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POPSGD: DECENTRALIZED STOCHASTIC GRADIENT
DESCENT IN THE POPULATION MODEL

ABSTRACT

The population model is a standard way to represent large-scale decentralized
distributed systems, in which agents with limited computational power interact in
randomly chosen pairs, in order to collectively solve global computational tasks. In
contrast with synchronous gossip models, nodes are anonymous, lack a common
notion of time, and have no control over their scheduling. In this paper, we examine
whether large-scale distributed optimization can be performed in this extremely
restrictive setting.
We introduce and analyze a natural decentralized variant of stochastic gradient
descent (SGD), called PopSGD, in which every node maintains a local parameter,
and is able to compute stochastic gradients with respect to this parameter. Every
pair-wise node interaction performs a stochastic gradient step at each agent, fol-
lowed by averaging of the two models. We prove that, under standard assumptions,
SGD can converge even in this extremely loose, decentralized setting, for both
convex and non-convex objectives. Moreover, surprisingly, in the former case,
the algorithm can achieve linear speedup in the number of nodes n. Our analysis
leverages a new technical connection between decentralized SGD and randomized
load-balancing, which enables us to tightly bound the concentration of node pa-
rameters. We validate our analysis through experiments, showing that PopSGD
can achieve convergence and speedup for large-scale distributed learning tasks in a
supercomputing environment.

1 INTRODUCTION

One key enabler of the extremely rapid recent progress of machine learning has been distribution:
the ability to efficiently split computation among multiple nodes or devices, in order to share the
high computational loads of training large models, and therefore reduce end-to-end training time.
Distributed machine learning has become commonplace, and it is not unusual to encounter systems
which distribute model training among tens or even hundreds of nodes. In this paper, we take this
trend to the extreme, and ask: would it be possible to distribute basic optimization procedures such as
stochastic gradient descent (SGD) to thousands of agents? How could the dynamics be implemented
in such a large-scale setting, and what would be with the resulting convergence and speedup behavior?
To get some intuition, let us consider the classical data-parallel distribution strategy for SGD (Bottou,
2010). We are in the classical empirical risk minimization setting, where we have a set of samples S
from a distribution, and wish to minimize the function f : Rd → R, which is the average of losses
over samples from S by finding x? = argmin x

∑
s∈S fs(x)/|S|. Assume that we have P compute

nodes which can process samples in parallel. Data-parallel SGD consists of parallel iterations, in
which each node computes the gradient for one sample, followed by a gradient exchange. Globally,
this leads to the iteration:

xt+1 = xt − ηt
P∑
i=1

g̃it(xt),

where ηt is the learning rate, xt is the value of the global parameter, initially 0d, and g̃it(xt) is the
stochastic gradient with respect to the parameter obtained by node i at time t.
When extending this strategy to high node counts, two major bottlenecks are communication and
synchronization. In particular, to maintain a consistent view of the parameter xt, the nodes would
need to broadcast and receive all gradients, and would need to synchronize with all other nodes, at the
end of every iteration. Recently, a tremendous amount of work has been dedicated to address these
two barriers. In particular, there has been significant progress on communication-reduced variants
of SGD (e.g. Seide et al. (2014); Strom (2015); Alistarh et al. (2017b); Wen et al. (2017); Aji &
Heafield (2017); Dryden et al. (2016); Grubic et al. (2018)), asynchronous variants (e.g. Recht et al.
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(2011); Sa et al. (2015); Duchi et al. (2015); Alistarh et al. (2018b)), as well as large-batch or periodic
model averaging methods, which aim to reduce the frequency of communication(e.g. Goyal et al.
(2017); You et al. (2017) and Chen & Huo (2016); Stich (2018)), or even decentralized synchronous
variants(e.g. Lian et al. (2017a); Tang et al. (2018); Koloskova et al. (2019)). Using such techniques,
it is possible to scale SGD to hundreds of nodes, even for complex objectives such as the training
of deep neural networks. However, in systems with node counts in the thousands or larger, it is
infeasible to assume that all nodes can efficiently synchronize into global iterations, or that they can
directly broadcast messages to all other nodes.
Instead, in this paper we will consider the classic population model of distributed computing (Angluin
et al., 2006), which is defined as follows. We are given a population of n compute agents, each with
its own input, which cooperate to perform some globally meaningful computation with respect to
their inputs. Interactions occur pairwise, where the two interaction partners are randomly chosen in
every step. Thus, algorithms are specified in terms of the agents’ state transitions upon an interaction.
The basic unit of time is a single pairwise interaction between two nodes, whereas global (parallel)
time is measured as the total number of interactions divided by n, the number of nodes. Parallel
time corresponds intuitively to the average number of interactions per node to reach convergence.
Population protocols have a rich history in distributed computing (e.g. Angluin et al. (2006; 2007;
2008a;b;c); Alistarh et al. (2017a; 2018a)), and are standard in modelling distributed systems with
millions or billions of nodes, such as Chemical Reaction Networks (CRNs) (Bower & Bolouri, 2004;
Chen et al., 2017) and synthetic DNA strand displacement cascades (Chen et al., 2013). The key
difference between population protocols and the synchronous gossip models (e.g. Xiao & Boyd
(2004); Lian et al. (2017a); Koloskova et al. (2019)) previously used to analyze decentralized SGD is
that nodes are not synchronized: since pairwise interactions are uniform random, there are no global
rounds, and nodes lack a common notion of time.
While the population model is a theoretical construct, we show that it can be efficiently mapped to
large-scale super-computing scenarios, with large numbers of compute nodes connected by a fast
point-to-point interconnect, where we can avoid the high costs of global synchronization.
An immediate instantiation of SGD in the population model would be to initially assign one sample
si from the distribution to each node i, and have each node maintain its own parameter estimate xi.
Whenever two nodes interact, they exchange samples, and each performs a gradient update with
respect to the other’s sample. If we assume interaction pairs are uniform random (with replacement),
each node would obtain a stochastic gradient upon each interaction, and therefore each model would
converge locally. However, this instance would not have any parallel speedup, since the SGD instances
at each node are essentially independent.
In this context, we propose a natural change to the above procedure, by which interacting nodes i and
j first perform a gradient step, and then also average their resulting models upon every interaction.
Effectively, if node i interacts with node j, node i’s updated model becomes

xi ← xi + xj

2
− ηi g̃

i(xi) + g̃j(xj)

2
, (1.1)

where j is the interaction partner, and the stochastic gradients g̃i and g̃j are taken with respect to each
other’s samples. The update for node j is symmetric. In this paper, we analyze a variant of the above
protocol, which we call PopSGD, in the population protocol model.
We show that, perhaps surprisingly, this simple decentralized SGD averaging dynamic provides
strong convergence guarantees for both convex and non-convex objectives. First, we prove that, under
standard convexity and smoothness assumptions, PopSGD has convergence speedup that linear in
the number of nodes n. Specifically, if µt is the parameter average over all node models at parallel
time t ≥ 0, and yT is the average over the sequence (µt)t=1,T , then, for large enough parallel time
T , our main result is that

E[f(yT )− f(x∗)] = O
(
σ2/(nT )

)
, (1.2)

which is n times faster than the sequential variant given the same number of SGD steps per node.
(Please see Theorem 4.1 for the exact formulation, including bias and variance terms, and for
an extended discussion.) This result suggests that, even though interactions occur only pairwise,
uniformly at random, and in an uncoordinated manner, as long as the convergence time is large
enough to amortize the information propagation, the protocol enjoys the full parallel speedup of
mini-batch SGD with a batch size proportional to the number of nodes. While speedup behaviour has
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been observed in various synchronous models– e.g. Lian et al. (2017a); Stich (2018); Koloskova et al.
(2019), or for complex accelerated algorithms (Hendrikx et al., 2018)–we are the first to show that
SGD does not require the existence of globally synchronized rounds or global communication.
Central to our analytic approach is a new technical connection between averaging decentralized SGD
and the line of research studying load-balancing processes in theoretical computer science (e.g. Azar
et al. (1999); Mitzenmacher (2000); Talwar & Wieder (2007); Peres et al. (2015a)). Intuitively, we
show PopSGD can be viewed as a composition between a set of instances of SGD–each corresponding
to one of the local parameters xi–which are loosely coupled via pairwise averaging, whose role is
to “balance” the models by keeping them well concentrated around their mean, despite the random
nature of the pairwise interactions. Our analysis characterizes this concentration, showing that, in
essence, the averaging process propagates enough information to globally “simulate” SGD with a
batch of size Θ(n), even though communication is only performed pairwise. We emphasize that the
convexity of the objective function in isolation would not be sufficient to prove this fact, see e.g. Stich
(2018). Along the way, we overcome non-trivial technical difficulties, such as the lack of a common
notion of time among nodes, or the fact that, due to the structure of SGD, this novel load-balancing
process exhibits non-trivial correlations within the same round.
On the practical side, we provide convergence and speedup results using an efficient implementation
of PopSGD using Pytorch/MPI applied to regression tasks, but also to the standard CIFAR/ImageNet
classification tasks for deployments on a multi-GPU nodes, and on the CSCS Piz Daint supercomputer
(Piz). Experiments predictably confirm the scalability of PopSGD to large node counts. More
surprisingly, we also observe an improvement in convergence versus number of SGD iterations per
model at higher node counts, in both convex and non-convex settings. In particular, using PopSGD,
we are able to train the ResNet18 and ResNet50 (He et al., 2016) models to full accuracy using only
1/8 the number of SGD updates per model, compared to the sequential baseline, resulting in fast
convergence with nearly linear scalability.
Related Work. The study of decentralized optimization algorithms dates back to Tsitsiklis (1984),
and is related to the study of gossip algorithms for information dissemination (Kempe et al., 2003;
Xiao & Boyd, 2004). The distinguishing feature of this setting is that information is shared in the
absence of a coordinator, between nodes and their neighbors. Several classic algorithms have been
ported and analyzed in the gossip setting, such as subgradient methods for convex objectives (Nedic
& Ozdaglar, 2009; Johansson et al., 2009; Shamir & Srebro, 2014) or ADMM (Wei & Ozdaglar,
2012; Iutzeler et al., 2013). References Lian et al. (2017a;b); Assran et al. (2018) consider SGD-type
algorithms in the non-convex setting, while references Tang et al. (2018); Koloskova et al. (2019)
analyze the use of quantization in the gossip setting.
The key difference between the gossip model discussed above and the population model we analyze
is that, in the gossip model, time is divided into global rounds, which are assumed to be consistent
across nodes. In each round, each node broadcasts and receives with all neighbors: analytically, this
synchrony assumption allows the global evolution of the system to be represented in terms of the
“gossip” (communication/contact) matrix (see e.g. Xiao & Boyd (2004); Koloskova et al. (2019); Lian
et al. (2017b)). This matrix characterization is not possible in the population model: nodes do not
share a notion of time or rounds, as communication steps correspond to individual interactions. If
we consider sequences of n consecutive interactions, due to scheduler randomness, some nodes will
interact several times, while others may not interact at all during such an interval. For this reason,
our analysis makes use of fine-grained potential arguments, rather than a global matrix iteration.
There do exist instances in the literature which consider dynamic interaction models. First, Nedic
et al. Nedic et al. (2017) present a gradient tracking algorithm in a different dynamic graph model;
however, their results would not translate to the PP model, as they assume a dynamically changing
but simple graph in each iteration: by contrast, merging together multiple interaction rounds from
the PP model could result in a multi-graph. Further, Hendrickx et al. Hendrikx et al. (2018) achieve
exponential convergence rates in a gossip model where transmissions are synchronized across edges;
however, the algorithm they consider is a more complex instance of accelerated coordinate descent,
and is therefore quite different from the simple dynamics we consider. Importantly, neither reference
considers large-scale deployments for non-convex objectives (in particular, neural networks).
It is interesting to contrast our work with that of Lian et al. (2017b), who assume a synchronized
gossip model, but allow for asynchrony, in the sense that nodes can see stale variants of their
neighbors’ messages. To our understanding, the models are not directly comparable, and in particular
their results cannot be applied to our setting. This is because they rely on a variant of the global
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matrix iteration (albeit based on delayed views). They consider challenging smooth non-convex
objectives, but do not show any speedup due to parallelization. We provide similar guarantees for
non-convex PopSGD, but are able to show linear speedup in the convex case. In our setting, since
interaction pairs are chosen randomly, there can be significant local variability between the interaction
rates of the nodes, and so the matrix iteration would not be applicable.
The population model, introduced by Angluin et al. (2006), is one of the standard models of dis-
tributed computing, and has proved a useful abstraction for modeling settings from wireless sensor
networks (Perron et al., 2009; Draief & Vojnovic, 2012), to gene regulatory networks (Bower &
Bolouri, 2004), and chemical reaction networks (Chen et al., 2017). While there has been significant
work on algorithms for specific tasks, such as majority (consensus), leader election, and approximate
counting, we are the first to consider optimization tasks in the population model. Potential analysis
is a common tool in load balancing (e.g. Talwar & Wieder (2007); Peres et al. (2015a)), which we
adapt for our setting. The three key departures from the load balancing literature are that 1) in the
SGD setting, the weights (gradients) are correlated with the loads of the bins (the models); 2) in the
SGD setting, the magnitude of the weights is diminishing (due to the learning rate), which requires a
continuous re-evaluation of the balancing objective; 3) models are multi-dimensional, whereas in the
classical formulation the balanced items are single-dimensional.

2 PRELIMINARIES

The Population Protocol Model. We consider a variant of the population protocol model which
consists of a set of n ≥ 2 anonymous agents, or nodes, each executing a local state machine. (Our
analysis will make use of node identifiers only for exposition purposes.) Since our application
is continuous optimization, we will assume that the agents’ states may store real numbers. The
execution proceeds in discrete steps, where in each step a new pair of agents is selected uniformly
at random to interact from the set of all possible pairs. (To preserve symmetry of the protocols, we
will assume that a process may interact with a copy of itself, with low probability.) Each of the two
chosen agents updates its state according to a state update function, specified by the algorithm. The
basic unit of time is a single pairwise interaction between two nodes. Notice however that in a real
system Θ(n) of these interactions could occur in parallel. Thus, a standard global measure is parallel
time, defined as the total number of interactions divided by n, the number of nodes. Parallel time
intuitively corresponds to the average number of interactions per node to convergence.
Stochastic Optimization. We assume that the agents wish to minimize a d-dimensional, differen-
tiable and strongly convex function f : Rd → R with parameter ` > 0, that is:

(x− y)
T

(∇f (x)−∇f (y)) ≥ ` ‖x− y‖2,∀x, y ∈ Rd. (2.1)

Specifically, we will assume the empirical risk minimization setting, in which agents are given access
to a set of data samples S = {s1, . . . , sm} coming from some underlying distributionD, to a function
fi : Rd → R which encodes the loss of the argument at the sample si. The goal of the agents is to
converge on a model x∗ which minimizes the empirical loss, that is

x∗ = argminxf(x) = argminx(1/m)

m∑
i=1

fi(x). (2.2)

In this paper, we assume that the agents employ these samples to run a decentralized variant of SGD,
described in detail in the next section. For this, we will assume that agents have access to stochastic
gradients g̃ of the function f , which are functions such that E[g̃(x)] = ∇f(x). Stochastic gradients
can be computed by each agent by sampling i.i.d. the distribution D, and computing the gradient of
f at θ with respect to that sample. In the population model, we could implement this by procedure
either by allowing agents to sample in each step, or by assigning a sample si to each agent i, and
having agents compute gradients of their local models with respect to each others’ samples. We will
assume the following about the gradients:

• Smooth Gradients: The gradient∇f(x) is L-Lipschitz continuous for some L > 0, i.e. for all
x, y ∈ Rd:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (2.3)
4
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• Bounded Variance: The variance of the stochastic gradients is bounded by some σ2 > 0, i.e. for
all x ∈ Rd:

E
∥∥∥g̃ (x)− E[g̃(x)]

∥∥∥2 ≤ σ2. (2.4)

• Bounded Second Moment: The second moment of the stochastic gradients is bounded by some
M2 > 0, i.e. for all x ∈ Rd:

E‖g̃ (x) ‖2 ≤M2. (2.5)

3 THE POPULATION SGD ALGORITHM

Algorithm Description. We now describe a decentralized variant of SGD, designed to be executed
by a population of n nodes, interacting in uniform random pairs as per the population protocol model.
We assume that each node i has access to local stochastic gradients g̃i, and maintains a model estimate
Xi, as well as a local learning rate ηi. For simplicity, we will assume that this initial estimate is
0d at each agent, although its value may be arbitrary. We detail the way in which the learning rates
are updated below. Specifically, upon every interaction, the interacting agents i and j perform the
following steps:

1 % i and j are chosen uniformly at random, with replacement
2 upon each interaction between agents i and j
3 % each agent performs a local SGD step

4 Xi ← Xi − ηig̃i(Xi)

5 Xj ← Xj − ηj g̃j(Xj)
6 % agents average their estimates coordinate-wise

7 avg ← (Xi +Xj)/2

8 Xi ← avg

9 Xj ← avg

Algorithm 1: Population SGD pseudocode for each interaction between arbitrary nodes i and j.

We are interested in the convergence of local models : X1, X2, ..., Xn after T interactions occur in
total. For the theoretical reasons, in the case when f is convex, we derive convergence for yT which
is weighted average of average values of local models per step(See Theorem 4.1). In the beginning of
section 5 we show that by performing single global averaging step at time step 0 ≤ t < T , which
is carefully chosen from specified distribution, we can make sure that in expectation local models
converge with the same rate as yT .
Estimating Time and the Learning Rate. In parallel with the above algorithm, each agent maintains
a local time value V i, which is estimated using a local “phase clock” protocol. These local times are
defined and updated as follows. The initial value at each agent is V i = 0. Upon each interaction,
the interacting agents i and j exchange their time values. The agent with a lower time value, say
V i < V j , will increment its value by 1. The other agent keeps its local value unchanged. (We
break ties arbitrarily.) Although intuitively simple, the above procedure provides strong probabilistic
guarantees on how far individual values may stray from the mean: with high probability,1 all the
estimates V i are in the interval [t/n− c log T, t/n+ c log T ], where c is a constant.
Given the current value of V i at the agent, the value of the learning rate at i is simply ηi = b/(nV i+a),
where a and b are constant parameters which we will fix later. This will ensure that the gap between
two agents’ learning rates will be in the interval [0.5, 2], w.h.p. (See Lemma 4.2.)

4 THE CONVERGENCE OF POPSGD IN THE CONVEX CASE

This section is dedicated to proving that the following result holds with high probability:

Theorem 4.1. Let f be an L-smooth, `-strongly convex function satisfying conditions (2.3)—
(2.5), whose minimum x? we are trying to find via the PopSGD procedure given in Algorithm 1.
Let the learning rate for process i at local time ti = nV it be ηit = b/(ti + a), where a =
max(2cn log T, 18n, 256L/`) and b = 4n/` are fixed(for some constant c). Let the sequence
of weights wt be given by wt = (a + t)2. Define µt =

∑n
i=1X

i
t , ST =

∑T−1
t=0 wt ≥ 1

3T
3 and

1An event holds with high probability (w.h.p.) if it occurs with probability ≥ 1− 1/T γ , for constant γ > 0
and the total number of interactions - T .
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yT = 1
ST

∑T−1
t=0 wtµt. Then, for any time T , we have with probability 1−O(1/ poly T ) that

E[f(yT )− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

9216Tn2

`2ST
M2L. (4.1)

Discussion. We first emphasize that, in the above bound, the time T refers to the number of
interactions (as opposed to parallel time). With this in mind, we focus on the bound in the case
where T � n, and the parameters M , L, and ` are assumed to be well-behaved. In this case, since
ST ≥ T 3/3, the first and third terms are vanishing as T grows, and we get that convergence is
dominated by the second term, which can be bounded as O(σ2/T ). It is tempting to think that this is
roughly the same rate as sequential SGD; however, our notion of time is different, as we are counting
the total number of SGD steps executed in total at all the models. (In fact, the total number of SGD
steps up to T is 2T , since each interaction performs two SGD steps.)
It is interesting to interpret this from the perspective of an arbitrary local model. For this, notice
that the parallel time corresponding to the number of total interactions T , which is by definition
Tp = T/n, corresponds (up to constants) to the average number of interactions and SGD steps
performed by each node up to time T . Thus, for any single model, convergence with respect to its
number of performed SGD steps Tp would be O(σ2/(nTp)), which would correspond to running
SGD with a batch size of n. Notice that this reduction in convergence time is solely thanks to the
averaging step: in the absence of averaging, each local model would converge independently at a
rate of O(σ2/Tp). We note that our discussion assumes a batch size of 1, but it would generalize to
arbitrary batch size b, replacing σ2 with σ2/b. We note that, due to the concentration properties of
the averaging process, the claim above can be extended to show convergence behavior for arbitrary
individual models (instead of the average of models µT ).
Proof Overview. The argument, given in full in the Additional Material, can be split into two steps.
The first step aims to bound the variance of the local models Xi

t at each time t and node i with
respect to the mean µt =

∑
iX

i
t/n. It views this quantity as a potential Γt, which we show has

supermartingale-like behavior, which enables us to bound its expected value as O(η2t n). This shows
that the variance of the parameters is always bounded with respect to the number of nodes, but also,
importantly, that it can be controlled via the learning rate. The key technical step here is Lemma 4.3,
which provides a careful bound for the evolution of the potential at a step, by modelling SGD as
a dynamic load balancing process: each interaction corresponds to a weight generation step (in
which gradients are generated) and a load balancing step, in which the “loads” of the two nodes
(corresponding to their model values) are balanced through averaging.
In the second step of the proof, we first bound the rate at which the mean µt converges towards x∗,
where we crucially (and carefully) leverage the variance bound obtained above. This is our second
key technical lemma. Next, with this in hand, we can apply a standard argument to characterize the
rate at which the quantity E[f(yT )− f(x∗)] converges towards 0.
Notation and Preliminaries. In this section, we overview the analysis of the PopSGD protocol. We
begin with some notation. Recall that n is the number of nodes. We will analyze a sequence of time
steps t = 1, 2, . . . , T , each corresponding to an individual interaction between two nodes, which are
usually denoted by i and j. We will consider that T = O(poly n), and therefore w.h.p. results are
assumed to hold throughout the execution. Recall the definition of parallel time Tp = T/n, where
T counts the number of pairwise interactions. For any time t, define by ηt = b/(a + t) the “true”
learning rate at time t, where a and b are constants to be fixed later, such that a ≥ 2cn log n for some
constant c. We denote by x∗ the optimum of the function f .
Learning Rate Estimates. Our first technical result characterizes the gap between the “global”
learning rate ηt = b/(a + t) (in terms of the true time t), and the individual learning rates at an
arbitrary agent i at the same time, denoted by ηit.

Lemma 4.2. Let ηit = b/(a+nV it ), be the learning rate estimate of agent i at time step t, in terms of
its time estimate V it . Then, there exists a constant γ > 1 such that, with probability at least 1− 1/T γ

(Here, T is a total number of steps our algorithms takes), the following holds for every T ≥ t ≥ 0
and agent i:

1

2
≤ ηt
ηit
≤ 2. (4.2)
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Step 1: Parameter Concentration. Next, let Xt be a vector of model estimates at time step t, that

is Xt = (X1
t , X

2
t , ..., X

n
t ). Also, let µt = 1

n

n∑
i=1

Xi
t , be an average estimate at time step t. The

following potential function measures the concentration of the models around the average:

Γt =

n∑
i=1

‖Xi
t − µt‖2.

With this in place, one of our key technical results is to provide a supermartingale-type bound on the
evolution of the potential Γt, in terms of M , ηt, and the number of nodes n.

Lemma 4.3. For any time step t and fixed learning rate ηt used at t, we have the bound

E[Γt+1|Γt] ≤
(

1− 1

n

)
Γt + 4ηtM

(Γt
n

)1/2
+ 8η2tM

2.

Next, we unroll this recurrence to upper bound Γt in expectation for any time step t, by choosing an
appropriate series of non-constant learning rates.

Lemma 4.4. If a ≥ 18n , then the potential is bounded as follows

E[Γt] ≤ 36nb2/(t+ a)2M2 = 36nη2tM
2.

Step 2: Convergence of the Mean and Risk Bound. The above result allows us to characterize how
well the individual parameters are concentrated around their mean, in terms of the second moment
of the gradients, the number of nodes, and the learning rate. In turn, this will allow us to provide
a recurrence for how fast the parameter average is moving towards the optimum, in terms of the
variance and second-moment bounds of the gradients:

Lemma 4.5. For ηt ≤ n
64L , we have that

E
∥∥∥µt+1 − x∗

∥∥∥2 ≤ (1− ηt`

n

)
E‖µt − x∗‖2 −

ηt
2n

E[f(µt)− f(x∗)] +
16σ2η2t
n2

+
288η3tM

2L

n
.

Finally, we wish to phrase this bound as a recurrence which will allow us to bound the expected risk
of the weighted sum average. We aim to use the following standard result (see e.g. Stich (2018)):

Lemma 4.6. Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤
(

1− `αt
)
at − αtetA+ α2

tB + α3
tC,

for αt = 4
`(t+a) , A > 0, B,C ≥ 0, ` > 0 then

A

ST

T−1∑
t=0

wtet ≤
`a3

4ST
a0 +

2T (T + 2a)

`ST
B +

16T

`2ST
C, (4.3)

for wt = (a+ t)2 and ST =
∑T−1
t=0 wT ≥ 1

3T
3.

To use the above lemma, we set ηt = nαt = 4n
`(t+a) , and the parameter b = 4n/`. We also

use A = 1/2, B = 16σ2, and C = 288M2Ln2. Let yT = 1
nST

∑n
i=1

∑T−1
t=0 wtX

i
t . Also, let

et = E[f(µt)− f(x∗)] and at = E
∥∥∥µt − x∗∥∥∥2. By the convexity of f we have that

E[f(yT )− f(x∗)] ≤ 1

ST

T−1∑
t=0

wtE[f(µt)− f(x∗)] (4.4)

Using this fact and Lemma 4.6 above we obtain the following final bound:

E[f(yT )− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

9216Tn2

`2ST
M2L. (4.5)

To complete the proof of the Theorem, we only need to find the appropriate value of the parameter
a. For that, we list all the constraints on a: a ≥ 2cn log T, a ≥ 18n and 4n

`(t+a) ≤
n

64L . These

inequalities can be satisfied by setting a = max
(

2cn log T, 18n, 256L`

)
. This concludes our proof.
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5 EXTENSIONS

Convergence of local models and alternative to computing yT . Notice that Theorem 4.1 measures
convergence of f(yT ), where yT =

∑T−1
t=0

wt

ST

∑n
i=1X

i
t

n =
∑T−1
t=0

wt

ST
µt, is a weighted average of

µt-s per step. Notice that actually computing yT can be expensive, since we need values of local
models over T steps and it does not necessarily guarantee convergence of each individual model. In
order to circumvent this issue, we can look at the following inequality, which in combination with the
Jensen’s inequality gives us the proof of Theorem 4.1 (Please see Appendix for details) :

1

ST

T−1∑
t=0

wtE[f(µt)− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

9216Tn2

`2ST
M2L. (5.1)

What we can do is, instead of computing yT , we just sample time step 0 ≤ t ≤ T −1 with probability
wt

ST
and compute f(µt) = f(

∑n
i=1X

i
t/n), by using single global averaging procedure. Observe that

Et[Eµt
[f(µt)]] is exactly the left hand side of the above inequality.

Hence, we get the convergence identical to the one in Theorem 4.1 and additionally, since we are
using global averaging, we also guarantee the same convergence for each local model. Finally, we
would like to emphasize that in practice there is no need to compute yT or to use global averaging,
since local models are already converged after T interactions.
General Interaction Graphs. Our analysis can be extended to more general interaction graphs by
tying the evolution of the potential in this case. In the following, we present the results for a cycle,
leaving the exact derivations for more general classes of expander graphs for the full version. In
particular, we assume that each agent is a node on a cycle, and that it is allowed to interact only with
its neighbouring nodes. Again, the scheduler chooses interaction edges uniformly at random. In this
setting, we can show the following result, which is similar to Theorem 4.1:

Theorem 5.1. Let f be an L-smooth, `-strongly convex function satisfying conditions (2.3)—(2.5),
whose minimum x? we are trying to find via the PopSGD procedure on a cycle. Let the learning rate
for process i at local time ti = nV it be ηit = b/(ti+a), where a = max(2cn log T, 18n, 256L/`) and
b = 4n/` are fixed(for some constant c). Let the sequence of weights wt be given by wt = (a+ t)2.
Define µt =

∑n
i=1X

i
t , ST =

∑T−1
t=0 wt ≥ 1

3T
3 and yT = 1

ST

∑T−1
t=0 wtµt. Then, for any time T ,

we have with probability 1−O(1/ poly T ) that

E[f(yT )− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

25600Tn6

`3ST
M2L2.

Notice that for T � n3, the second term dominates convergence and we can repeat the same argument
as for Theorem 4.1 to show O(σ2/T ) convergence (where T is the total number of interactions).
Next we provide the sketch of a proof for the PopSGD on a cycle case. The crucial part of the proof
is to show the following bound for the Γt potential per step:

E[Γt+1|Γt] ≤
(

1− 1

O(n3)

)
Γt + 4ηtM

(Γt
n

)1/2
+ 8η2tM

2.

Notice that the above inequality is similar to Lemma 4.3 (Except a factor in front of ΓT is larger for a
cycle, since "information" propagates slower on a cycle) and it allows us to show that:

E[Γt] ≤ O(n5η2tM
2)

This, in turn, allows us to prove the above theorem , by carefully following the steps in the proof of
Lemma 4.5 and then by using Lemma 4.6 to finish the proof.
The Non-Convex Case. Next, we show convergence for non-convex, but smooth functions:

Theorem 5.2. Let f be an non-convex, L-smooth, function satisfying conditions (2.3) and (2.5),
whose minimum x? we are trying to find via the PopSGD procedure given in Algorithm 1. Define
µt =

∑n
i=1X

i
t . For the total number of interactions - T , time step 0 ≤ t < T and process i, let

ηt = ηit =
√
n/
√
T (for any process, learning rate does not depend on current local or global time).

Then, for any T , we have that:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
2
√
n(f(µ0)− f(x∗))√

T
+

144LM2n

T
+

16LM2
√
n√

T
(5.2)
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The proof follows from the more general version of the theorem, which is proved in the appendix,
see Theorem B.2. Observe that, since T is the total number of interactions and is equal to nTp,
where Tp is a parallel time, we get convergence O(

√
n/
√
T ) = O(1/

√
Tp). This matches O(1/

√
T )

convergence of the sequential version. (Note that in the sequential case parallel time and the total
number of interactions are the same.)

6 EXPERIMENTAL RESULTS

In this section, we validate our results numerically by implementing PopSGD in Pytorch, using
MPI for inter-node communication (MPI). We are interested in the convergence behavior of the
algorithm, and in the scalability with respect to the number of nodes. Our study is split into simulated
experiments for convex objectives–to examine the validity of our analysis as n increases—and large-
scale real-world experiments for non-convex objectives (training neural networks), aimed to examine
whether PopSGD can provide scalability and convergence for such objectives.
Convex Objectives. To validate our analysis in the convex case, we evaluated the performance
of PopSGD on three datasets: (1) a real-world linear regression problem (the Year Prediction
dataset (Chang & Lin, 2011)) with a 463, 715/51, 630 test/train split, and d = 90; (2) a real-world
classification problem (gisette (Chang & Lin, 2011)) with 6, 000/1, 000 test/train split, and d = 5000;
(3) a synthetic least-squares problem of the form (2.2) with f(x) = 1

2‖Ax− b‖
2, where A ∈ Rm×d

and b ∈ Rm, with m = 104 and variable d. As a baseline, we employ vanilla SGD with manual
learning rate tuning. The learning rate is adjusted in terms of the number of local steps each node has
taken, similar to our analysis.

(a) PopSGD test loss vs. n on Year Prediction. (b) PopSGD test loss vs. n on Gisette.

Figure 1: PopSGD convergence (test loss at the step versus parallel time) for various node counts n on a real
linear regression (left) and logistic regression (right) datasets. The baseline is sequential SGD, which
is identical to PopSGD with node count 1.

Our first set of experiments examines train and test loss for PopSGD on the real-world tasks specified
above. We examine the test loss behavior with respect to the number of nodes n, and execute
for powers of 10 between 1 and 10000. Each node obtains a stochastic gradient by sampling 128
elements from the training set in a batch. We tuned the learning rate parameter for each instance
independently, through line search, and obtained learning rates in the interval [0.0005, 0.015] for
Gisette, and [0.05, 0.2] for Year Prediction.
Please see Figure 1(b) for the results.(The number of epochs is cropped to maintain visibility, but
the trends are maintained in general.) The results confirm our analysis; notice in particular the clear
separation between instances for different n, which follows exactly the increase in the number of
nodes, although the X axis values correspond to the same number of gradient steps for the local
model. In Appendix A, we present additional experiments which precisely examine the reduction in
variance versus the number of nodes on the synthetic regression task, confirming our analysis.
Training Neural Networks. Our second set of experiments tests PopSGD in a realistic distributed
environment. For this, we implemented PopSGD in Pytorch using MPI one-sided primitives (MPI),
which allow nodes to read eachothers’ models for averaging without explicit synchronization. We
used PopSGD to train ResNets on the classic CIFAR-10 and ImageNet datasets, and deploy our code
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on the CSCS Piz Daint supercomputer, which is composed of Cray XC50 nodes, each with a Xeon
E5-2690v3 CPU and an NVIDIA Tesla P100 GPU, using a state-of-the-art Aries interconnect.
Training proceeds in epochs, each of which is structured as follows. At the beginning of each epoch,
we shuffle the dataset and split it into n/2 partitions, ensuring that each partition will be assigned
to exactly two processes. We define a fixed constant mult, which counts the number of times each
process will iterate through its partition in an epoch. In our experiments, mult takes values between
1 and 4. Intuitively, mult follows the intuition given by Theorems 4.1 and 5.2, which suggest that
PopSGD needs additional iterations for the information in each partition to propagate to all nodes.
Given this setup, PopSGD may appear wasteful, since each sample is processed 2×mult times in each
epoch. We compensate for this by compressing the standard training schedules for the networks we
examine, dividing the total number of epochs by n, and scaling the learning rate updates accordingly.
We keep local batch sizes constant with respect to the sequential baseline. That is, in an experiment
with n = 32 nodes and multiplier mult = 4, PopSGD processes each sample 32/(2× 4) = 4 less
times than standard sequential or data-parallel SGD, and performs 8× less gradient updates per
model. Surprisingly, we found this to be sufficient to preserve both train and test accuracy. Figure 2
shows the test and train accuracies for the ResNet18 model trained on the ImageNet dataset, with 32
Piz Daint nodes and mult = 4, as well as scalability versus number of nodes.

Figure 2: PopSGD train and test accuracy using 32 nodes on Piz Daint, measured at a fixed arbitrary node. The
iteration multipler value is mult = 4. The X axis measures SGD steps per model, whereas the Y axis
measures Top-1 accuracy. The dotted red line is the accuracy of the Torchvision baseline (Marcel &
Rodriguez, 2010). PopSGD surpasses the test accuracy of the baseline by 0.34%, although it processes
each sample 4× less times, and each model sees 8× less gradient updates. The right graph shows the
increase in average time per batch versus number of nodes (logarithmic), due to network effects.

The results suggest that PopSGD can indeed preserve convergence while ensuring scalability for this
complex task. We note that the hyperparameters used for model training are identical to the standard
sequential recipe (batch size 128 per node), with the sole exception of the mult parameter, for which
we found low constant values (1–4) to be sufficient. Appendix A presents additional experiments for
ResNet50/Imagenet and ResNet20/CIFAR-10, which further substantiate this claim.

7 DISCUSSION AND FUTURE WORK

We have analyzed for the first time the convergence of decentralized SGD in the population model
of distributed computing. We have shown that, despite the extremely weak synchronization charac-
teristics of this model, SGD is able to still converge in this setting, and moreover, under parameter
and objective assumptions, can even achieve linear speedup in the number of agents n in terms of
parallel time. The empirical results confirmed our analytical findings. The main surprising result is
that PopSGD presents speedup behavior roughly similar to mini-batch SGD, even though a node only
sees one gradient update and a single model at a time. This asymptotic speedup behavior is obviously
optimal (assuming all other parameters are constant), since we cannot expect super-linear speedup in
n. Similar speedup behavior required either the existence of synchronized rounds (e.g. Lian et al.
(2017a)), or global averaging steps (Stich, 2018), or both. Our work opens several avenues for future
work. One natural extension is to study PopSGD with quantized communication, or allowing the
interactions to present inconsistent (stale) model views to the two agents. Another avenue is to
tighten the bounds in terms of their dependence on the problem conditioning, and on the objective
assumptions.
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(a) PopSGD convergence vs. n. (b) PopSGD convergence vs. mini-batch SGD.

Figure 3: PopSGD convergence (training loss at the step versus parallel time) on the synthetic regression task
versus the number of nodes n (left), and versus sequential SGD with different batch sizes (right).
Sequential SGD is identical to PopSGD with node count 1. The cutouts represent zoomed views.

A ADDITIONAL EXPERIMENTS

Convex Losses. In these experiments, we examine the convergence of PopSGD versus parallel time
for different node counts, and compared it with the sequential baseline. More precisely, for PopSGD,
we execute the protocol by simulating the entire sequence of interactions sequentially, and track the
evolution of train and test loss at an arbitrary fixed model xi with respect to the number of SGD steps
it performs. Notice that this is practically equivalent to tracking with respect to parallel time. In this
case, the theory suggests that loss convergence and variance should both improve when increasing
the number of nodes. Figure 3(a) presents the results for the synthetic linear regression example with
d = 32, for various values of n, for constant learning rate η = 0.001 across all models, and batch
size 1 for each local gradient. Figure 3(b) compares PopSGD convergence (with local batch size 1)
against sequential mini-batch SGD with batch size equal to the number of nodes n.
Examining Figure 3(a), we observe that both the convergence and loss variance improve as we
increase the number of nodes n, even though the target model executes exactly the same number of
gradient steps at the same point on the x axis. Of note, variance decreases proportionally with the
number of nodes, with n = 128 having the smallest variance. Compared to mini-batch SGD with
batch size = n (Figure 3(b)), PopSGD with n = 128 has similar, but notably higher variance, which
follows the analytical bound in Theorem 4.1.
CIFAR-10 Experiments. We illustrate convergence and scaling results for non-convex objectives
by using PopSGD to train a standard ResNet20 DNN model on CIFAR-10 in Pytorch, using 8 GPU
nodes, comparing against vanilla and local SGD performing global averaging every 100 batches (we
found this value necessary for the model to converge). We measure the error/loss at an arbitrary
process for PopSGD. We run the parallel versions at 4 and 8 nodes.
The results in Figure 4(c) show that (a,b) PopSGD does indeed converge faster as we increase
population size, tracking the trend from the convex case; and (c) PopSGD can provide non-trivial
scalability, comparable or better than data-parallel and local SGD.
Training ResNet50 on ImageNet. Figure 4 shows the test and train accuracies for the ResNet50
model trained on the ImageNet dataset, with 32 Piz Daint nodes and mult = 4. PopSGD achieves
test accuracy within < 0.5% relative to the Torchvision baseline, despite the vastly inferior number
of iterations, in a total of 29 hours. By way of comparison, end-to-end training using standard
data-parallel SGD takes approximately 48h on the same setup (using 8 GPUs instead of 32 to avoid
large-batch effects).

B COMPLETE CORRECTNESS ARGUMENT

Lemma 4.2. Let ηit = b/(a+nV it ), be the learning rate estimate of agent i at time step t, in terms of
its time estimate V it . Then, there exists a constant γ > 1 such that, with probability at least 1− 1/T γ

(Here, T is a total number of steps our algorithms takes), the following holds for every T ≥ t ≥ 0
14
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(a) Train accuracy for ResNet20/CIFAR10. (b) Test error for ResNet20/CIFAR10.

(c) Time to 90% train accuracy.

Figure 4: PopSGD train and test accuracy using 32 nodes on Piz Daint, measured at a fixed arbitrary node, for
training ResNet50 on ImageNet. The round multipler value is mult = 4. The X axis measures SGD
steps per model, whereas the Y axis measures Top-1 accuracy. The dotted red line is the accuracy
of the Torchvision baseline (Marcel & Rodriguez, 2010). PopSGD is below the test accuracy of the
baseline by < 0.5%.

and agent i:
1

2
≤ ηt
ηit
≤ 2. (B.1)

Proof. Let Gt =
n∑
i=1

exp
(
ζ(V it − t

n )
)

+
n∑
i=1

exp
(
− ζ(V it − t

n )
)
, for some fixed constant ζ. The

following lemma is proved as Theorem 2.10 in Peres et al. (2015b):

Lemma B.1. For any t ≥ 0, and some fixed constants ε and θ, E[Gt] ≤ 4θ
ζεn.
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Subsequently, we can show that for any t ≥ 0 and agent i:

Pr
[
| t
n
− V it |≥

q

ζ
log T

]
≤ Pr[Gt ≥ T q]

Markov
≤ 4θ

ζε

n

T q
. (B.2)

Hence, for large enough constant q, using union bound over T steps, we can show that there exists a
constant γ > 0 such that for every T ≥ t ≥ 0 and agent i, | tn − V

i
t |≤

q
ζ log T , with probability at

least 1− 1/T γ .
Let c be q

ζ , thus a ≥ 2cn log T = 2 qζn log T . This allows us to finish the proof of the lemma:

1

2
≤
a+ t− q

ζn log T

a+ t
≤ ηt
ηit
≤
a+ t+ q

ζn log T

a+ t
≤ 2. (B.3)

�

This allows us to bound the per step change of potential Γ, in terms of global learning rate ηt.

Lemma 4.3. For any time step t and fixed learning rate ηt used at t, we have the bound

E[Γt+1|Γt] ≤
(

1− 1

n

)
Γt + 4ηtM

(Γt
n

)1/2
+ 8η2tM

2.

Proof. First we bound change in potential ∆t = Γt+1 − Γt for some time step t > 0. Let ∆i,j
t be

a change in potential when we choose different agents i and j at random and let ∆i
t be a change in

potential when we select the same node i. We get that

E
[
∆t|Xt

]
=
∑
i

∑
i6=j

1

n2
E
[
∆i,j
t |Xt

]
+

n∑
i=1

1

n2
E
[
∆i
t|Xt

]
. (B.4)

We proceed by bounding a change in potential for fixed i 6= j. Observe, that in this case
µt+1 = µt − (ηitg̃i(X

i
t) + ηjt g̃j(X

j
t ))/n and Xi

t+1 = Xj
t+1 = (Xi

t + Xj
t )/2 − (ηitg̃i(X

i
t) +

ηjt g̃j(X
j
t ))/2.

Hence,

Xi
t+1 − µt+1 = Xj

t+1 − µt+1 = (Xi
t +Xj

t )/2− n− 2

2n
(ηtg̃i(X

i
t) + ηtg̃j(X

j
t ))− µt.

For k /∈ {i, j}, since Xk
t+1 = Xk

t we get that

Xk
t+1 − µt+1 = Xk

t +
1

n
(ηtg̃i(X

i
t) + ηtg̃j(X

j
t ))− µt.

This gives us that

E
[
∆i,j
t |Xt

]
= E

∥∥∥(Xi
t +Xj

t )/2− n− 2

2n
(ηitg̃i(X

i
t) + ηjt g̃j(X

j
t ))− µt‖2 − ‖Xi

t − µt‖2

+ E
∥∥∥(Xi

t +Xj
t )/2− n− 2

2n
(ηitg̃i(X

i
t) + ηjt g̃j(X

j
t ))− µt‖2 − ‖Xj

t − µt‖2

+
∑

k/∈{i,j}

(
E
∥∥∥Xk

t +
1

n
(ηitg̃i(X

i
t) + ηjt g̃j(X

j
t ))− µt

∥∥∥2 − ‖Xk
t − µt‖2

)
= 2‖(Xi

t − µt)/2 + (Xj
t − µt)/2‖2 − ‖Xi

t − µt‖2 − ‖X
j
t − µt‖2

− n− 2

n
E〈ηitg̃i(Xi

t) + ηjt g̃j(X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ 2
(n− 2

2n

)2
E‖ηitg̃i(Xi

t) + ηjt g̃j(X
j
t )‖2

+
∑

k/∈{i,j}

( 2

n
E〈ηitg̃i(Xi

t) + ηjt g̃j(X
j
t ), Xk

t − µt〉+
1

n2
E‖ηitg̃i(Xi

t) + ηjt g̃j(X
j
t )‖2

)
Observe that

E‖ηitg̃i(Xi
t)+ηtg̃j(X

j
t )‖2 ≤ 2(ηit)

2E‖gi(Xi
t)‖2+2(ηjt )

2E‖gj(Xj
t )‖2

Fact (2.5)
≤ 2M2

(
(ηit)

2+(ηjt )
2
) Lemma 4.2

≤ 16η2tM
2.
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and
n∑
k=1

E〈ηitg̃i(Xi
t) + ηjt g̃j(X

j
t ), Xk

t − µt〉 = 0.

Thus, we have that

E
[
∆i,j
t |Xt

]
≤ 2‖(Xi

t − µt)/2 + (Xj
t − µt)/2‖2 − ‖Xi

t − µt‖2 − ‖X
j
t − µt‖2

− E〈ηitg̃i(Xi
t) + ηtg̃j(X

j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ 32η2t

(n− 2

2n

)2
M2 +

∑
k/∈{i,j}

16

n2
η2tM

2

≤ − ‖Xi
t − µt‖2/2− ‖X

j
t − µt‖2/2 + 〈Xi

t − µt, X
j
t − µt〉

− E〈ηitg̃i(Xi
t) + ηjt g̃j(X

j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ 8η2tM
2. (B.6)

similarly we can prove that

E
[
∆i
t|Xt

]
≤ −E〈ηitg̃i(Xi

t) + ηitg̃i(X
i
t), (X

i
t − µt) + (Xi

t − µt)〉+ 8η2tM
2. (B.7)

By using inequalities B.6 and B.7 in inequality B.4 we get that

E
[
∆t|Xt

]
=

∑
i

∑
i 6=j

1

n2
E
[
∆i,j
t |Xt

]
+

n∑
i=1

1

n2
E
[
∆t
i|Xt

]
≤ −

∑
i

∑
i 6=j

1

n2

(
‖Xi

t − µt‖2/2 + ‖Xj
t − µt‖2/2

)
+
∑
i

∑
i 6=j

1

n2
〈Xi

t − µt, X
j
t − µt〉

−
∑
i

∑
j

1

n2
E〈ηitg̃i(Xi

t) + ηjt g̃j(X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉+ 8η2tM

2.

Observe that∑
i

∑
i 6=j

1

n2
〈Xi

t−µt, X
j
t −µt〉 =

n∑
i=1

1

n2
〈Xi

t−µt,
∑
j 6=i

Xj
t −µt〉 =

1

n2

∑
i

−‖Xi
t−µt‖2 = − 1

n2
Γt.

and ∑
i

∑
i6=j

1

n2

(
‖Xi

t − µt‖2/2 + ‖Xj
t − µt‖2/2

)
=
n− 1

n2

∑
i

‖Xi
t − µt‖2 =

n− 1

n2
Γt.

Hence, we get that

E
[
∆t|Xt

]
≤ −Γt

n
−
∑
i

∑
j

1

n2
E〈ηitg̃i(Xi

t)+ηjt g̃j(X
j
t ), (Xi

t−µt)+(Xj
t −µt)〉+8η2tM

2. (B.9)

Further, we have that∑
i

∑
j

1

n2
E〈ηitg̃i(Xi

t) + ηjt g̃j(X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉

=
∑
i

∑
j

1

n2
E〈ηitg̃i(Xi

t), (X
j
t − µt)〉+

∑
i

∑
j

1

n2
E〈ηjt g̃j(X

j
t ), (Xi

t − µt)〉+

n∑
i=1

2ηit
n

E〈g̃i(Xi
t), X

i
t − µt〉

=

n∑
i=1

2ηit
n

E〈g̃i(Xi
t), X

i
t − µt〉

Cauchy-Schwarz
≤

n∑
i=1

2ηit
n

E
[
‖g̃i(Xi

t)‖ · ‖Xi
t − µt‖

]
=

n∑
i=1

2ηit
n

E
[
‖g̃i(Xi

t)‖
]
‖Xi

t − µt‖
Jensen
≤

n∑
i=1

2ηit
n

(
E‖g̃i(Xi

t)‖2
) 1

2 ‖Xi
t − µt‖ ≤

n∑
i=1

2ηitM

n
‖Xi

t − µt‖

Lemma 4.2
≤ 4ηtM

n

n∑
i=1

‖Xi
t − µt‖

Cauchy-Schwarz
≤ 4ηtM

n

(
n

n∑
i=1

‖Xi
t − µt‖2

)1/2
= 4ηtM

(Γt
n

)1/2
.
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By plugging above inequality in inequality B.9, we get that

E[∆t|Xt] ≤ −
Γt
n

+ 4ηtM
(Γt
n

)1/2
+ 8η2tM

2.

Hence, considering the definition of ∆t and the fact that the above inequality implies

E[∆t|Γt] ≤ −
1

n
Γt + 4ηtM

(Γt
n

)1/2
+ 8η2tM

2,

we get the proof of the Lemma. �

Lemma 4.4. If a ≥ 18n , then the potential is bounded as follows

E[Γt] ≤ 36nb2/(t+ a)2M2 = 36nη2tM
2.

Proof. We prove the lemma using induction. Base case t = 0 trivially holds, since Γt = 0. For
induction step, we assume that at time step t, E[Γt] ≤ 36nb2M2/(t+ a)2. Our goal is to prove that
E[Γt+1] ≤ 36nb2M2/(t+ a+ 1)2.

E[Γt+1] = E[E[Γt+1|Γt]]
Lemma 4.3
≤

(
1− 1

n

)
E[Γt] + 4ηtME

[(Γt
n

)1/2]
+ 8η2tM

2

Jensen
≤

(
1− 1

n

)
E[Γt] + 4ηtM

(
E
[Γt
n

])1/2
+ 8η2tM

2

≤
(

1− 1

n

)36nb2M2

(t+ a)2
+

24b2M2

(t+ a)2
+

8b2M2

(t+ a)2

≤ 36nb2M2

(t+ a+ 1)2
+
(36nb2M2

(t+ a)2
− 36nb2M2

(t+ a+ 1)2

)
− 4b2M2

(t+ a)2

=
36b2M2

(t+ a+ 1)2
+

36nb2M2
(

2(t+ a) + 1
)

(t+ a)2(t+ a+ 1)2
− 4b2M2

(t+ a)2

≤ 36nb2M2

(t+ a+ 1)2
+

72nb2M2(t+ a+ 1)

(t+ a)2(t+ a+ 1)2
− 4b2M2

(t+ a)2
.

Using the fact that t+ a+ 1 ≥ a ≥ 18n in the above inequality allows us to get

E[Γt+1] ≤ 36nb2M2

(t+ a+ 1)2
+

4b2M2

(t+ a)2
− 4b2M2

(t+ a)2
≤ 36nb2M2

(t+ a+ 1)2
.

�

Lemma 4.5. For ηt ≤ n
64L , we have that

E
∥∥∥µt+1 − x∗

∥∥∥2 ≤ (1− ηt`

n

)
E‖µt − x∗‖2 −

ηt
2n

E[f(µt)− f(x∗)] +
16σ2η2t
n2

+
288η3tM

2L

n
.

Proof. Let Ft be the amount by which µt decreases at step t. So, Ft is a sum of ηit
n g̃i(X

i
t) and

ηjt
n g̃(Xj

t ) for agents i and j, which interact at step t. Also, let F ′t be the amount by which µt would
decrease if interacting agents used true gradients. That is, for agents i and j which interact at step t,
F ′t is sum of η

j
t

n ∇f(Xi
t) and ηjt

n ∇f(Xj
t ).

E
∥∥∥µt+1 − x∗

∥∥∥2 = E
∥∥∥µt − Ft − x∗∥∥∥2 = E

∥∥∥µt − Ft − x∗ − F ′t + F ′t

∥∥∥2
= E

∥∥∥µt − x∗ − F ′t∥∥∥2 + E
∥∥∥F ′t − Ft∥∥∥2 + 2E

〈
µt − x∗ − F ′t , F ′t − Ft

〉
(B.10)

Observe that E[Ft] = F ′t , hence the last term in the equation above is 0. This means that in order to

upper bound E
∥∥∥µt+1 − x∗

∥∥∥2, we need to upper bound E
∥∥∥µt − x∗ − F ′t∥∥∥2 and E

∥∥∥F ′t − Ft∥∥∥2.
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For the latter, we get that

E
∥∥∥F ′t − Ft∥∥∥2 =

1

n2

n∑
i=1

n∑
j=1

E
∥∥∥ηit
n

(g̃i(X
i
t)−∇f(Xi

t)) +
ηjt
n

(g̃j(X
j
t )−∇f(Xj

t ))
∥∥∥2

≤ 2

n2

n∑
i=1

n∑
j=1

((ηit
n

)2
E‖g̃i(Xi

t)−∇f(Xi
t)‖2 +

(ηjt
n

)2
E‖g̃j(Xj

t )−∇f(Xj
t )‖2

)

=
4

n

n∑
i=1

(ηit
n

)2
E‖g̃i(Xi

t)−∇f(Xi
t)‖2

Fact (2.4)
≤ 4

n

n∑
i=1

(ηit
n

)2
σ2

Lemma 4.2
≤ 16

σ2η2t
n2

.

For the former, we have that

E
∥∥∥µt − x∗ − F ′t∥∥∥2 = E‖µt − x∗‖2 + E‖F ′t‖2 − 2E〈µt − x∗, F ′t 〉

= E‖µt − x∗‖2 +
1

n2

n∑
i=1

n∑
j=1

E‖η
i
t

n
∇f(Xi

t) +
ηjt
n
∇f(Xj

t )‖2

− 1

n2

n∑
i=1

n∑
j=1

2E〈µt − x∗,
ηit
n
∇f(Xi

t) +
ηjt
n
∇f(Xj

t )
〉

≤ E‖µt − x∗‖2 +
4

n3

n∑
i=1

(ηit)
2E‖∇f(Xi

t)‖2 −
4

n2

n∑
i=1

E〈µt − x∗, ηit∇f(Xi
t)
〉

= E‖µt − x∗‖2 +
4

n3

n∑
i=1

(ηit)
2E‖∇f(Xi

t)−∇f(x∗)‖2 − 4

n2

n∑
i=1

E〈µt −Xi
t +Xi

t − x∗, ηit∇f(Xi
t)
〉

= E‖µt − x∗‖2 +
4

n3

n∑
i=1

(ηit)
2E‖∇f(Xi

t)−∇f(x∗)‖2 − 4

n2

n∑
i=1

ηitE
〈
µt −Xi

t ,∇f(Xi
t)
〉

− 4

n2

n∑
i=1

ηitE
〈
Xi
t − x∗,∇f(Xi

t)
〉

(B.11)

In order to bound ‖∇f(Xi
t)−∇f(x∗)‖2 we can use theL−smoothness property for convex functions,

in the following form

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L
‖∇f(y)−∇f(x)‖2. (B.12)

By setting y = Xi
t and x = x∗ we get

‖∇f(Xi
t)−∇f(x∗)‖2 ≤ 2L(f(Xi

t)− f(x∗)). (B.13)
Additionally, by `−strong convexity, we have that

−
〈
Xi
t − x∗,∇f(Xi

t)
〉
≤ −(f(Xi

t)− f(x∗))− `

2
‖Xi

t − x∗‖2. (B.14)

By Cauchy-Schwarz inequality, we get that

−2
〈
µt −Xi

t ,∇f(Xi
t)
〉
≤ 2L‖Xi

t − µt‖2 + ‖∇f(Xi
t)‖2/(2L)

= 2L‖Xi
t − µt‖2 + ‖∇f(Xi

t)−∇f(x∗)‖2/(2L)

Using L−smoothness property (B.13) in the above inequality gives us that

− 2
〈
µt −Xi

t ,∇f(Xi
t)
〉
≤ 2L‖Xi

t − µt‖2 + (f(Xi
t)− f(x∗)). (B.15)

By plugging inequalities (B.13), (B.14) and (B.15) in inequality (B.11), we get

E
∥∥∥µt − x∗ − F ′t∥∥∥2 ≤ E‖µt − x∗‖2 +

4L

n2

n∑
i=1

ηitE‖Xi
t − µt‖2
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+
8L

n3

n∑
i=1

(ηit)
2E[f(Xi

t)− f(x∗)]− 2

n2

n∑
i=1

ηitE[f(Xi
t)− f(x∗)]

− 2`

n2

n∑
i=1

ηitE‖Xi
t − x∗‖2.

Observe that E‖Xi
t − x∗‖2, E‖Xi

t − µt‖2 and E[f(Xi
t)− f(x∗)] are non-negative terms, Thus, by

using Lemma 4.2 in the above inequality we have that:

E
∥∥∥µt − x∗ − F ′t∥∥∥2 ≤ E‖µt − x∗‖2 +

8Lηt
n2

n∑
i=1

E‖Xi
t − µt‖2

+
32L(ηt)

2

n3

n∑
i=1

E[f(Xi
t)− f(x∗)]− ηt

n2

n∑
i=1

E[f(Xi
t)− f(x∗)]

− ηt`

n2

n∑
i=1

E‖Xi
t − x∗‖2

= E‖µt − x∗‖2 +
8Lηt
n2

n∑
i=1

E‖Xi
t − µt‖2

+
ηt
n2

n∑
i=1

((32Lηt
n
− 1
)
E[f(Xi

t)− f(x∗)]− `E‖Xi
t − x∗‖2

)
.

By using ηt ≤ n
64L in the above inequality we get that

E
∥∥∥µt − x∗ − F ′t∥∥∥2 ≤ E‖µt − x∗‖2 +

8Lηt
n2

n∑
i=1

E‖Xi
t − µt‖2

+
ηt
n2

n∑
i=1

(
− 1

2
E[f(Xi

t)− f(x∗)]− `E‖Xi
t − x∗‖2

)
.

By Jensen’s inequality and convexity of f and square of norm we have that

E
∥∥∥µt − x∗ − ηt

n
F ′t

∥∥∥2 ≤ E‖µt − x∗‖2 +
8ηtL

n2

n∑
i=1

E‖Xi
t − µt‖2

+
ηt
n

(
− 1

2
E[f(µt)− f(x∗)]− `E‖µt − x∗‖2

)

=
(

1− ηt`

n

)
E‖µt − x∗‖2 −

ηt
2n

E[f(µt)− f(x∗)] +
8ηtL

n2
E[Γt]

Lemma 4.4
≤

(
1− ηt`

n

)
E‖µt − x∗‖2 −

ηt
2n

E[f(µt)− f(x∗)]

+
288η3tM

2L

n
Finally, by using the above inequality in inequality (B.10) we get

E
∥∥∥µt+1 − x∗

∥∥∥2 ≤ (1− ηt`

n

)
E‖µt − x∗‖2 −

ηt
2n

E[f(µt)− f(x∗)] +
16σ2η2t
n2

+
288η3tM

2L

n

�

Theorem 4.1. Let f be an L-smooth, `-strongly convex function satisfying conditions (2.3)—
(2.5), whose minimum x? we are trying to find via the PopSGD procedure given in Algorithm 1.
Let the learning rate for process i at local time ti = nV it be ηit = b/(ti + a), where a =
max(2cn log T, 18n, 256L/`) and b = 4n/` are fixed(for some constant c). Let the sequence
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of weights wt be given by wt = (a + t)2. Define µt =
∑n
i=1X

i
t , ST =

∑T−1
t=0 wt ≥ 1

3T
3 and

yT = 1
ST

∑T−1
t=0 wtµt. Then, for any time T , we have with probability 1−O(1/ poly T ) that

E[f(yT )− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

9216Tn2

`2ST
M2L.

Proof. We use Lemma 4.6 to solve the recurrence given by Lemma 4.5. For this we set ηt = nαt =
4n

`(t+a) . That is, we set parameter b = 4n/`. We also use A = 1/2, B = 16σ2, and C = 288M2Ln2.
This way we can rewrite Lemma 4.5 as :

E
∥∥∥µt+1 − x∗

∥∥∥2 ≤ (1− αt`)E‖µt − x∗‖2 −AαtE[f(µt)− f(x∗)] +Bα2
t + Cα3

t .

Further, let yT = 1
nST

∑n
i=1

∑T−1
t=0 wtX

i
t . Also, let et be E[f(µt)− f(x∗)] and at = E

∥∥∥µt − x∗∥∥∥2.

By convexity of f we have that

E[f(yT )− f(x∗)] ≤ 1

ST

T−1∑
t=0

wtE[f(µt)− f(x∗)] (B.16)

Using this fact and the Lemma 4.6 we obtain the following.

E[f(yT )− f(x∗)] ≤ a3`

2ST
‖µ0 − x∗‖2 +

64T (T + 2a)

`ST
σ2 +

9216Tn2

`2ST
M2L. (B.17)

what is left is to find the appropriate a. For that we remember all the constraints on a:
a ≥ 2cn log T, a ≥ 18n and 4n

`(t+a) ≤
n

64L . These inequalities can be satisfied by setting

a = max
(

2cn log T, 18n, 256L`

)
.

�

Theorem B.2. Let f be an non-convex, L-smooth, function satisfying conditions (2.3) and (2.5),
whose minimum x? we are trying to find via the PopSGD procedure given in Algorithm 1. Let the
learning rate for process i at local time ti = nV it be ηit, chosen such that Lemmas 4.2 and 4.4 hold.
Then, for any time T , we have with probability 1−O(1/ poly T ) that

1∑T−1
t=0 ηt

T−1∑
t=0

ηtE‖∇f(µt)‖2 ≤
2n(f(µ0)− f(x∗))∑T−1

t=0 ηt
+ 144LM2

∑T−1
t=0 η3t∑T−1
t=0 ηt

+
16LM2

n

∑T−1
t=0 η2t∑T−1
t=0 ηt

.

Proof.

E[f(µt+1)]
L−smoothness

≤ E[f(µt)] + E〈∇f(µt), µt+1 − µt〉+
L

2
E‖µt+1 − µt‖2 (B.18)

= E[f(µt)] +

n∑
i=1

n∑
j=1

1

n2
E〈∇f(µt),−

ηit
n
g̃i(X

i
t)−

ηjt
n
g̃j(X

j
t )〉 (B.19)

+

n∑
i=1

n∑
j=1

L

2n2
E‖η

i
t

n
g̃i(X

i
t) +

ηjt
n
g̃j(X

j
t )‖2 (B.20)

≤ E[f(µt)] +

n∑
i=1

n∑
j=1

1

n2
E〈∇f(µt),−

ηit
n
g̃i(X

i
t)−

ηjt
n
g̃j(X

j
t )〉 (B.21)

+
n∑
i=1

n∑
j=1

L

n2
E
[
‖η

i
t

n
g̃i(X

i
t)‖2 + ‖η

j
t

n
g̃j(X

j
t )‖2

]
(B.22)

= E[f(µt)] +

n∑
i=1

2

n
E〈∇f(µt),−

ηit
n
g̃i(X

i
t)〉+

n∑
i=1

2L

n
E‖η

i
t

n
g̃i(X

i
t)‖2. (B.23)

Using E[g̃i(x)] = ∇f(x) and property (2.5) we can rewrite the above inequality as
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E[f(µt+1)] ≤ E[f(µt)] +

n∑
i=1

2

n
E〈∇f(µt),−

ηit
n
∇f(Xi

t)〉+

n∑
i=1

2L(ηit)
2

n3
M2 (B.24)

= E[f(µt)] +

n∑
i=1

2ηit
n2

E〈∇f(µt),∇f(µt)−∇f(Xi
t)〉 (B.25)

−
n∑
i=1

2ηit
n2

E‖∇f(µt)‖2 +

n∑
i=1

2L(ηit)
2

n3
M2 (B.26)

≤ E[f(µt)] +

n∑
i=1

ηit
n2

E
[
‖∇f(µt)‖2 + ‖∇f(µt)−∇f(Xi

t)‖2
]

(B.27)

−
n∑
i=1

2ηit
n2

E‖∇f(µt)‖2 +

n∑
i=1

2L(ηit)
2

n3
M2 (B.28)

= E[f(µt)] +

n∑
i=1

ηit
n2

E‖∇f(µt)−∇f(Xi
t)‖2 −

n∑
i=1

ηit
n2

E‖∇f(µt)‖2 +

n∑
i=1

2L(ηit)
2

n3
M2

(B.29)

Lemma 4.2
≤ E[f(µt)] +

n∑
i=1

2ηt
n2

E‖∇f(µt)−∇f(Xi
t)‖2 −

n∑
i=1

ηt
2n2

E‖∇f(µt)‖2 +

n∑
i=1

8L(ηt)
2

n3
M2

(B.30)

L−smoothness
≤ E[f(µt)] +

n∑
i=1

2L2ηt
n2

E‖µt −Xi
t‖2 −

ηt
2n

E‖∇f(µt)‖2 +
8L(ηt)

2

n2
M2.

(B.31)

recall that by Lemma 4.4 we have that E[Γt] =
∑n
i=1 E‖µt −Xi

t‖2 ≤ 36nη2tM
2, hence the above

inequality becomes:

E[f(µt+1)]− E[f(µt)] ≤
72L2η3tM

2

n
− ηt

2n
E‖∇f(µt)‖2 +

8L(ηt)
2

n2
M2. (B.32)

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT )]− f(µ0) ≤
T−1∑
t=0

(72L2η3tM
2

n
− ηt

2n
E‖∇f(µt)‖2 +

8L(ηt)
2

n2
M2
)
. (B.33)

From this we get that :
T−1∑
t=0

ηt
2n

E‖∇f(µt)‖2 ≤ f(µ0)− E[f(µT )] +

T−1∑
t=0

72L2η3tM
2

n
+

T−1∑
t=0

8L(ηt)
2

n2
M2. (B.34)

Note that E[f(µT )] ≥ f(x∗), hence after multiplying the above inequality by 2n∑T−1
t=0 ηt

we get that

1∑T−1
t=0 ηt

T−1∑
t=0

ηtE‖∇f(µt)‖2 ≤
2n(f(µ0)− f(x∗))∑T−1

t=0 ηt
+ 144LM2

∑T−1
t=0 η3t∑T−1
t=0 ηt

+
16LM2

n

∑T−1
t=0 η2t∑T−1
t=0 ηt

�

Notice that Theorem 5.2 directly follows from Theorem B.2. We just need to check that Lemmas 4.2
and 4.4 hold for learning rates ηt = ηit =

√
n/
√
T . Lemma 4.2 holds trivially, since for each agent

learning rate does not depend on local time(this allows us to state Theorem 5.2 with probability 1,
instead of high probability). It is easy show that Lemma 4.4 holds as well, by using Lemma 4.3(which
is also correct, since it relies on Lemma 4.2) and induction.
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