = 0.6, the noises
in the labels are e−1 = 0.3, e+1 = 0.4 and e∗−1 = 0.2, e∗+1 = 0.3. Then we have

∆(1, 1) = 0.0464, ∆(1, 2) = −0.0464, ∆(2, 1) = −0.0104, ∆(2, 2) = 0.0056

∆ =

[
0.0464 −0.0464
−0.0104 0.0056

]
⇒M = Sgn(∆) =

[
1 0
0 1

]
Peer samples For each sample (xi, ỹi), randomly draw another two samples (xip1 , ỹi

p
1
), (xip2 , ỹi

p
2
)

such that ip1 6= ip2 and ip1, i
p
2 6= i. We will name (xip1 , ỹi

p
1
), (xip2 , ỹi

p
2
) as i’s peer samples. The scoring

function S(·) for each sample point xi is defined as follows: note S(f(xi), ỹi)) = S(f(xi), R(xi)),

S(f(xi), ỹi)) =MS
(
f(xi), R(xi)

)
−MS

(
f(xip1 , R(xip2 ))

)
=MS

(
f(xi), ỹi

)
−MS

(
f(xip1 ), ỹip2

)
Recall MS(·) is defined in Eqn. (2). Define loss function ˜̀(·) as the negative of S(·):

˜̀
(
f(xi), ỹi

)
:=
(
1−MS

(
f(xi), ỹi

))
−
(
1−MS

(
f(xip1 , ỹi

p
2
)
))
. (3)

According to Theorem 1, we already know that minimizing ˜̀(·) is going to find the optimal Bayes
classifier, if Ỹ and f∗(X) are categorical:

Lemma 1. When e−1 + e+1 < 1 and e∗−1 + e∗+1 < 1, R and R∗ (Ỹ and f∗) are categorical.

Knowledge of Sgn(∆) We need to know Sgn(∆) in order to specifyMS , which requires knowing
certain information about the optimal classifier f∗ and Ỹ . We show that for the cases that the
literature is broadly interested in, Sgn(∆) is simply the identify matrix:
Lemma 2. If e−1 + e+1 < 1, e∗−1 + e∗+1 < 1, then Sgn(∆) = I2×2, i.e., the identity matrix.

e∗−1 + e∗+1 < 1 means that the optimal classifier is at least informative ((Liu & Chen, 2017)) - if
otherwise, we can flip the classifier’s output to obtain one.

Peer loss When Sgn(∆) = I2×2, MS(y, y′) = 1 if y = y′, and 0 otherwise. ˜̀(·) defined in Eqn.
(3) reduces to the following form:

1peer(f(xi), ỹi) = 1(f(xi), ỹi)− 1(f(xip1 ), ỹip2 ) (4)

To see this, for instance 1−MS
(
f(xi) = +1, ỹi = +1

)
= 1−M(2, 2) = 1− 1 = 0 = 1(f(xi) =

−1, ỹi = +1). Replacing 1(·) with any generic loss `(·) we define:

`peer(f(xi), ỹi) = `(f(xi), ỹi)− `(f(xip1 ), ỹip2 ) (5)

We name above loss as peer loss. This strikingly simple form of `peer(f(xi), ỹi) implies that knowing
e−1 + e+1 < 1, e∗−1 + e∗+1 < 1 hold is all we need to specify `peer. The rest of presentation focuses
on `peer defined in Eqn. (5), but we keep in mind that replacing ` with 1 in `peer recovers 1peer.

ERM with peer loss f̂∗`peer
= arg minf∈F R̂`peer,D̃

(f) = 1
N

∑N
n=1 `peer(f(xn), ỹn).

Remark 2. (1) Peer loss is a “multi-sample” loss. For each sample point (xi, ỹi), we need to pair
it with uniformly randomly sampled “peer samples” ip1 and ip2 - we further illustrate this in Fig. 3 in
Appendix. (2) The definition of `peer does not require the knowledge of either e+1, e−1 or e∗+1, e

∗
−1.
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4.1 PROPERTY OF PEER LOSS

We will denote by ED[`peer(f(X), Y )] the expected peer loss of f when (X,Y ), as well as its peer
samples, are drawn i.i.d. from distribution D. We now present a key property of peer loss, which
shows that its risk over the noisy labels is simply an affine transformation of its risk over the clean
ones.
Lemma 3. ED̃[`peer(f(X), Ỹ )] = (1− e−1 − e+1) · ED[`peer(f(X), Y )].

Denote f̃∗
1peer

= arg minf∈F R1peer,D̃(f). With Lemma 3, we can easily prove the following:

Theorem 3. When p = 0.5, f̃∗
1peer
∈ arg minf∈F RD(f).

The above theorem states that for a class-balanced dataset with p = 0.5, peer loss induces the same
minimizer as the one that minimizes the 0-1 loss on the clean data. When removing the constraint
of F , i.e., f̃∗

1peer
= arg minf R1peer,D̃(f), we have f̃∗

1peer
= f∗. In practice we can balance the dataset

so that p → 0.5. But when p 6= 0.5, denote by ∆p = P(Y = +1) − P(Y = −1), we have the
following theorem:
Theorem 4. When p 6= 0.5, suppose the following conditions hold: (1) e−1, e+1 < 0.5; (2) (1 −
e) · e−1 + e · e+1 > e; (3) (1 − e) · e+1 + e · e−1 > e, where e := 1

2 −
ε
|∆p| . Then |RD(f̃∗

1peer
) −

minf∈F RD(f)| ≤ 2ε(¯̀− `),∀ε ≤ |∆p|/2, if ` is bounded with ¯̀, ` denoting its max and min.

Condition (1) is a well-adopted assumption in the literature of learning with noisy labels. When
e+1, e−1 > e, we have conditions (2) and (3) hold: (1 − e) · e−1 + e · e+1 > (1 − e) · e + e · e =
e, (1− e) · e+1 + e · e−1 > (1− e) · e+ e · e = e. When |∆p| is small, i.e., p is closer to 0.5, this
condition becomes weaker, as we will afford to have a small ε but also a small e.

4.2 α-WEIGHTED PEER LOSS

We take a further look at the case with p 6= 0.5. Denote by R+1(f) = P(f(X) = −1|y =
+1), R−1(f) = P(f(X) = +1|y = −1). It is easy to prove:
Lemma 4. Minimizing E[1peer(f(X), Ỹ )] is equivalent to minimizing R−1(f) +R+1(f).

However, minimizing the true riskRD(f) is equivalent to minimizing p ·R+1(f)+(1−p) ·R−1(f),
a weighted sum of R+1(f) and R−1(f) with p and 1 − p. The above observation, as well as the
failure to reproduce the strong theoretical guarantee when p 6= 0.5, motivated us to study a α-
weighted version of peer loss, to make it robust to the case p 6= 0.5. We propose the following
α-weighted peer loss via adding a weight α ≥ 0 to the second term, the peer term:

`α-peer
(
f(xi), ỹi

)
= `(f(xi), ỹi)− α · `(f(xip1 ), ỹip2 ) (6)

Denote 1α-peer as `α-peer when replacing ` with 1, f̃∗
1α-peer

= arg minf∈F R1α-peer,D̃(f) as the optimal

classifier under 1α-peer, and ∆p̃ = P(Ỹ = +1)− P(Ỹ = −1). Then we have:

Theorem 5. Let α = 1− (1− e−1 − e+1) · ∆p

∆p̃
. Then f̃∗

1α-peer
∈ arg minf∈F RD(f).

Denote α∗ := 1− (1− e−1 − e+1) · ∆p

∆p̃
. Several remarks follow:

1. When p = 0.5, we have α∗ = 1, we recover the earlier definition of `peer.
2. When e−1 = e+1, α∗ = 0, we recover ` for the clean learning setting.

3. When the signs of P(Y = 1)− P(Y = −1) and P(Ỹ = 1)− P(Ỹ = −1) are the same, α∗ < 1.
Otherwise, α∗ > 1. In other words, when the noise changes the relative quantitative relationship
of P(Y = 1) and P(Y = −1), α∗ > 1 and vice versa.

4. Knowing α∗ requires certain knowledge of e+1, e−1 when p 6= 0.5. Though we do not claim this
knowledge, this result implies tuning α∗ (using validation data) may improve the performance.

Theorem 3 and 5 imply that performing ERM with 1α∗-peer: f̂∗1α∗ -peer
= arg minf R̂1α∗ -peer,D̃

(f) will
lead to a classifier converging to f∗:

Theorem 6. With probability at least 1− δ, RD(f̂∗
1α∗ -peer

)−R∗ ≤ 2(1+α∗)
1−e−1−e+1

√
log 2/δ

2N .
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4.3 CALIBRATION AND GENERALIZATION

So far our results focused on minimizing 0-1 losses, which is hard in practice. We provide evi-
dences of `peer’s, and `α-peer’s in general, calibration and convexity with a generic and differentiable
calibrated loss. We consider a ` that is classification calibrated, convex and L-Liptchitz.

Classification calibration describes the property that the convergence to optimality using a loss
function ` would also guarantee the convergence to optimality with 0-1 loss:
Definition 1. ` is classification calibrated if there ∃ a convex, invertible, nondecreasing transfor-
mation Ψ` with Ψ`(0) = 0 s.t. Ψ`(RD(f̃)−R∗) ≤ R`,D(f̃)−minf R`,D(f).

Denote f∗` ∈ arg minf R`,D(f). Below we provide sufficient conditions for `α-peer to be calibrated.
Theorem 7. `α-peer is classification calibrated when either of the following two conditions holds:
(1) α = 1 (i.e., `α-peer = `peer), p = 0.5, and f∗` satisfies the following: E[`(f∗` (X),−Y )] ≥
E[`(f(X),−Y )], ∀f. (2) α < 1,max{e+1, e−1} < 0.5, and `′′(t, y) = `′′(t,−y).

(1) states that f∗` not only achieves the smallest risk over (X,Y ) but also performs the worst on the
“opposite” distribution with flipped labels (X,−Y ). (2) `′′(t, y) = `′′(t,−y) is satisfied by some
common loss function, such as square losses and logistic losses, as noted in (Natarajan et al., 2013),

Under the calibration condition, and denote the corresponding calibration function for `α-peer as
Ψ`α-peer . Denote by f̂∗`α-peer

= arg minf∈F R̂`α-peer,D̃
(f) := 1

N

∑N
n=1 `α-peer(f(xn), ỹn). We have the

following generalization bound:
Theorem 8. The following generalization bound holds for `α∗-peer with probability at least 1− δ:

RD(f̂∗`α∗ -peer
)−R∗ ≤ 1

1− e−1 − e+1
·Ψ−1

`α∗ -peer

(
min
f∈F

R`α∗ -peer,D̃
(f)−min

f
R`α∗ -peer,D̃

(f)

+ 2(1 + α∗)L · <(F) + 2

√
log 4/δ

2N

(
1 + (1 + α∗)(¯̀− `)

))
,

where <(F) is Rademacher complexity of F .
Convexity In our experiments, we resolve to neural networks, which are more robust to non-
convex loss functions. Nonetheless, despite the fact that `α-peer(·) is not convex in general, [Lemma
5, (Natarajan et al., 2013)] informs us that as long as R̂`α-peer,D̃

(f) is close to some convex function,
mirror gradient type of algorithms will converge to a small neighborhood of the optimal point when
performing ERM with `α-peer. A natural candidate for this convex function is the expectation of
R̂`α-peer,D̃

(f) as R̂`α-peer,D̃
(f) → R`α-peer,D̃(f) when N → ∞. We provide sufficient conditions for

R`α-peer,D̃(f) to be convex in Appendix (Lemma 8).

5 EXPERIMENTS

We implemented a two-layer ReLU Multi-Layer Perceptron (MLP) for classification tasks on 10
UCI Benchmarks and applied our peer loss to update their parameters. We show the robustness
of peer loss with increasing rates of label noises on 10 real-world datasets. We compare the per-
formance of our peer loss based method with surrogate loss method (Natarajan et al., 2013) (with
known error rates), C-SVM (Liu et al., 2003) and PAM (Khardon & Wachman, 2007), which are
state-of-the-art methods for dealing with random binary-classification noises, as well as a neural
network solution with binary cross entropy loss (NN). We use a cross-validation set to tune the
parameters specific to the algorithms. For surrogate loss, we use the true error rates e−1 and e+1

instead of learning them on the validation set. Thus, surrogate loss could be considered a favored
and advantaged baseline method. Accuracy of a classification algorithm is defined as the fraction of
examples in the test set classified correctly with respect to the clean and true label. For given noise
rates e+1 and e−1, labels of the training data are flipped accordingly.

A subset of the experiment results are shown in Table 1. A full table with all details can be found
in Appendix. Equalized Prior means that we pre-sample the dataset to guarantee p = 0.5. For this
case we used `peer without α. For p 6= 0.5, we use validation dataset (using noisy labels) to tune
α. Our method is competitive across all datasets and is even able to outperform the surrogate loss

7
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Task Equalized Prior p = 0.5 No Prior Equalization p 6= 0.5
(d,N+, N−) e−1, e+1 Peer Surrogate NN Peer Surrogate NN C-SVM PAM

0.1, 0.3 0.973 0.941 0.937 0.973 0.941 0.937 0.962 0.956
Twonorm 0.2, 0.4 0.963 0.919 0.868 0.963 0.919 0.868 0.937 0.935

(20,3700,3700) 0.4, 0.4 0.959 0.867 0.705 0.959 0.867 0.705 0.866 0.938
0.1, 0.3 0.919 0.878 0.811 0.925 0.885 0.809 0.933 0.873

Splice 0.2, 0.4 0.901 0.832 0.714 0.912 0.84 0.725 0.824 0.795
(60,1527,1648) 0.4, 0.4 0.819 0.754 0.626 0.822 0.755 0.601 0.76 0.631

0.1, 0.3 0.833 0.78 0.756 0.856 0.802 0.75 0.788 0.698
Heart 0.2, 0.4 0.812 0.768 0.679 0.856 0.758 0.693 0.704 0.715

(13,165,138) 0.4, 0.4 0.75 0.729 0.595 0.785 0.728 0.554 0.698 0.69
0.1, 0.3 0.745 0.707 0.667 0.778 0.75 0.727 0.726 0.697

Diabetes 0.2, 0.4 0.755 0.681 0.596 0.739 0.705 0.672 0.7 0.651
(8,268,500) 0.4, 0.4 0.719 0.645 0.551 0.651 0.685 0.583 0.702 0.721

0.1, 0.3 0.639 0.563 0.519 0.727 0.645 0.648 0.698 0.683
Breast Cancer 0.2, 0.4 0.63 0.534 0.538 0.73 0.674 0.672 0.698 0.672

(9,85,201) 0.4, 0.4 0.596 0.519 0.471 0.677 0.628 0.529 0.698 0.526
0.1, 0.3 0.928 0.922 0.873 0.956 0.949 0.92 0.943 0.904

Breast 0.2, 0.4 0.93 0.885 0.844 0.933 0.898 0.831 0.862 0.843
(30,212,357) 0.4, 0.4 0.928 0.867 0.824 0.913 0.858 0.772 0.866 0.789

0.1, 0.3 0.701 0.624 0.581 0.68 0.693 0.6 0.671 0.655
German 0.2, 0.4 0.664 0.59 0.572 0.676 0.681 0.535 0.581 0.602

(20,300,700) 0.4, 0.4 0.606 0.55 0.556 0.654 0.632 0.553 0.696 0.64
0.1, 0.3 0.87 0.859 0.795 0.893 0.898 0.863 0.878 0.765

Waveform 0.2, 0.4 0.871 0.84 0.698 0.884 0.884 0.837 0.837 0.663
(21,1647,3353) 0.4, 0.4 0.87 0.805 0.629 0.853 0.852 0.828 0.848 0.788

0.1, 0.3 0.906 0.9 0.863 0.943 0.909 0.856 0.924 0.761
Thyroid 0.2, 0.4 0.863 0.862 0.812 0.905 0.898 0.78 0.92 0.727

(5,65,150) 0.4, 0.4 0.762 0.738 0.669 0.769 0.818 0.587 0.837 0.78
0.1, 0.3 0.856 0.875 0.866 0.796 0.835 0.878 0.892 0.762

Image 0.2, 0.4 0.836 0.862 0.832 0.672 0.755 0.599 0.825 0.609
(18,1319,991) 0.4, 0.4 0.741 0.72 0.732 0.806 0.803 0.8 0.86 0.749

Table 1: Experiment results on 10 UCI Benchmarks (N+, N− are the numbers of positive and negative sam-
ples). Entries within 2% from the best in each row are highlighted in bold. All results are averaged across 8
random seeds. Neural-network-based methods (Peer, Surrogate, NN) use the same hyper-parameters. Full table
with complete set of comparisons (especially for p = 0.5) is in Appendix.
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Figure 2: Accuracy on test set during training

method with access to the true error rates in a number of datasets. Fig. 2 shows that our method can
prevent over-fitting when facing noisy labels. More results are available in the Appendix.

Conclusion This paper introduces peer loss, a family of loss functions that enables training a
classifier over noisy labels, but without using explicit knowledge of the noise rates of labels. We
provide both theoretical justifications and extensive experimental evidences.
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ILLUSTRATION OF OUR IMPLEMENTATION OF PEER LOSS

Noisy
Labels

Training 
Data

Random
Peer Sampling

Loss
Function

Neural Network

Forward Propagation

Backward Propagation

Figure 3: Illustration of peer loss method.

OTHER PEER PREDICTION FUNCTIONS

Other notable examples include quadratic and logarithmic scoring function, defined as follows:
Example 2. Quadratic scoring function:

S
(
r(i), r(j)

)
:= 2P

(
y(j) = r(j)|y(i) = r(i)

)
−

∑
s∈{−1,+1}

P
(
y(j) = s|y(i) = r(i)

)2
,

Example 3. Logarithmic scoring function:

S
(
r(i), r(j)

)
:= logP

(
y(j) = r(j)|y(i) = r(i)

)
.

We know the following is true:
Lemma 5 (Miller et al. (2005)). S defined in Example 1 & 2 induce strict truthfulness when y(i)
and y(j) are stochastically relevant.

with defining stochastic relevance as follows:
Definition 2. y(i) and y(j) are stochastically relevant if ∃ s ∈ {−1,+1} s.t.

P
(
y(j) = s|y(i) = +1

)
6= P

(
y(j) = s|y(i) = −1

)
.

Similarly we conclude that when R and R∗ are stochastic relevant, the correlated agreement scoring
rule, quadratic scoring rule and logarithmic scoring rule are strictly truthful. This stochastic rele-
vance condition essentially states that the optimal classifier is statistically different from the noisy
data source R on some signals. Stochastic relevance is further satisfied in the binary classification
setting when e∗−1 + e∗+1 6= 1, under the assumption that e−1 + e+1 < 1, as similarly imposed in
learning with noisy labels literature (Scott et al., 2013; Natarajan et al., 2013; Scott, 2015).
Lemma 6. R and R∗ are stochastically relevant if and only if e∗−1 + e∗+1 6= 1.

Proof. For the binary signal case, the condition for stochastic relevance writes as follows:

P(R = 1|R∗ = 1) 6= P(R = 1|R∗ = 0)

⇔P(R = 1, R∗ = 1)

P(R∗ = 1)
6= P(R = 1, R∗ = 0)

P(R∗ = 0)

⇔P(R = 1, R∗ = 1)P(R∗ = 0) 6= P(R = 1, R∗ = 0)P(R∗ = 1)

⇔P(R = 1, R∗ = 0) 6= P(R = 1) · P(R∗ = 0)

⇔e∗−1 + e∗+1 6= 1.

11
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PROOF FOR THEOREM 1

Proof. It is equivalent to prove f∗ = argmaxf E(X,Ỹ )∼D̃
[
S(f(X), R)

]
. First S(·) is able to elicit

the Bayes optimal classifier f∗ (R∗) using R implies that:

ED̃|Y=+1

[
S(R∗, R)

]
> ED̃|Y=+1

[
S
(
r∗, R

)]
, ∀r∗ 6= R∗

ED̃|Y=−1

[
S(R∗, R)

]
> ED̃|Y=−1

[
S(r∗, R)

]
, ∀r∗ 6= R∗

First note that the expected score of a classifier over the data distribution further writes as follows:

ED̃
[
−S(f(X), R)

]
= p · ED̃|Y=+1

[
S(f(X), R)

]
+ (1− p) · ED̃|Y=−1

[
S(f(X), R]

)
Denote by f ′ a sub-optimal classifier that disagrees with f∗ on set X+

dis = {x|Y = +1 : f ′(x) 6=
f∗(x)}. By sub-optimality of f ′ we know that ε := PX(X ∈ X+

dis) > 0, as a zero measure X+
dis

does not affect its optimality. Construct the following reporting strategy that

r∗ =

{
R∗, w.p. 1− ε
−R∗, w.p. ε

Not hard to check that

ED̃|Y=+1

[
S(f ′(X), R)

]
= ED̃|Y=+1

[
S(r∗, R)

]
Yet we have the following fact that

ED̃|Y=+1

[
S(r∗, R)

]
=(1− ε) · ED̃|Y=+1

[
S(f∗(X), R)

]
+ ε · ED̃|Y=+1

[
S(−f∗(X), R)

]
<ED̃|Y=+1

[
S(f∗(X), R)

]
(7)

where the inequality is due to strict truthfulness of S and the fact that ε > 0. We similarly conclude
that

ED̃|Y=−1

[
S(r∗, R)

]
< ED̃|Y=−1

[
S(f∗(X), R)

]
(8)

Combine Eqn. (7) and (8) we conclude the proof.

PROOF FOR LEMMA 1

Proof. Being categorical means

P(R = −y|R∗ = y) < P(R = −y), y ∈ {−1,+1}

which further implies

P(R = −y,R∗ = y) < P(R = −y)P(R∗ = y), y ∈ {−1,+1}

and
P(R = y,R∗ = y) > P(R = y)P(R∗ = y), y ∈ {−1,+1}.

Consider the following fact

P(R = +1, R∗ = +1)

=P(Y = +1)P(R = +1, R∗ = +1|Y = +1)

+ P(Y = −1)P(R = +1, R∗ = +1|Y = −1)

=P(Y = +1)P(R = +1|R∗ = +1, Y = +1)

· P(R∗ = +1|Y = +1)

+P(Y = −1)P(R = +1|R∗ = +1, Y = −1)

· P(R∗ = +1|Y = −1)

12



Under review as a conference paper at ICLR 2020

Since R∗ can be written as a function of X and Y , due to conditional independence between R and
X (conditional on Y ) we have

P(R = +1|R∗ = +1, Y = +1) = P(R = +1|Y = +1) = 1− e+1,

P(R = +1|R∗ = +1, Y = −1) = P(R = +1|Y = −1) = e−1

Therefore

P(R = +1, R∗ = +1) = P(Y = +1)(1− e+1)(1− e∗+1) + P(Y = −1) · e−1 · e∗−1

We also have

P(R = +1) = P(Y = +1)(1− e+1) + P(Y = −1) · e−1

P(R∗ = +1) = P(Y = +1)(1− e∗+1) + P(Y = −1) · e∗−1

Then we have

P(R = +1, R∗ = +1)− P(R = +1)P(R∗ = +1)

=P(Y = +1)P(Y = −1)(1− e+1 − e−1)(1− e∗+1 − e∗−1)

>0

when 1 > e∗+1 + e∗−1.

PROOF FOR LEMMA 2

Proof. Again recall that

P(R∗ = +1, R = +1) = P(Y = +1)(1− e+1)(1− e∗+1) + P(Y = −1)e−1 · e∗−1

P(R = +1) = P(Y = +1)(1− e+1) + P(Y = −1) · e−1

P(R∗ = +1) = P(Y = +1)(1− e∗+1) + P(Y = −1) · e∗−1

Then we have

P(R∗ = +1, R = +1)− P(R∗ = +1)P(R = +1)

=P(Y = +1)P(Y = −1)(1− e+1 − e−1)(1− e∗+1 − e∗−1)

>0

when 1− e+1− e−1 > 0, 1− e∗+1− e∗−1 > 0. Interesting this coincides with the condition imposed
in (Natarajan et al., 2013). Similarly we can prove that

P(R∗ = +1, R = −1)− P(R∗ = +1)P(R = −1)

=− P(Y = +1)P(Y = −1)(1− e+1 − e−1)(1− e∗+1 − e∗−1)

<0

The other entries for P(R∗ = −1, R = −1) − P(R∗ = −1)P(R = −1) and P(R∗ = −1, R =
+1) − P(R∗ = −1)P(R = +1) are symmetric. Therefore the sign matrix of above score matrix is
exactly the diagonal matrix.

PROOF FOR LEMMA 3

Proof. We denote by Xip1
, Ỹip2 the random variable corresponding to the peer samples xip1 , ỹip2 .

First we have
E[`peer(f(X), Ỹ )] = E[`(f(X), Ỹ )]− E[`(f(Xip1

), Ỹip2 )]

13
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Consider the two terms on the RHS separately.

E[`(f(X), Ỹ )]

=EX,Y=−1

[
P(Ỹ = −1|Y = −1) · `(f(X),−1) + P(Ỹ = +1|Y = −1) · `(f(X),+1)

]
+ EX,Y=+1

[
P(Ỹ = +1|Y = +1) · `(f(X),+1) + P(Ỹ = −1|Y = +1) · `(f(X),−1)

]
=EX,Y=−1

[
(1− e−1) · `(f(X),−1) + e−1 · `(f(X),+1)

]
+ EX,Y=+1

[
(1− e+1) · `(f(X),+1) + e+1 · `(f(X),−1)

]
=EX,Y=−1

[
(1− e−1 − e+1) · `(f(X),−1) + e+1 · `(f(X),−1) + e−1 · `(f(X),+1)

]
+ EX,Y=+1

[
(1− e−1 − e+1) · `(f(X),+1) + e−1 · `(f(X),+1) + e+1 · `(f(X),−1)

]
=(1− e−1 − e+1) · EX,Y

[
`(f(X), y)

]
+ EX

[
e+1 · `(f(X),−1) + e−1 · `(f(X),+1)

]
And consider the second term:

E[`(f(Xip1
), Ỹip2 )]

=EX [`(f(X),−1)] · P(Ỹ = −1) + EX [`(f(X),+1)] · P(Ỹ = +1)

=EX
[
(e+1p+ (1− e−1)(1− p)) · `(f(X),−1) + ((1− e+1)p+ e−1(1− p)) · `(f(X),+1)

]
=EX

[
(1− e−1 − e+1)(1− p) · `(f(X),−1) + (1− e−1 − e+1)p · `(f(X),+1)

]
+ EX

[
(e+1p+ e+1(1− p)) · `(f(X),−1) + (e−1(1− p) + e−1p) · `(f(X),+1)

]
=(1− e−1 − e+1) · EX [`(f(Xj), Ỹk)] + EX

[
e+1 · `(f(X),−1) + e−1 · `(f(X),+1)

]
Thus,

E[`peer(f(X), Ỹ )] = E[`(f(X), Ỹ )]− E[`(f(Xj), Ỹk)] = (1− e−1 − e+1) · E[`peer(f(X), Y )]

PROOF FOR THEOREM 3

Proof. From Lemma 3 we know

E[`peer(f(X), Ỹ )]

=(1− e−1 − e+1) · E[`peer(f(X), Y )]

=(1− e−1 − e+1) ·
(
E[`(f(X), Y )]− E[`(f(Xip1

), Yip2 )]

)
=(1− e−1 − e+1) · E

[
`(f(X), Y )]− 0.5 · EX [`(f(X),−1)]− 0.5 · EX [`(f(X),+1)]

)
When ` is the 0-1 loss we have `(f(X),−1) + `(f(X),+1) = 1,∀x, and therefore

E[`peer(f(X), Ỹ )] = (1− e−1 − e+1) ·
(
E[`(f(X), Y )]− 1

)
With above we proved f̃∗

1peer
∈ arg minf∈F RD(f).

PROOF FOR THEOREM 4

Proof. Our proof is inspired by our argument for p = 0.5. We ask the following question: if it is
possible to show that Ỹ corresponds an error-flipped distribution of another distribution Ŷ whose
marginals p̃Y is close to or equal to 0.5. Observe the following: randomly flipping Y with probability
e uniformly, we will have a new distribution of labels Ŷ that satisfies:

p̃Y := P(Ŷ = +1) = P(Y = +1) · (1− e) + P(Y = −1) · e = p(1− 2e) + e.

14
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Denote by ε the tolerance of p̃Y : ε = |p̃Y − 0.5|. When e sets to be: 1 − 2e = ε
|∆p| , we have

|p̃Y − 0.5| = ε. The next question we ask: is it possible to find parameters ê−1, ê+1:

P(Ỹ = +1|Ŷ = −1) = ê−1, P(Ỹ = −1|Ŷ = +1) = ê+1

Note that

P(Ỹ = −1|Y = +1)

=P(Ỹ = −1|Ŷ = +1) · P(Ŷ = +1|Y = +1)

+ P(Ỹ = −1|Ŷ = −1) · P(Ŷ = −1|Y = +1)

=(1− e) · ê+1 + e · (1− ê−1)

Similarly P(Ỹ = +1|Y = −1) = (1 − e) · ê−1 + e · (1 − ê+1). Jointly we need the following
equations to hold:

(1− e) · ê+1 + e · (1− ê−1) = e+1

(1− e) · ê−1 + e · (1− ê+1) = e−1

Solving above equations we have

ê−1 =
(1− e) · e−1 + e · e+1

1− 2e
− e

1− 2e

For a feasible solution to ê−1, ê+1, the conditions need to satisfy that (1) ê−1, ê+1 ≥ 0 and (2)
ê−1 + ê+1 < 1. First of all, from (2) we have

e ·
(
1− (ê−1 + ê+1)

)
= e−1 − ê−1

Then a necessary condition for ê−1 + ê+1 < 1 is

e−1 − ê−1 > 0⇔ e−1 <
1

2
+

e−1

2(1− 2e)

This condition holds as long as e−1, e+1 < 0.5. From ê−1, ê+1 ≥ 0 we have

(1− e) · e−1 + e · e+1 > e, (1− e) · e+1 + e · e−1 > e (9)

This above jointly proves that R`α-peer,D̃
(f) is equivalent to a peer loss defined over the noisy distri-

bution of ŷ with error parameters ê−1, e+1.

Denote by f∗F ∈ arg minf∈F RD(f). From the optimality of f̃∗
1peer

we have

RD(f̃∗
1peer

)− p̃Y · EX [`(f̃∗
1peer

(X),+1)]− (1− p̃Y ) · EX [`(f̃∗
1peer

(X),+1)]

≤ RD(f∗F )− p̃Y · EX [`(f∗F (X),+1)]− (1− p̃Y ) · EX [`(f∗F (X),+1)] (10)

Note ∀f : ∣∣p̃Y · EX [`(f(X),+1)] + (1− p̃Y ) · EX [`(f(X),+1)] (11)

− 0.5 · EX [`(f(X),+1)]− 0.5 · EX [`(f(X),−1)]
∣∣

=|p̃Y − 0.5| ·
∣∣EX [`(f(X),+1)]− EX [`(f(X),−1)]

∣∣
≤ε(¯̀− `) (12)

Notice that

RD(f̃∗
1peer

)− p̃Y · EX [`(f̃∗
1peer

(X),+1)]− (1− p̃Y ) · EX [`(f̃∗
1peer

(X),+1)]

≤ RD(f∗F )− p̃Y · EX [`(f∗F (X),+1)]− (1− p̃Y ) · EX [`(f∗F (X),+1)]

≤ RD(f∗F )− 0.5 · EX [`(f∗F (X),+1)]− 0.5 · EX [`(f∗F (X),+1)] + ε(¯̀− `) (13)

Combining Eqn. (10, 12, 13) we have

RD(f̃∗
1peer

)−RD(f∗F ) ≤p̃Y · EX [`(f(X),+1)] + (1− p̃Y ) · EX [`(f(X),+1)]

− 0.5 · EX [`(f(X),+1)]− 0.5 · EX [`(f(X),−1)] + ε(¯̀− `)
≤2ε(¯̀− `)

15
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PROOF FOR LEMMA 4

Proof.

E[1peer(f(X), Ỹ )]

=(1− e−1 − e+1) · (P(f(X) = −1, Y = +1) + P(f(X) = +1, Y = −1)

− P(f(X) = −1)P(Y = +1)− P(f(X) = +1)P(Y = −1))

=(1− e−1 − e+1) · (pR+1 + (1− p)R−1

− p · P(f(X) = 1)− (1− p) · P(f(X) = −1))

=(1− e−1 − e+1) · (pR+1 + (1− p)R−1

− p ·
(
pR+1 + (1− p)(1−R−1)

)
− (1− p) ·

(
p(1−R+1) + (1− p)R−1)

)
=2(1− e−1 − e+1) · p(1− p) · (R−1 +R+1 − 1)

PROOF FOR THEOREM 5

Proof.

E[1α-peer(f(X), Ỹ )]

=E[1(f(X), Ỹ )]− α · E[1(f(Xip1
), Ỹip2 )]

=E[1peer(f(X), Ỹ )] + (1− α) · E[1(f(Xip1
), Ỹip2 )]− 1

=E[1peer(f(X), Ỹ )] + (1− α) ·
(
P(f(X) = −1) · P(Ỹ = −1) + P(f(X) = +1) · P(Ỹ = +1)

)
− 1

=E[1peer(f(X), Ỹ )] + (1− α) ·
((
p · (1−R+1) + (1− p) ·R−1

)
· P(Ỹ = −1)

+
(
pR+1 + (1− p)(1−R−1)

)
· P(Ỹ = +1)

)
− 1

=E[1peer(f(X), Ỹ )] + (1− α) · (P(Ỹ = +1)− P(Ỹ = −1)) · (pR+1 − (1− p)R−1) + C

=2(1− e−1 − e+1) · p(1− p) · (R−1 +R+1 − 1)

+ (1− α) · (P(Ỹ = +1)− P(Ỹ = −1)) ·
(
pR+1 − (1− p)R−1

)
+ C

=R+1 ·
(

2(1− e−1 − e+1) · p(1− p) + (1− α)p · (P(Ỹ = +1)− P(Ỹ = −1))

)
+R−1 ·

(
2(1− e−1 − e+1) · p(1− p)− (1− α)(1− p) · (P(Ỹ = +1)− P(Ỹ = −1))

)
+ C ′,

where C,C ′ are constants:

C = (1− α) ·
(

(1− p) · P(Ỹ = +1) + p · P(Ỹ = −1)
)
− 1

C ′ = C − 2(1− e−1 − e+1) · p(1− p)

Let

p

1− p
=

2(1− e−1 − e+1) · p(1− p) + (1− α) · p · (P(Ỹ = +1)− P(Ỹ = −1))

2(1− e−1 − e+1) · p(1− p)− (1− α) · (1− p) · (P(Ỹ = +1)− P(Ỹ = −1))
.

that
α = 1− (1− e−1 − e+1) · ∆p

∆p̃
.

we obtain that

E[1α-peer(f(X), Ỹ )] = (1− e−1 − e+1)E[1(f(X), Y )] + C ′, (14)

concluding our proof. The last equation Eqn.(14) also implies the following proposition:

16
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Proposition 9. For any f, f ′, we have

ED̃[1α-peer(f(X), Ỹ )]−ED̃[1α-peer(f
′(X), Ỹ )] = (1−e−1−e+1)

(
E[1(f(X), Y )]−E[1(f ′(X), Y )]

)
.

PROOF FOR THEOREM 6

Proof. ∀f , using Hoeffding’s inequality with probability at least 1− δ

|R̂
1α-peer,D̃

(f)−R
1α-peer,D̃(f)|

≤
√

log 2/δ

2N
(1α−peer − 1α−peer)

≤(1 + α)

√
log 2/δ

2N

Note we also have the following:

R
1α-peer,D̃

(f̂∗
1α-peer

)−R
1α-peer,D̃

(f∗
1α-peer

)

≤R̂
1α-peer,D̃

(f̂∗
1α-peer

)− R̂
1α-peer,D̃

(f∗
1α-peer

) + (R1α-peer,D(f̂∗
1α-peer

)− R̂
1α-peer,D̃

(f̂∗
1α-peer

))

+ (R̂
1α-peer,D̃

(f∗
1α-peer

)−R
1α-peer,D̃

(f∗
1α-peer

))

≤0 + 2 max
f
|R̂

1α-peer,D̃
(f)−R

1α-peer,D̃(f)|

Now we show

RD(f̂∗
1α∗ -peer

)−R∗

=RD(f̂∗
1α∗ -peer

)−RD(f∗
1α∗ -peer

) (Theorem 5)

=
1

1− e−1 − e+1

(
R
1α∗ -peer,D̃

(f̂∗
1α∗ -peer

)−R
1α∗ -peer,D̃

(f∗
1α∗ -peer

)
)

(Proposition 9)

≤ 2

1− e−1 − e+1
max
f
|R̂

1α∗ -peer,D̃
(f)−R

1α∗ -peer,D̃
(f)|

≤ 2(1 + α∗)

1− e−1 − e+1

√
log 2/δ

2N
.

We conclude the proof.

PROOF FOR THEOREM 7

Proof. We start with condition (1). From Lemma 3,

E[`peer(f(X), Ỹ )] =(1− e−1 − e+1) ·
(
E[`(f(X), Y )]− 0.5 · E[`(f(X),−1)]− 0.5 · E[`(f(X),+1)]

)
The above further derives as

E[`peer(f(X), Ỹ )]

=(1− e−1 − e+1) ·
(
E[`(f(X), Y )]− 0.5 · E[`(f(X), Y )]− 0.5 · E[`(f(X),−Y )]

)
=

1− e−1 − e+1

2
·
(
E[`(f(X), Y )]− E[`(f(X),−Y )]

)
Denote by c := 2

1−e−1−e+1
we have

E[`(f(X), Y )] = c · E[`peer(f(X), Ỹ )] + E[`(f(X),−Y )]

17
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Then

E[`(f(X), Y )]− E[`(f∗` (X), Y )]− (E[`(f(X),−Y )]− E[`(f∗` (Y ),−Y ))]

=c · (E[`peer(f(X), Ỹ )]− E[`peer(f
∗
` (X), Ỹ )])

≤c · (E[`peer(f(X), Ỹ )]− E[`peer(f
∗
`peer

(X), Ỹ )])

Further by our conditions we know

E[`(f(X), Y )]−E[`(f∗` (X), Y )]− (E[`(f(X),−Y )]− E[`(f∗` (Y ),−Y ))]

≥ E[`(f(X), Y )]− E[`(f∗` (X), Y )].

Therefore we have proved

E[`peer(f(X), Ỹ )]− E[`peer(f
∗
`peer

(X), Ỹ )] ≥ 1

c

(
E[`(f(X), Y )]− E[`(f∗` (X), Y )]

)
.

Since `(·) is calibrated, and according to Proposition 9 and Theorem 3:

ED̃[1α-peer(f(X), Ỹ )]− ED̃[1α-peer(f
∗
` (X), Ỹ )]

=(1− e−1 − e+1)
(
E[1(f(X), Y )]− E[1(f∗` (X), Y )]

)
≤(1− e−1 − e+1) ·Ψ−1

` (E[`(f(X), Y )]− E[`(f∗` (X), Y )])

≤(1− e−1 − e+1) ·Ψ−1
` (c · (E[`peer(f(X), Ỹ )]− E[`peer(f

∗
`peer

(X), Ỹ )])).

Therefore Ψ`peer(x) = 1
cΨ`(

x
1−e−1−e+1

). It’s straight-forward to verify that Ψ`peer(x) satisfies the
conditions in Definition 1. We conclude the proof.

Now we check condition (2). Again, from previously, we know the following holds for a certain
p̂y = py(1− ey) + (1− py)e−y where p+1 = p, p−1 = 1− p:

E[`α-peer(f(X), Ỹ )]

=E[`(f(X), Ỹ )− α · `(f(X), Ỹk)]

=E
[
(1− eY )`(f(X), Y ) + eY `(f(X),−Y )− α · p̂Y `(f(X), Y )− α · (1− p̂Y )`(f(X),−Y )

]
=E
[
(1− eY − αp̂Y )`(f(X), Y ) + (eY − α · (1− p̂Y ))`(f(X),−Y )

]
Let φ(f(X) · Y ) := `(f(X), Y ), we have

E[`α-peer(f(X), Ỹ ))

=E
[
(1− eY − αp̂Y )φ(f(X) · Y ) + (eY − α · (1− p̂Y ))φ(−f(X) · Y )

]
:=E[ϕ(f(X) · Y )]

We first introduce a Theorem:

Theorem 10 (Theorem 6, (Bartlett et al., 2006)). Let ϕ be convex. Then ϕ is classification-
calibrated if and only if it is differentiable at 0 and ϕ′ < 0.

We now show that ϕ is convex:

ϕ′′(β) =(1− eY − αp̂Y ) · φ′′(β) + (eY − α · (1− p̂Y ))φ′′(−β)

=(1− eY − αp̂Y ) · φ′′(β) + (eY − α · (1− p̂Y ))φ′′(β)

=(1− eY − αp̂Y + eY − α · (1− p̂Y ))φ′′(β)

=(1− α)φ′′(β) > 0

when α < 1. The last inequality is due to the fact that ` is convex.

Secondly we show the first derivative of ϕ is negative at 0: ϕ′(0) < 0:

ϕ′(0) =(1− eY − αp̂Y ) · φ′(0)− (eY − α · (1− p̂Y ))φ′(0)

=(1− 2eY + α(1− 2p̂Y ))φ′(0) (15)
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Note that
p̂y = py(1− ey) + (1− py)e−y

Plug back to Eqn. (15) we have

ϕ′(0) =(1− eY − αp̂Y ) · φ′(0)− (eY − α · (1− p̂Y ))φ′(0)

=
(
1− 2eY + α(1− 2p̂Y )

)
φ′(0)

=

(
(1− αpy)(1− 2ey) + α(1− py)(1− e−y)

)
φ′(0) (16)

Since (1 − αpy)(1 − 2ey) + α(1 − py)(1 − e−y) > 0 and φ′(0) < 0 (due to calibration property
of `, Theorem 6 of Bartlett et al. (2006)), we proved that ϕ′(0) < 0. Then based on Theorem 6 of
Bartlett et al. (2006), we know ``α-peer is classification calibrated.

PROOF FOR THEOREM 8

Proof. We first prove the following Rademacher complexity bound

Lemma 7. Let <(F) denote the Rademacher complexity of F . L denote the Lipschitz constant of `.
Then with probability at least 1 − δ, maxf∈F |R̂`α-peer,D̃

(f) − R`α-peer,D̃(f)| ≤ (1 + α)L · <(F) +√
log 4/δ

2N (1 + `α−peer − `α−peer).

Note we also have the following ∀α:

R`α-peer,D̃(f̂∗`α-peer
)−R`α-peer,D̃(f∗`α-peer

)

≤R̂`α-peer,D̃
(f̂∗`α-peer

)− R̂`α-peer,D̃
(f∗`α-peer

)

+ (R`α-peer,D̃(f̂∗`α-peer
)− R̂`α-peer,D̃

(f̂∗`α-peer
))

+ (R̂`α-peer,D̃
(f∗`α-peer

)−R`α-peer,D̃(f∗`α-peer
))

≤0 + 2 max
f∈F
|R̂`α-peer,D̃

(f)−R`α-peer,D̃(f)|

Then apply the calibration condition we have

RD(f̂∗`α∗ -peer
)−R∗

=
1

1− e−1 − e+1

(
R
1α∗ -peer,D̃

(f̂∗`α∗ -peer
)−R

1α∗ -peer,D̃
(f∗)

)
(Proposition 9)

=
1

1− e−1 − e+1

(
R
1α∗ -peer,D̃

(f̂∗`α∗ -peer
)−R

1α∗ -peer,D̃
(f̃∗
1α∗ -peer

)
)

(Theorem 4)

≤ 1

1− e−1 − e+1
Ψ−1
`α∗ -peer

(
min
f∈F

R`α∗ -peer,D̃
(f)−min

f
R`α∗ -peer,D̃

(f) (Calibration of 1α∗-peer)

+R`α∗ -peer,D̃
(f̂∗`α∗-peer

)−R`α∗ -peer,D̃
(f∗`α∗ -peer

)

)
≤ 1

1− e−1 − e+1
Ψ−1
`α∗ -peer

(
min
f∈F

R`α∗ -peer,D̃
(f)−min

f
R`α∗ -peer,D̃

(f)

+ 2 max
f∈F
|R̂`α∗ -peer,D̃

(f)−R`α∗ -peer,D̃
(f)|

≤ 1

1− e−1 − e+1
Ψ−1
`α∗ -peer

(
min
f∈F

R`α∗ -peer,D̃
(f)−min

f
R`α∗ -peer,D̃

(f) (Lemma 7)

+ 2(1 + α∗)L · <(F) + 2

√
log 4/δ

2N
(1 + `α∗-peer − `α∗-peer)

)
,

with probability at least 1− δ.
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PROOF FOR LEMMA 7

Proof. Due to the random sampling, via Hoeffding inequality we first have there exists some p̂ỹn ∈
(0, 1), with probability at least 1− δ,∣∣∣∣ 1

N

N∑
n=1

`α-peer(f(xn), ỹn)− 1

N

N∑
n=1

(`(f(xn), ỹn)

− α · p̂ỹn`(f(xn), ỹn)− α · (1− p̂ỹn)`(f(xn),−ỹn))

∣∣∣∣
≤
√

log 2/δ

2N
· (`α−peer − `α−peer)

Define the following loss function:

˜̀(xn, ỹn) := `(f(xn), ỹn)− α · p̂ỹn`(f(xn), ỹn)− α · 1− p̂ỹn)`(f(xn),−ỹn)

Via Rademacher bound on the maximal deviation we have with probability at least 1− δ

max
f∈F

∣∣R̂˜̀,D̃(f)−R˜̀,D̃(f)
∣∣ ≤ 2 · <(˜̀◦ F) +

√
log 1/δ

2N
(17)

Since ` is L-Lipschitz, due to the linear combination, ˜̀is (1+α)L-Lipschitz. Based on the Lipschitz
composition of Rademacher averages, we have

<(˜̀◦ F) ≤ (1 + α)L · <(F)

Therefore, via union bound, we know with probability at least 1− 2δ:∣∣∣∣ 1

N

N∑
n=1

`α-peer(f(xn), ỹn)−R`α-peer,D̃
(f)

∣∣∣∣
=

∣∣∣∣ 1

N

N∑
n=1

`α-peer(f(xn), ỹn)− R̂˜̀,D̃(f) + R̂˜̀,D̃(f)−R`α-peer,D̃
(f)

∣∣∣∣
≤
∣∣∣∣ 1

N

N∑
n=1

`α-peer(f(xn), ỹn)− R̂˜̀,D̃(f)

∣∣∣∣+

∣∣∣∣R̂˜̀,D̃(f)−R`α-peer,D̃
(f)

∣∣∣∣
≤
√

log 2/δ

2N
· (`α−peer − `α−peer) + |R̂˜̀,D̃(f)−R˜̀,D̃(f)

∣∣
≤
√

log 2/δ

2N
· (`α−peer − `α−peer) + (1 + α)L · <(F) +

√
log 1/δ

2N

≤(1 + α)L · <(F) +

√
log 2/δ

2N
·
(
1 + `α−peer − `α−peer

)
In aboveR`α-peer,D̃

(f) = Rϕ,D̃(f) because `α-peer and ` share the same expected risk by construction.
Plug in the fact that `α-peer is linear in ` and an easy consequence that

`α−peer − `α−peer ≤ (1 + α)(¯̀− `),

let δ := δ/2, we conclude the proof.

PROOF FOR LEMMA 8

Lemma 8. When α < 1,max{e+1, e−1} < 0.5, and `′′(t, y) = `′′(t,−y), R`α-peer,D̃(f) is convex.

Proof. This was proved in the proof for Theorem 7, when proving the classification calibration
property of `α-peer under condition (2).
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Figure 4: Accuracy on test set during training

EXPERIMENT

IMPLEMENTATION DETAILS

We implemented neural networks (LeCun et al., 2015) for classification on 10 UCI Benchmarks and
applied our peer loss to update their parameters. For surrogate loss, we use the true error rates e−1

and e+1 instead of learning them on the validation set. Thus, surrogate loss could be considered a
favored and advantaged baseline method. On each benchmark, we use the same hyper-parameters
for all neural network based methods. For C-SVM, we fix one of the weights to 1, and tune the
other. For PAM, we tune the margin.

RESULTS

The full experiment results are shown in Table.2. Equalized Prior indicates that in the corresponding
experiments, we resample to make sure P(Y = +1) = P(Y = −1) and we fix α = 1 in these
experiments. Our method is competitive in all the datasets and even able to outperform the surrogate
loss method with access to the true error rates in most of them. C-SVM is also robust when error
rates are symmetric, and is competitive in 8 datasets.

From Figure.4, we can see our peer loss can prevent over-fitting, which is also part of the reason of
its achieved high robustness across different datasets and error rates.
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Task Equalized Prior p = 0.5 No Prior Equalization p 6= 0.5
(d,N+, N−) e−1, e+1 Peer Surrogate NN C-SVM PAM Peer Surrogate NN C-SVM PAM

0.1, 0.3 0.973 0.941 0.937 0.962 0.956 0.973 0.941 0.937 0.962 0.956
0.2, 0.2 0.973 0.942 0.953 0.966 0.972 0.973 0.942 0.953 0.966 0.972

Twonorm 0.1, 0.4 0.974 0.936 0.865 0.95 0.917 0.974 0.936 0.865 0.95 0.917
(20,3700,3700) 0.2, 0.4 0.963 0.919 0.868 0.937 0.935 0.963 0.919 0.868 0.937 0.935

0.4, 0.4 0.959 0.867 0.705 0.866 0.938 0.959 0.867 0.705 0.866 0.938
0.1, 0.3 0.919 0.878 0.811 0.928 0.875 0.925 0.885 0.809 0.933 0.873
0.2, 0.2 0.918 0.874 0.819 0.931 0.898 0.927 0.876 0.812 0.941 0.91

Splice 0.1, 0.4 0.914 0.86 0.743 0.891 0.791 0.925 0.862 0.754 0.898 0.798
(60,1527,1648) 0.2, 0.4 0.901 0.832 0.714 0.807 0.778 0.912 0.84 0.725 0.824 0.795

0.4, 0.4 0.819 0.754 0.626 0.767 0.687 0.822 0.755 0.601 0.76 0.631
0.1, 0.3 0.833 0.78 0.756 0.753 0.783 0.856 0.802 0.75 0.788 0.698
0.2, 0.2 0.821 0.762 0.75 0.717 0.762 0.856 0.813 0.769 0.796 0.783

Heart 0.1, 0.4 0.827 0.777 0.717 0.744 0.723 0.859 0.815 0.723 0.677 0.742
(13,165,138) 0.2, 0.4 0.812 0.768 0.679 0.714 0.741 0.856 0.758 0.693 0.704 0.715

0.4, 0.4 0.75 0.729 0.595 0.688 0.583 0.785 0.728 0.554 0.698 0.69
0.1, 0.3 0.745 0.707 0.667 0.67 0.698 0.778 0.75 0.727 0.726 0.697
0.2, 0.2 0.755 0.708 0.671 0.745 0.747 0.759 0.736 0.706 0.759 0.782

Diabetes 0.1, 0.4 0.745 0.682 0.627 0.568 0.529 0.777 0.724 0.71 0.688 0.651
(8,268,500) 0.2, 0.4 0.755 0.681 0.596 0.59 0.554 0.739 0.705 0.672 0.7 0.651

0.4, 0.4 0.719 0.645 0.551 0.654 0.691 0.651 0.685 0.583 0.702 0.721
0.1, 0.3 0.639 0.563 0.519 0.529 0.519 0.727 0.645 0.648 0.698 0.683
0.2, 0.2 0.659 0.606 0.534 0.615 0.601 0.698 0.661 0.623 0.695 0.669

Breast Cancer 0.1, 0.4 0.587 0.577 0.519 0.553 0.514 0.735 0.654 0.66 0.698 0.695
(9,85,201) 0.2, 0.4 0.63 0.534 0.538 0.538 0.553 0.73 0.674 0.672 0.698 0.672

0.4, 0.4 0.596 0.519 0.471 0.51 0.514 0.677 0.628 0.529 0.698 0.526
0.1, 0.3 0.928 0.922 0.873 0.924 0.898 0.956 0.949 0.92 0.943 0.904
0.2, 0.2 0.928 0.904 0.887 0.961 0.934 0.952 0.952 0.955 0.946 0.945

Breast 0.1, 0.4 0.932 0.938 0.83 0.85 0.812 0.951 0.929 0.898 0.929 0.805
(30,212,357) 0.2, 0.4 0.93 0.885 0.844 0.865 0.811 0.933 0.898 0.831 0.862 0.843

0.4, 0.4 0.928 0.867 0.824 0.855 0.812 0.913 0.858 0.772 0.866 0.789
0.1, 0.3 0.701 0.624 0.581 0.611 0.626 0.68 0.693 0.6 0.671 0.655
0.2, 0.2 0.689 0.65 0.611 0.664 0.649 0.702 0.693 0.6 0.738 0.722

German 0.1, 0.4 0.696 0.642 0.562 0.55 0.586 0.667 0.693 0.54 0.553 0.583
(20,300,700) 0.2, 0.4 0.664 0.59 0.572 0.469 0.583 0.676 0.681 0.535 0.581 0.602

0.4, 0.4 0.606 0.55 0.556 0.572 0.55 0.654 0.632 0.553 0.696 0.64
0.1, 0.3 0.87 0.859 0.795 0.862 0.875 0.893 0.898 0.863 0.878 0.765
0.2, 0.2 0.872 0.847 0.814 0.886 0.859 0.901 0.899 0.898 0.897 0.847

Waveform 0.1, 0.4 0.87 0.893 0.771 0.804 0.612 0.888 0.894 0.821 0.821 0.663
(21,1647,3353) 0.2, 0.4 0.871 0.84 0.698 0.795 0.779 0.884 0.884 0.837 0.837 0.663

0.4, 0.4 0.87 0.805 0.629 0.776 0.807 0.853 0.852 0.828 0.848 0.788
0.1, 0.3 0.906 0.9 0.863 0.881 0.781 0.943 0.909 0.856 0.924 0.761
0.2, 0.2 0.913 0.894 0.856 0.887 0.831 0.905 0.905 0.826 0.936 0.799

Thyroid 0.1, 0.4 0.875 0.862 0.75 0.869 0.7 0.902 0.924 0.799 0.917 0.731
(5,65,150) 0.2, 0.4 0.863 0.862 0.812 0.781 0.681 0.905 0.898 0.78 0.92 0.727

0.4, 0.4 0.762 0.738 0.669 0.781 0.663 0.769 0.818 0.587 0.837 0.78
0.1, 0.3 0.856 0.875 0.866 0.892 0.743 0.796 0.835 0.878 0.892 0.762
0.2, 0.2 0.9 0.835 0.908 0.912 0.816 0.931 0.896 0.934 0.908 0.805

Image 0.1, 0.4 0.723 0.841 0.799 0.785 0.585 0.717 0.806 0.825 0.808 0.589
(18,1319,991) 0.2, 0.4 0.836 0.862 0.832 0.802 0.623 0.672 0.755 0.599 0.825 0.609

0.4, 0.4 0.741 0.72 0.732 0.834 0.724 0.806 0.803 0.8 0.86 0.749

Table 2: Experiment Results on 10 UCI Benchmarks. Entries within 2% from the best in each
row are in bold. All method-specific parameters are estimated through cross-validation. The pro-
posed method (Peer) are competitive across all the datasets. Neural-network-based methods (Peer,
Surrogate, NN) use the same hyper-parameters. All the results are averaged across 8 random seeds.
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