
Under review as a conference paper at ICLR 2020

KALEIDOSCOPE: AN EFFICIENT, LEARNABLE REPRE-
SENTATION FOR ALL STRUCTURED LINEAR MAPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern neural network architectures use structured linear transformations, such as
low-rank matrices, sparse matrices, permutations, and the Fourier transform, to im-
prove inference speed and reduce memory usage compared to general linear maps.
However, choosing which of the myriad structured transformations to use (and
its associated parameterization) is a laborious task that requires trading off speed,
space, and accuracy. We consider a different approach: we introduce a family of
matrices called kaleidoscope matrices (K-matrices) that provably capture any struc-
tured matrix with near-optimal space (parameter) and time (arithmetic operation)
complexity. We empirically validate that K-matrices can be automatically learned
within end-to-end pipelines to replace hand-crafted procedures, in order to improve
model quality. For example, replacing channel shuffles in ShuffleNet improves
classification accuracy on ImageNet by up to 5%. Learnable K-matrices can also
simplify hand-engineered pipelines—we replace filter bank feature computation in
speech data preprocessing with a kaleidoscope layer, resulting in only 0.4% loss in
accuracy on the TIMIT speech recognition task. K-matrices can also capture latent
structure in models: for a challenging permuted image classification task, adding
a K-matrix to a standard convolutional architecture can enable learning the latent
permutation and improve accuracy by over 8%. We provide a practically efficient
implementation of our approach, and use K-matrices in a Transformer network to
attain 36% faster end-to-end inference speed on a language translation task.

1 INTRODUCTION

Structured linear maps are fundamental and ubiquitous in modern machine learning. Their efficiency
in speed (fast algorithms) and space (few parameters) can reduce computation and memory usage.
They include fixed specialized transforms such as the discrete Fourier transform (DFT) and Hadamard
transform used in signal processing (Cooley et al., 1969), convolutions for image, language, and
speech modeling (Gu et al., 2018), and low-rank and sparse matrices for efficient storage and inference
on edge devices (Yu et al., 2017). Forms of structure such as sparsity have been at the forefront of
recent advances in ML (Frankle & Carbin, 2019), and are critical for on-device and energy-efficient
models, two application areas of tremendous recent interest (Tsidulko, 2019; Schwartz et al., 2019).

There are a plethora of classes of structured linear maps, each with a significantly different repre-
sentation, algorithm, and implementation. They have different tradeoffs in terms of inference speed,
training speed, and accuracy, and the conventional wisdom is that no one class works uniformly well
across all applications. As a result, ML practitioners currently hand-pick specific classes of structured
linear maps for each of their applications. This is a difficult and labor-intensive task.

Ideally, these problems should be addressed with a universal representation for structured linear maps:
(i) Such a parameterization should be expressive enough to capture important classes of structure,
with a nearly tight parameter count and runtime: the space required to represent the linear map should
be close to optimal, and the resulting algorithm for matrix vector multiplication should be close to the
fastest possible algorithm. (ii) The parameterization should be differentiable in order to be learned
as a component of end-to-end ML pipelines, enabling it to easily be used as a drop-in replacement
for manually engineered structured components. (iii) The parameterization should admit practically
efficient algorithms for training and inference, in terms of both speed and memory.

Currently, no class of structured linear maps satisfies all of these criteria. Most existing classes of
structured matrices—such as the class of low-rank matrices—fail to tightly capture other important

1

Under review as a conference paper at ICLR 2020

types of structure. For example, the DFT has an efficient structured representation of size O(n log n),
yet cannot be well-approximated by a low-rank transform of size� n2. Sparsity is another important
type of structure; lots of exciting recent work has focused on the design of sparse neural networks.
For instance, sparse networks of comparable quality to their dense counterparts—yet an order of
magnitude fewer parameters—may be created via pruning (Han et al., 2016) or by identifying
“winning lottery tickets” (Frankle & Carbin, 2019). In parallel, recent theoretical results by De Sa
et al. (2018) show that sparsity and the notion of structure in linear maps are fundamentally linked:
any given matrix can be factored into a product of sparse matrices with total parameter count equal
to the efficiency (i.e. minimum arithmetic circuit complexity) of the matrix. In other words, the
representation of linear maps as products of sparse matrices tightly captures all forms of structure.
Unfortunately, actually learning sparse representations is difficult, because it requires finding the
matrices’ sparsity patterns—a discrete, nondifferentiable search problem. So, current methods for
training sparse neural networks are either expensive (Frankle & Carbin, 2019), or rely on highly hand-
tuned heuristics for evolving the sparsity patterns throughout training (Dettmers & Zettlemoyer, 2019).

By contrast, we propose a representation of linear maps as products of sparse matrices with specific
predefined sparsity patterns (Section 2), and show that it does satisfy our desiderata: it retains the
expressiveness of unstructured sparsity, while being differentiably learnable and efficient like other
structured representations. Concretely, our representation is based on products of a particular building
block known as a butterfly matrix (Parker, 1995; Dao et al., 2019); we term such products kaleidoscope
matrices (K-matrices for short).1 (i) Our main theoretical contribution (Section 2.3) concerns the
expressiveness of this representation: we show that any structured linear map (i.e. one that can be
applied using s� n2 arithmetic operations) can be represented as a K-matrix, with a nearly tight
number of parameters and algorithmic complexity (both on the order of s up to logarithmic factors).
(ii) The kaleidoscope representation is fully differentiable; thus, all the parameters of a K-matrix
can be learned using standard optimization algorithms such as SGD. (iii) Because of their simple,
regular structure, K-matrices are practical and easy to use. We provide memory- and runtime-efficient
implementations of K-matrix multiplication on CPU and GPU for training and inference, with a
simple PyTorch interface.

We empirically validate that, due to their expressiveness, learnability, and efficiency, we can use
K-matrices as a drop-in replacement for linear components in deep learning models. In Section 3.1,
we use K-matrices to replace hand-crafted structure in two different settings. We simplify the
six steps of filter bank computation in speech preprocessing into a single learnable K-matrix step,
with only an 0.4% accuracy drop on the TIMIT speech recognition task. We use K-matrices to
replace channel shuffles in ShuffleNet, improving ImageNet classification accuracy by up to 5%.
In Section 3.2, we show that K-matrices can represent latent structure; a K-matrix can be used to
learn latent permutations in a permuted image dataset (Permuted CIFAR), resulting in 8 points higher
accuracy than standard RNN and CNN baselines. In Section 3.3, we show that our efficient K-matrix
multiplication implementation can be applied to speed up real-world tasks: we replace linear layers
with K-matrices in a DynamicConv-Transformer network to attain 36% faster end-to-end inference
speed with only a 1.0 drop in BLEU score on the IWSLT14 German→English translation task.

2 A NEARLY-TIGHT PARAMETERIZATION OF ALL STRUCTURED MATRICES

We first present some background on the characterization of all structured matrices (i.e. those with
subquadratic multiplication algorithms) as products of sparse factors, along with the definition of
butterfly matrices. We then propose a differentiable family of kaleidoscope matrices, composed of
products of butterfly matrices, and prove their expressivity: all structured matrices can be represented
in this form, with almost optimal parameter count and runtime.

2.1 BACKGROUND: SPARSE FACTORIZATION, BUTTERFLY MATRICES

Sparse factorization One method of constructing matrices with theoretically fast matrix-vector
multiplication algorithms is as a product of sparse matrices, so that multiplication by an arbitrary
vector has cost proportional to the total number of nonzeros (NNZ) of the matrices in the product.
Surprisingly, the converse is also true. De Sa et al. (2018) introduce the concept of sparse product
width (SPW), which roughly corresponds to the total NNZ in a factorization of a matrix, and

1A group of butterflies is known as a kaleidoscope.

2

Under review as a conference paper at ICLR 2020

show that it is an asymptotically optimal descriptor of the algorithmic complexity of matrix-vector
multiplication (Bürgisser et al., 2013). We use a similar argument in the proof of our main theorem
(Section 2.3). However, attempting to learn such a factorization of a given matrix is difficult, as the
sparsity constraint is non-continuous. Moreover, because of the possibly irregular sparsity patterns, it
is difficult to realize the theoretical speedups in practice (Gray et al., 2017; Gahvari et al., 2007).

Butterfly matrices Butterfly matrices, encoding the recursive divide-and-conquer structure of the
fast Fourier transform (FFT) algorithm, have long been used in numerical linear algebra (Parker,
1995; Li et al., 2015) and machine learning (Mathieu & LeCun, 2014; Jing et al., 2017; Munkhoeva
et al., 2018; Dao et al., 2019; Choromanski et al., 2019). Here we define butterfly matrices, which we
use as a building block for our hierarchy of kaleidoscope matrices.
Definition 2.1. A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix of the form Bk =[
D1 D2

D3 D4

]
where each Di is a k

2 ×
k
2 diagonal matrix. We restrict k to be a power of 2.

Definition 2.2. A butterfly factor matrix of size n with block size k (denoted as B
(n)
k) is a block

diagonal matrix of nk (possibly different) butterfly factors of size k:

B
(n)
k = diag

(
[Bk]1 , [Bk]2 , . . . , [Bk]n

k

)
Definition 2.3. A butterfly matrix of size n (denoted as B(n)) is a matrix that can be expressed as a
product of butterfly factor matrices: B(n) = B

(n)
n B

(n)
n
2
. . .B

(n)
2 . Equivalently, we may define B(n)

recursively as a matrix that can be expressed in the following form:

B(n) = B(n)
n

[
[B(n

2)]1 0
0 [B(n

2)]2

]
(Note that [B(n

2)]1 and [B(n
2)]2 may be different.)

2.2 THE KALEIDOSCOPE HIERARCHY

Using the building block of butterfly matrices, we formally define the kaleidoscope (BB∗) hierarchy
and prove its expressiveness. This serves as a fully differentiable alternative to products of sparse
matrices (Section 2.1), with similar expressivity. In Appendix J, we show where various common
structured matrix classes are located within this hierarchy.

The building block for this hierarchy is the product of a butterfly matrix and the (conjugate) transpose
of another butterfly matrix (which is simply a product of butterfly factors taken in the opposite order).
Figure 1 visualizes the sparsity patterns of the butterfly factors in BB∗, where the red and blue dots
represent the allowed locations of nonzero entries.

Figure 1: Visualization of the fixed sparsity pattern of the building blocks in BB∗, in the case n = 16.
The red and blue dots represent all the possible locations of the nonzero entries.

Definition 2.4 (Kaleidoscope hierarchy, kaleidoscope matrices).

• Define B as the set of all matrices that can be expressed as in the form B(n) (for some n).
• Define BB∗ as the set of matrices M of the form M = M1M

∗
2 for some M1,M2 ∈ B.

• Define (BB∗)w as the set of matrices M that can be expressed as M = Mw . . .M2M1, with each
Mi ∈ BB∗ (1 ≤ i ≤ w). (The notation w represents width.)

• Define (BB∗)we as the set of n × n matrices M that can be expressed as M = SEST for some
en × en matrix E ∈ (BB∗)w, where S ∈ Fn×en = [In 0 . . . 0] (i.e. M is the upper-left
corner of E). (The notation e represents expansion relative to n.)

3

Under review as a conference paper at ICLR 2020

• M is a kaleidoscope matrix, abbreviated as K-matrix, if M ∈ (BB∗)we for some w and e.

The kaleidoscope hierarchy, or (BB∗) hierarchy, refers to the families of matrices (BB∗)1e ⊆
(BB∗)2e ⊆ . . . for a fixed expansion factor e. Each butterfly matrix can represent the identity
matrix, so (BB∗)we ⊆ (BB∗)w+1

e . We show that the inclusion is proper in Appendix E. This
hierarchy generalizes the BP hierarchy proposed by Dao et al. (2019), as shown in Appendix J.

Efficiency in space and speed Each matrix in (BB∗)we is a product of 2w butterfly matrices
and their (conjugate) transpose, each of which is a product of log(ne) factors with 2ne nonzeros
(NNZ) each. Therefore, each matrix in (BB∗)we has 4wne log(ne) parameters and a matrix-vector
multiplication algorithm of complexity O(wne log ne) (by multiplying the vector with each sparse
factor sequentially). We prove this more formally in Appendix E. For the applications in Section 3, w
and e are small constants (up to 2), so those K-matrices have O(n log n) parameters and run time.

2.3 ALL LOW-DEPTH STRUCTURED MATRICES ARE IN THE KALEIDOSCOPE HIERARCHY

We now present our main theoretical result: the fact that general linear transformations, expressed as
low-depth linear arithmetic circuits, are captured in the BB∗ hierarchy with low width. Arithmetic
circuits are commonly used to formalize algebraic algorithmic complexity (Bürgisser et al., 2013);
we include a primer on this in Appendix M. The quantities of interest are the total number of gates
in the circuit, representing the total number of steps required to perform the algorithm for a serial
processor, and the depth, representing the minimum number of steps required for a parallel processor.
Theorem 1. Let M be an n×n matrix such that multiplication of M times an arbitrary vector v can
be represented as a linear arithmetic circuit with s total gates and depth d. Then, M ∈ (BB∗)O(d)

O(s
n).

The representation of such a matrix M in the BB∗ hierarchy has O(ds log s) parameters and yields a
O(ds log s) multiplication algorithm, compared to the O(s) parameters and runtime of the circuit
representation. To the best of our knowledge, the most general classes of efficient matrices that have
been studied (De Sa et al., 2018) have depth d on the order of log n or poly log n. In these cases, the
representation with K-matrices matches the best known bounds up to polylogarithmic factors.

The crux of the proof of Theorem 1 (shown in Appendix F) is an almost tight representation of any
sparse matrix as a K-matrix (i.e. a product of butterfly matrices): any n × n sparse matrix with s

nonzeros is in (BB∗)O(d s
ne)

O(1) (Theorem 3, Appendix I). We then leverage the expressivity result of
products of sparse matrices to represent all arithmetic circuits (similar to the sparse product width
result of De Sa et al. (2018) in Section 2.1) to complete the proof of Theorem 1.

This intermediate result is also a novel characterization of sparse matrices, to the best of our knowl-
edge. For a matrix with s NNZ, the kaleidoscope representation has O(s log n) parameters and
runtime, instead of the optimal O(s) parameters and runtime. We trade off an extra logarithmic factor
in space and time for full differentiability (thanks to the fixed sparsity patterns in the representation).
The intuition behind this result is as follows: a sparse matrix with s NNZ can be written as a sum of
ds/ne matrices each with at most n NNZ. Any n× n matrix with at most n NNZ, up to permuting
the rows and columns, is a product of two butterfly matrices (Lemma I.1). Sorting networks (Knuth,
1997) imply that permutation matrices are in (BB∗)O(logn), but we tighten the result to show that
they are in fact in BB∗ (Theorem 2, Appendix G). We thus obtain a kaleidoscope representation
for each summand matrix with O(n log n) parameters. By the addition closure property of the BB∗
hierarchy (Lemma H.5), each sparse matrix with s NNZ then has a kaleidoscope representation with
O(s log n) parameters.

Tight representation for structured linear maps common in ML Even though Theorem 1 sug-
gests that the kaleidoscope representation can be loose by logarithmic factors, many structured linear
maps common in ML can be represented in this hierarchy with an optimal number of parameters
and runtime compared to best known parameterizations, up to constant factors. Appendix J includes
several examples such as discrete transforms (the DFT, discrete cosine transform (DCT), discrete sine
transform (DST), Hadamard transform), convolution (i.e. circulant matrix), Toeplitz matrices (Gray
et al., 2006), structured matrices for kernel approximation ((HD)3 (Yu et al., 2016)) and compact
neural network design (Fastfood (Le et al., 2013), ACDC (Moczulski et al., 2016)). There have
been other large classes structured matrices proposed in the machine learning literature, such as

4

Under review as a conference paper at ICLR 2020

Toeplitz-like (Sindhwani et al., 2015) or low displacement rank (LDR) (Thomas et al., 2018), but
to the best of our knowledge, they are not able to capture these common structures as tightly as
K-matrices. More detailed discussions are in Appendix A.

2.4 EXTENSIONS

ReLU networks with low-depth structured weight matrices In Appendix L, we prove that
finding an efficient circuit for a ReLU network can be reduced to finding efficient circuits for each
of its weight matrices, with at most a constant factor greater size and run-time (i.e. number of
gates). We also show that ReLU networks with kaleidoscope weight matrices have VC dimension
near-linear in the number of parameters, matching the bound for networks with unconstrained weight
matrices (Bartlett et al., 1999; Harvey et al., 2017) and LDR (Thomas et al., 2018). This yields a
corresponding sample complexity bound.

Orthogonal kaleidoscope hierarchy Orthogonal butterfly matrices are one commonly used variant
due to their improved stability (Parker, 1995), where each butterfly factor is constrained to be

orthogonal:
[

C S
−S C

]
with C,S being diagonal and C2 + S2 = I. Similar to the BB∗ hierarchy, in

Appendix K, we define the OBB hierarchy consisting of products of orthogonal butterfly matrices
and diagonal matrices, and show that this hierarchy has the same expressiveness as the BB∗ hierarchy.

3 EMPIRICAL EVALUATION

We validate three claims that suggest that kaleidoscopes are a promising technique to learn different
types of structure in modern architectures.

1. Section 3.1: for applications in speech and lightweight computer vision relying on highly
hand-crafted structured transformations, we show that we can recover (and even improve) the
quality of such architectures by simply replacing existing hand-structured components with
K-matrices, with only a small overhead in memory and computation.

2. In Section 3.2, for a challenging task with latent structure (Permuted CIFAR-10), adding a
K-matrix-based permutation learning layer to a standard CNN yields 8 points better accuracy
than RNN and CNN baselines commonly used on such permuted image classification tasks.

3. In Section 3.3, we show that, although not yet highly optimized, our current implementation of K-
matrices can improve the inference throughput of DynamicConv Transformer, a state-of-the-art
fast machine translation model, by 36%, with only a small drop in translation quality.

In all of the above applications, as K-matrices are fully differentiable, we simply train them jointly
with the rest of the model using standard learning algorithms (such as SGD). Full details for all of the
experiments (precise architectures, hyperparameters, etc.) are in Appendix B.

3.1 REPLACING HAND-CRAFTED STRUCTURES

We validate that kaleidoscope matrices can recover or improve on the performance of hand-crafted
structure in ML models. For example, a single learnable kaleidoscope layer can be used to replace
the hand-engineered filter bank speech preprocessing pipeline with only 0.4% loss in accuracy on
the TIMIT speech recognition task (Section 3.1.1). Replacing channel shuffles in ShuffleNet with
learnable K-matrices improves classification accuracy on ImageNet by up to 5.0% (Section 3.1.2).

3.1.1 SPEECH PREPROCESSING

We show that K-matrices can remove the need for hand-tuning by significantly simplifying speech
recognition data preprocessing pipelines. In particular, we can entirely replace the complex hand-
crafted MFSC featurization commonly used in speech recognition tasks with a fully learnable
kaleidoscope layer, with only 0.4% drop in accuracy on the TIMIT speech recognition benchmark.
Results are presented in Table 1. Our approach is competitive with the accuracy of standard models
that use hand-crafted features, and significantly outperforms current approaches for learning from
raw audio input.

5

Under review as a conference paper at ICLR 2020

Figure 2: Comparison of the standard MFSC featurization pipeline with our “kaleidoscope” pipeline.

Table 1: TIMIT phoneme error rate (PER%) for different methods. Our kaleidoscope, raw-input
version of the model (row 3) performs competitively with the original model trained on MFSC features
(row 1), with only an 0.4% drop in PER. It significantly outperforms existing approaches that learn
from raw audio, i.e. without handcrafted featurization (e.g. SincNet [row 2], which to our knowledge
attains the previous state-of-the-art for learning from raw audio), and is only 0.8% less accurate than
the overall state-of-the-art on TIMIT.2 Additional comparisons are given in Appendix B.1.

Method Test set PER% Raw audio input

MFSC features + LSTM 14.2 7
SincNet (Ravanelli et al., 2019) 17.2 3
Kaleidoscope + LSTM 14.6 3

Modern speech recognition models currently rely on carefully hand-crafted features extracted from
the audio, which are then fed into an acoustic model. By contrast, learning directly from the raw
audio—i.e. end-to-end learning from the audio waveform without any manual featurization—obviates
the need for this complicated and often expensive preprocessing step. There have been recent attempts
to learn directly from raw audio, such as SincNet (Ravanelli & Bengio, 2018); however, they often
rely on specialized architectures designed by domain experts. Instead, we use a standard RNN speech
recognition architecture, but use a learnable kaleidoscope layer to replace the featurization steps.

The baseline architecture takes as input filter bank (MFSC) features, which are a popular standard
featurization for speech recognition (Paliwal, 1999) and involve several steps hand-crafted specifically
for this domain. These features are extracted from the raw audio waveform, and fed as the input into
a Bi-LSTM model. We significantly simplify this pipeline by replacing the featurization step with
a trainable kaleidoscope layer that is trained end-to-end together with the Bi-LSTM. The original
pipeline and our modified kaleidoscope version are depicted in Figure 2.

The computation of MFSC features involves a series of painstakingly hand-designed steps (further
described in Appendix B.1), each involving their own hyperparameters: (i) the waveform is framed
(split into chunks), (ii) dithering, (iii) pre-emphasis, (iv) the Hamming window is applied, (v) the
FFT is applied and the power spectrum is computed, (vi) the result is mapped to the mel scale (which
involves applying a linear transformation and then taking the logarithm), (vii) cepstral mean and
variance normalization is applied. We replace the last six steps (ii-vii) of this featurization with a
kaleidoscope layer; specifically, after windowing, we multiply the input by a K-matrix, and then
compute the logarithm of the power spectrum; the output is fed into the Bi-LSTM model.

3.1.2 REPLACING CNN CHANNEL SHUFFLE

We evaluate how K-matrices can improve the quality of hand-crafted, lightweight architectures for
computer vision tasks, without the need for hand-tuning. We select ShuffleNet (Zhang et al., 2018),
which is a state-of-the-art lightweight CNN architecture that uses a manually designed “channel
shuffle” permutation matrix to improve performance. By replacing this fixed permutation with a
learnable K-matrix, we achieve up to 5% further improvement in classification accuracy, without
hand-tuned components and with a modest space penalty of up to 10%. Results are given in Table 2.

2The state-of-the-art results from Ravanelli et al. (2018) use a concatenation of three different speech audio
featurizations—MFSC, MFCC, and fMLLR—as the neural network input, along with a customized RNN
architecture (LiGRU) specifically designed for speech recognition.

6

Under review as a conference paper at ICLR 2020

Table 2: Top-1 classification accuracy of ShuffleNet on ImageNet validation set (parameter counts in
parentheses). We compare our approach (col. 3) with our reimplementation of ‘vanilla’ ShuffleNet
(col. 1) and a recent approach based on the Hadamard transform (col. 2).3 We report results for
different network width multipliers (# channels). The last column shows the differences in accuracy
and parameter count between our approach and vanilla ShuffleNet; using a learnable K-matrix in
place of each fixed permutation (shuffle) or Hadamard matrix improves accuracy by up to 5%.

Shuffle Hadamard Kaleidoscope (K.) K. vs. Shuffle

0.25 ShuffleNet g8 44.1% (0.46M) 43.9% (0.46M) 49.2% (0.51M) +5.0% (+0.05M)
0.5 ShuffleNet g8 57.1% (1.0M) 56.2% (1.0M) 59.5% (1.1M) +2.4% (+0.1M)
1.0 ShuffleNet g8 65.3% (2.5M) 65.0% (2.5M) 66.5% (2.8M) +1.2% (+0.2M)

Grouped convolution (Krizhevsky et al., 2012) is often used to reduce parameter count and speed
up inference compared to standard convolution, but by default, channels in different groups cannot
exchange information. To remedy this, ShuffleNet uses a permutation matrix to shuffle the channels
after each grouped convolution. Zhao et al. (2019) propose to instead use the Hadamard transform
before and after each grouped convolution to mix the channels. In place of these hand-engineered
solutions, we use a K-matrix before and after each grouped convolution, and learn these end-to-end
together with the rest of the network. As shown in Table 2, across a range of sizes, replacing the
channel shuffles with K-matrices results in improved performance at comparable parameter counts.

3.2 LEARNING A LATENT PERMUTATION

We show that K-matrices can be used in a challenging task for which existing classes of structured
linear maps have not been found suitable. We investigate the problem of image classification on
a permuted image dataset (Permuted CIFAR-10). This problem is challenging due to the discrete
nature of learning the latent permutation of the dataset; we present a differentiable relaxation using a
K-matrix as a key component. Results are presented in Table 3; compared to methods that do not
have this kaleidoscope permutation learning step, our approach gets 8 points higher accuracy (84.4%
to 92.5%), coming within 3 points of the accuracy on the un-permuted dataset (94.9%).

Table 3: Permuted CIFAR-10 validation set classification accuracy (%). Our ResNet18 with the kalei-
doscope “preprocessing” layer (K+CNN) significantly outperforms all other methods, approaching
the accuracy of a standard ResNet18 trained and tested on the unpermuted images (last column).

Model FC RNN CNN Dense + CNN K + CNN Baseline CNN (unpermuted)

Accuracy 61.2 57.8 73.7 84.4 92.5 94.9

In this task, we use a permuted image classification dataset (Permuted CIFAR-10), wherein a fixed
global permutation is applied to the pixels of every image in the original input set. Typically, only
fully-connected (FC) and recurrent models are applied to such datasets (Le et al., 2015), because
the permutation destroys locality in the image, presenting a difficulty for CNNs. However, CNNs
are much better-suited for standard image tasks; we thus expect that learning the permutation and
then applying a standard CNN should outperform these baselines. As mentioned in Section 2, the
kaleidoscope hierarchy provides a nearly tight parameterization of permutations; this makes them a
natural fit for the permutation learning step.

Our architecture is a ResNet18 with a K-matrix inserted at the beginning, which attempts to learn
the latent permutation before the images are fed to the CNN. Additionally, we augment the standard
classification loss with a smoothness-based loss that attempts to encourage the unpermuted images to
be more “natural” (i.e. vary smoothly pixel-to-pixel). Additional details of our approach are provided
in Appendix B.3. In Table 3, we compare our approach to a ResNet without this extra layer, a ResNet
with an extra dense matrix at the beginning instead of a kaleidoscope, and other baselines. Figure 3
describes the pipeline and displays examples of permuted and unpermuted images.

3Despite our best effort, we were unable to reproduce the original accuracy reported by Zhang et al. (2018), a
problem similarly faced by Zhao et al. (2019) and Lyu et al. (2019). Zhao et al. (2019) use block Hadamard
transform and pre-activation ShuffleNet, so their results are not directly comparable with those reported here.

7

Under review as a conference paper at ICLR 2020

Figure 3: (a) (Left) Schematic describing permutation learning approach. The inputs are multiplied
by a K-matrix and then fed into a CNN, from which the classification loss is computed. Separately,
the input is permuted by a permutation matrix sampled from the distribution described by the K-
matrix, and a “smoothness” loss (Rudin et al., 1992) is computed from the result, as described in
Appendix B.3. (b) (Right) Left panel: original (unpermuted) images. Center panel: the permuted
versions. Right panel: these images after then applying the permutation recovered by the K-matrix.
The K-matrix is able to nearly unscramble the images into their unpermuted versions.

3.3 SPEEDING UP INFERENCE

We evaluate the inference speed benefit of using K-matrices on a real language translation model. We
choose the state-of-the-art DynamicConv Transformer translation model (Wu et al., 2019), which has
shown 20% inference speedup over the standard Transformer model, and replace dense matrices in
the decoder’s linear layers with K-matrices, which leads to a further 36% inference speedup (Table 4).

As outlined in Section 2.3, K-matrices admit a simple and fastO(n log n) matrix-vector multiplication
algorithm. We provide fast implementations of this algorithm in C++ and CUDA, with an interface to
PyTorch (Paszke et al., 2017), and use this implementation in our experiments.

Table 4: Inference speed on the IWSLT-14 German-English translation task (test set). Using K-
matrices instead of dense matrices in the DynamicConv decoder linear layers results in 36% faster
inference speed (measured on a single-threaded CPU with a batch size of 1 and beam size of 1).

Model # params BLEU Sentences/sec Tokens/sec

Transformer (Vaswani et al., 2017) 43M 34.4 3.0 66.4
DynamicConv Transformer (Wu et al., 2019) 39M 35.2 3.6 80.2
DynamicConv Transformer w/ K-matrices (ours) 30M 34.2 4.9 103.4

We use K-matrices to replace all the linear layers in the decoder of DynamicConv (since 90% of
inference time is spent in the decoder). As shown in Table 4, on the IWSLT-14 German-English
translation task, this yields a 25% smaller model with 30% faster inference time on CPU, at the cost of
1.0 drop in BLEU score4 (nearly matching SOTA performance of 2 years ago (Vaswani et al., 2017)).
The majority (55%) of inference time is spent in matrix-vector multiplication; our implementation
of K-matrix-vector multiplication is about 2x faster than the optimized implementation of dense
matrix-vector multiplication in the Intel MKL library. Direct comparisons of K-matrix multiplication
with this and other highly-optimized routines such as the FFT are further detailed in Appendix C.

4 CONCLUSION

We address the problem of having to manually choose among the numerous classes of structured
linear maps by proposing the universal (expressive, efficient, and learnable) family of kaleidoscope
matrices. We prove that K-matrices can represent any structured linear maps with near-optimal
space and time complexity. Empirical validations suggest that K-matrices are a promising way to
employ structure in modern ML; they can be used to reduce the need for hand-engineering, capture
challenging latent structure, and improve efficiency in models. We are excited about future work
on further hardware-optimized implementations of K-matrices, to fully realize the size and speed
benefits of structured matrices on a broad array of real-world applications.

4BLEU score is a measure of translation quality; higher is better.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. In Advances in Neural Information Processing Systems, pp. 190–196, 1999.

Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Krzysztof Choromanski, Mark Rowland, Wenyu Chen, and Adrian Weller. Unifying orthogonal
Monte Carlo methods. In International Conference on Machine Learning, pp. 1203–1212, 2019.

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2Letter: an end-to-end ConvNet-
based speech recognition system. arXiv preprint arXiv:1609.03193, 2016.

James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. The fast fourier transform and its
applications. IEEE Transactions on Education, 12(1), 1969.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. In The International Conference on Machine
Learning (ICML). 2019.

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged
progress in structured dense matrix vector multiplication. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1060–1079. SIAM, 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

J. R. Driscoll, D. M. Healy, Jr., and D. N. Rockmore. Fast discrete polynomial transforms with
applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):1066–1099,
August 1997. ISSN 0097-5397. doi: 10.1137/S0097539792240121. URL http://dx.doi.
org/10.1137/S0097539792240121.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Hormozd Gahvari, Mark Hoemmen, James Demmel, and Katherine Yelick. Benchmarking sparse
matrix-vector multiply in five minutes. In SPEC Benchmark Workshop, 2007.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L.
Dahlgren, and Victor Zue. TIMIT acoustic-phonetic continuous speech corpus LDC93S1. Web
Download. Philadelphia: Linguistic Data Consortium, 1993.

Pegah Ghahremani, Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur. Acoustic modelling
from the signal domain using cnns. In Interspeech, pp. 3434–3438, 2016.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in
Communications and Information Theory, 2(3):155–239, 2006.

Scott Gray, Alec Radford, and Diederik P Kingma. GPU kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 2017.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu,
Xingxing Wang, Li Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. Recent advances in
convolutional neural networks. Pattern Recognition, 77:354–377, 2018.

9

http://dx.doi.org/10.1137/S0097539792240121
http://dx.doi.org/10.1137/S0097539792240121

Under review as a conference paper at ICLR 2020

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

Fredric J. Harris. On the use of windows for harmonic analysis with the discrete fourier transform. In
Proceedings of the IEEE, 1978.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for
piecewise linear neural networks. In Satyen Kale and Ohad Shamir (eds.), Proceedings of the 2017
Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research, pp.
1064–1068, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR. URL http://proceedings.
mlr.press/v65/harvey17a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

David P Helmbold and Manfred K Warmuth. Learning permutations with exponential weights.
Journal of Machine Learning Research, 10(Jul):1705–1736, 2009.

Alston S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM, 5(4):339–342,
October 1958. ISSN 0004-5411. doi: 10.1145/320941.320947. URL http://doi.acm.org/
10.1145/320941.320947.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to rnns. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1733–1741.
JMLR. org, 2017.

Dan Jurafsky and James H Martin. Speech and language processing, volume 3. Pearson London,
2014.

Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

Donald Ervin Knuth. The art of computer programming, Volume 3: Sorting and Searching. Pearson
Education, 1997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105,
2012.

Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood-computing hilbert space expansions in
loglinear time. In International Conference on Machine Learning, pp. 244–252, 2013.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Yingzhou Li, Haizhao Yang, Eileen R Martin, Kenneth L Ho, and Lexing Ying. Butterfly factorization.
Multiscale Modeling & Simulation, 13(2):714–732, 2015.

Fu-Hua Liu, Richard M. Stern, Xuedong Huang, and Alejandro Acero. Efficient cepstral normal-
ization for robust speech recognition. In ARPA Workshop on Human Language Technology,
1993.

Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin. Autoshufflenet: Learning permutation
matrices via an exact lipschitz continuous penalty in deep convolutional neural networks. arXiv
preprint arXiv:1901.08624, 2019.

J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(1):27–34, February 1980. ISSN 0096-3518. doi: 10.1109/
TASSP.1980.1163351.

10

http://proceedings.mlr.press/v65/harvey17a.html
http://proceedings.mlr.press/v65/harvey17a.html
http://doi.acm.org/10.1145/320941.320947
http://doi.acm.org/10.1145/320941.320947

Under review as a conference paper at ICLR 2020

Michael Mathieu and Yann LeCun. Fast approximation of rotations and Hessians matrices. arXiv
preprint arXiv:1404.7195, 2014.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with Gumbel-Sinkhorn networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=Byt3oJ-0W.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pp. 2401–2409. JMLR. org, 2017.

Decebal C. Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, and
Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications, 9, 2018.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. ACDC: a structured
efficient linear layer. In International Conference on Learning Representations, 2016.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In The International Conference on Machine Learning
(ICML), 2019a.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In The International Conference on Machine Learning
(ICML), 2019b.

Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets. Quadrature-based
features for kernel approximation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
9165–9174. Curran Associates, Inc., 2018.

Vadim Olshevsky and Mohammad Amin Shokrollahi. Matrix-vector product for confluent Cauchy-
like matrices with application to confluent rational interpolation. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA,
pp. 573–581, 2000. doi: 10.1145/335305.335380. URL http://doi.acm.org/10.1145/
335305.335380.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. Estimating phoneme class conditional
probabilities from raw speech signal using convolutional neural networks. In Interspeech, 2013.

Kuldip Paliwal. On the use of filter-bank energies as features for robust speech recognition. In
International Symposium on Signal Processing and its Applications (ISSPA), 1999.

Victor Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer-Verlag
New York, Inc., New York, NY, USA, 2001. ISBN 0-8176-4240-4.

D Stott Parker. Random butterfly transformations with applications in computational linear algebra.
1995.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems (NeurIPS) - Autodiff Workshop,
2017.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and
Karel Vesely. The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing Society, 2011.

Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform with sincnet. In IEEE
Workshop on Spoken Language Technology, 2018.

11

https://openreview.net/forum?id=Byt3oJ-0W
http://doi.acm.org/10.1145/335305.335380
http://doi.acm.org/10.1145/335305.335380

Under review as a conference paper at ICLR 2020

Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. Light gated recurrent
units for speech recognition. 2:92–102, 2018.

Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio. The PyTorch-Kaldi speech recognition
toolkit. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2019.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6655–6659. IEEE, 2013.

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, and Oriol Vinyals. Learning the
speech front-end with raw waveform cldnns. In Interspeech, 2015.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green AI. arXiv preprint
arXiv:1907.10597, 2019.

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint deep
learning. In Advances in Neural Information Processing Systems, pp. 3088–3096, 2015.

S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the psychological
magnitude pitch. Journal of the Acoustic Society of America, 8(3), 1937.

G. Szegö. Orthogonal Polynomials. Number v. 23 in American Mathematical Society colloquium
publications. American Mathematical Society, 1967. ISBN 9780821889527. URL https:
//books.google.com/books?id=3hcW8HBh7gsC.

Anna T Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed
transforms with low displacement rank. In Advances in Neural Information Processing Systems
(NeurIPS). 2018.

Trieu H Trinh, Andrew M Dai, Minh-Thang Luong, and Quoc V Le. Learning longer-term dependen-
cies in RNNs with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018.

Joseph Tsidulko. Google showcases on-device artificial intelligence breakthroughs at I/O. CRN,
2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems, pp.
4880–4888, 2016.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. In International Conference on Learning Representations
(ICLR), 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

12

https://books.google.com/books?id=3hcW8HBh7gsC
https://books.google.com/books?id=3hcW8HBh7gsC

Under review as a conference paper at ICLR 2020

Felix X. Yu, Sanjiv Kumar, Henry A. Rowley, and Shih-Fu Chang. Compact nonlinear maps and
circulant extensions. CoRR, abs/1503.03893, 2015.

Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice,
and Sanjiv Kumar. Orthogonal random features. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp.
1975–1983. Curran Associates, Inc., 2016.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schatz, Gabriel Synnaeve, and Em-
manuel Dupoux. Learning filterbanks from raw speech for phone recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Building efficient
deep neural networks with unitary group convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 11303–11312, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

13

Under review as a conference paper at ICLR 2020

A RELATED WORK

A.1 STRUCTURED MATRICES IN MACHINE LEARNING

Structured linear maps such as the DFT, the Hadamard transform and convolution are a workhorse
of machine learning, with diverse applications ranging from data preprocessing, random projection,
featurization, to model compression. For example, the DFT is a crucial step in the standard filter
bank speech preprocessing pipeline (Jurafsky & Martin, 2014). Fast random projection and kernel
approximation methods rely on the fast Hadamard transform (Le et al., 2013; Yu et al., 2016) and
convolution (Yu et al., 2015). Large learnable classes of structured matrices such as Toeplitz-like
matrices (Sindhwani et al., 2015) and low-displacement rank (LDR) matrices (Thomas et al., 2018)
have been used for model compression. However, despite their theoretical speedup, they lack efficient
implementations, especially on GPUs. Therefore their use has been confined to small models (e.g.
single hidden layer neural nets) and small datasets (e.g. CIFAR-10).

A.2 SPARSE MATRICES

Several classes of structured linear transforms are ubiquitous in modern deep learning architectures;
particularly widespread examples include convolution and multiheaded attention. Recently, attempts
to impose sparsity on the neural network weights have been gaining traction. State-of-the art
approaches of this type typically accomplish this by pruning dense weights (either gradually during
training (Zhu & Gupta, 2017), or post-training (Han et al., 2016)) or by training a dense network
and then identifying “winning lottery tickets” — sparse subnetworks which may then be retrained
from scratch with appropriate initialization (Frankle & Carbin, 2019). Importantly, these approaches
start from a dense network, and therefore training is expensive. There is also a more nascent line of
work that aims to train unstructured sparse neural networks directly (Mocanu et al., 2018; Mostafa
& Wang, 2019a; Dettmers & Zettlemoyer, 2019). These approaches maintain a constant network
sparsity level throughout training, and use heuristics to evolve the sparsity pattern during training.
One drawback is that the indices of the nonzero entries need to be stored in addition to the entry
values themselves, which increases the memory required to store the sparse weight tensors. Another
drawback is that these approaches to learn the sparsity pattern are based on intricate heuristics, which
can be brittle. We note that these heuristic sparsification techniques could potentially be combined
with our approach, to further sparsify the K-matrix factors.

A.3 SPEECH RECOGNITION FROM RAW AUDIO

Numerous works focus on the problem of speech recognition from raw audio input, i.e. without
manual featurization. SincNet (Ravanelli & Bengio, 2018) is a CNN-based architecture parameterized
with sinc functions such that the first convolutional layer imitates a band-pass filter. Zeghidour et al.
(2018) formulate a learnable version of a filter bank featurization; their filters are initialized as an
approximation of MFSC features and then fine-tuned jointly with the rest of the model. Sainath et al.
(2015) proposed a powerful combined convolutional LSTM (CLDNN)-based model for learning
from raw audio, using a large amount of training data. The WaveNet generative architecture (van den
Oord et al., 2016), based on dilated convolutions, has been adapted to speech recognition and can be
trained on raw audio. Some other approaches that can learn from raw audio can be found in (Palaz
et al., 2013; Collobert et al., 2016; Ghahremani et al., 2016). To our knowledge, the 14.6% PER
achieved by our kaleidoscope + LSTM model on the TIMIT test set is the lowest error rate obtained
by a model trained directly on the raw audio.

A.4 LEARNING PERMUTATIONS

Permutation matrices find use in tasks such as matching and sorting. Techniques to obtain posterior
distribution over permutations have been developed, such as the exponential weights algorithm (Helm-
bold & Warmuth, 2009) and the Gumbel-Sinkhorn network (Mena et al., 2018).

Classifying images with permuted pixels has been a standard task to benchmark the ability of RNNs
to learn long range dependency. Le et al. (2015) propose Permuted MNIST task where the model has
to classify digit images with all the pixels permuted. Many new RNN architectures, with unitary or
orthogonal weight matrices to avoid gradient explosion or vanishing, have been proposed and tested
on this task (Le et al., 2015; Arjovsky et al., 2016; Wisdom et al., 2016; Mhammedi et al., 2017;

14

Under review as a conference paper at ICLR 2020

Trinh et al., 2018). Standard gated RNN architectures such as LSTM and GRU have also been found
to be competitive with these new RNN architectures (Bai et al., 2018) on this task.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 SPEECH PREPROCESSING

In this section, we fully describe our settings and procedures for the experiments in Section 3.1.1,
and present additional auxiliary baselines and results.

B.1.1 EXPERIMENTAL SETUP

We evaluate our speech recognition models on the TIMIT speech corpus (Garofolo et al., 1993), a
standard benchmark for speech recognition. The input is audio (16-bit, 16 kHz .wav format), and the
target is the transcription into a sequence of phonemes (units of spoken sound). Our evaluation metric
is the phoneme error rate (PER) between the true phoneme sequence and the phoneme sequence
predicted by our model. We use PyTorch (Paszke et al., 2017), the Kaldi speech recognition toolkit
(Povey et al., 2011), and the PyTorch-Kaldi toolkit (Ravanelli et al., 2019) for developing PyTorch
speech recognition models, for all experiments and evaluation.

B.1.2 MODEL AND EVALUATION

Our baseline Bi-LSTM architecture is taken from the PyTorch-Kaldi repository.5 This is a strong
baseline model that, to the best of our knowledge, matches state-of-the-art performance for models
that use a single type of input featurization (Ravanelli et al., 2019). The original Bi-LSTM model
takes as input filter bank features. These are computed as follows: (i) the waveform is framed (split
into chunks of 25 ms each that overlap by 10 ms each), (ii) the waveform is dithered (zero-mean
Gaussian random noise is added), (iii) pre-emphasis is applied to amplify high frequencies, (iv) the
Hamming window function (Harris, 1978) is applied, (v) the FFT is applied, and the power spectrum
of the resulting (complex-valued) output is computed, (vi) the power spectrum (which has dimension
512) is mapped to the “mel scale” (which is a scale intended to mimic human auditory perception
(Stevens et al., 1937)) by multiplication with a specific banded matrix of dimension 512× 23, and
the entrywise logarithm of the output is taken (the 23 outputs are called the filters), and (vii) cepstral
mean and variance normalization (Liu et al., 1993) is applied. Numerical hyperparameters of this
procedure include the dither noise scale, the pre-emphasis coefficient, the Hamming window size, the
number of mel filters, and more; we kept all these the same as the Kaldi/PyTorch-Kaldi defaults.

In contrast, our version of the model takes as input the raw waveform, split into chunks the same
way as before but with no normalization, dithering, or other preprocessing, which is then fed into
a complex-valued kaleidoscope [(BB∗)2] matrix. Similarly to the nonlinear steps in computing
filter bank features, the logarithm of the power spectrum of the output (which has dimension 512)
is then computed. This output is fed into the Bi-LSTM; the Bi-LSTM and kaleidoscope layer are
trained together in standard end-to-end fashion. The Bi-LSTM architecture is not modified aside
from changing the input dimension from 23 to 512; this (along with the ≈ 75K parameters in the
kaleidoscope layer itself) results in approximately a 1.1M increase in the total number of parameters
compared to the model that takes in MFSC features (a modest 8% relative increase). Total training
time for our kaleidoscope-based architecture is 7% greater than that required for the model that uses
MFSC features, not counting the time required to precompute the MFSC features; the FLOPs for
inference-time are approximately 15% greater (mostly due to the larger dimension of the input to the
Bi-LSTM; the kaleidoscope layer accounts for less than 0.5% of the total FLOPs).

As baselines, we also compare to inserting other types of linear transformations before the Bi-LSTM:
fixed linear transformations (such as the fixed FFT, or no transform at all [the identity]), trainable
structured layers (low-rank, sparse, and circulant) and a trainable unstructured (dense) linear layer.
The kaleidoscope layer performs the best out of all such approaches. Full results are given in Table 5.

In our experiments, we grid search the initial learning rate for the “preprocessing layer” (if applicable)
in {5e-5, 1e-4, 2e-4, 4e-4, 8e-4, 1.6e-3}, and fix all other hyperparameters (including the initial

5This open-source repository can be found at https://github.com/mravanelli/
pytorch-kaldi.

15

https://github.com/mravanelli/pytorch-kaldi
https://github.com/mravanelli/pytorch-kaldi

Under review as a conference paper at ICLR 2020

Table 5: TIMIT phoneme error rate (PER%, ± standard deviation across random seeds).

Model Test set PER% # Parameters

Low rank + LSTM 23.6± 0.9 15.5M
Sparse + LSTM 21.8± 1.0 15.5M
Circulant + LSTM 23.6± 0.6 15.4M
Dense + LSTM 15.4± 0.6 15.9M
FFT + LSTM 15.7± 0.1 15.4M
Identity + LSTM 20.7± 0.3 15.4M
Kaleidoscope + LSTM 14.6± 0.3 15.4M
MFSC features + LSTM 14.2± 0.2 14.3M

SincNet (Ravanelli et al., 2019) 17.2 10.0M
LiGRU (Ravanelli et al., 2018) 13.8 12.3M

learning rates for the other parts of the network) to their default values in the PyTorch-Kaldi repository.
The model and any preprocessing layers are trained end-to-end with the RMSProp optimizer for 24
epochs (as per the defaults in PyTorch-Kaldi). For each model, we use the validation set to select
the best preprocessing learning rate; while the final error rates are reported on the separate held-out
test set. For all structured matrix baselines except circulant (which always has n parameters for an
n × n matrix), the number of parameters in the structured matrices is set to equal the number of
parameters in the butterfly layer, while the unconstrained matrix is simply a standard dense complex-
valued square matrix. For all experiments with a trainable “preprocessing layer,” we initialize the
preprocessing matrix to represent the FFT (or approximate it as closely as possible [i.e. minimize the
Frobenius error to the true FFT matrix], in the case of low-rank, sparse, and circulant), which we
found to outperform random initialization.

B.1.3 EXTENSION: COMBINING MFSC AND KALEIDOSCOPE

As an additional experiment, we sought to investigate whether combining the hand-engineered MFSC
featurization pipeline and a learnable kaleidoscope layer (instead of replacing the former with the
latter) could lead to accuracy gains. Specifically, in this experiment we first used the standard filter
bank featurization pipeline described above, and trained end-to-end as usual. Then, we replaced the
FFT step with a K-matrix initialized to the FFT, and made the weights of the Hamming window
function and the mel filter bank matrix learnable as well (similarly to (Zeghidour et al., 2018)). We
fine-tuned the resulting architecture for an additional 10 epochs. The final test PER% attained by this
“hybrid” model is 13.9± 0.2; the model has 14.4M parameters—a negligible increase over the 14.3M
in the original architecture. Thus, by combining the manually encoded domain knowledge in the filter
bank featurization and allowing this structure to be learnable rather than fixed, we are able to nearly
match the state-of-the-art 13.8% accuracy on TIMIT. (While this “hybrid” model certainly involves
hand-engineering, the state-of-the-art results use a concatenation of three different speech audio
featurizations—MFSC, MFCC, and fMLLR—as the neural network input, along with a customized
RNN architecture (LiGRU) specifically designed for speech recognition, and thus require a more
complicated pipeline that is arguably even more hand-crafted.)

B.2 REPLACING CNN CHANNEL SHUFFLE

B.2.1 MODEL ARCHITECTURES

ShuffleNet uses a permutation matrix to shuffle the channels after each grouped 1x1 convolution,
sending the i-th channel to the (i mod g)-th group, where g is the total number of groups. The
architecture for each blocks is: 1x1 group conv → Batch norm, ReLU → Permutation → 3x3
depthwise conv→ Batch norm→ 1x1 group conv. The permutation is fixed.

Zhao et al. (2019) propose to use the Hadamard transform before and after each grouped 1x1
convolution to mix the channels. Note that the Hadamard transforms are placed before the batch
norm and ReLU layer (unlike the permutation matrix in the original ShuffleNet design). In particular,
the architecture for each block is: Hadamard→ 1x1 group conv→ Hadamard→ Batch norm, ReLU
→ 3x3 depthwise conv→ Batch norm→ 1x1 group conv. The Hadamard transform is fixed.

16

Under review as a conference paper at ICLR 2020

In our architecture, we use a kaleidoscope matrix in OBB (product of an orthogonal butterfly matrix,
a diagonal matrix, and the transpose of another butterfly matrix) before and after each grouped 1x1
convolution. We place the second K-matrix after batch norm and ReLU to more closely mimic the
original ShuffleNet design. The structure for each block is: K-matrix→ 1x1 group conv→ Batch
norm, ReLU→ K-matrix→ 3x3 depthwise conv→ Batch norm→ 1x1 group conv. The K-matrices
are learned along with the rest of the network.

B.2.2 EXPERIMENTAL SETUP

We evaluate the CNN architectures on the image classification task of the standard ImageNet
dataset (Russakovsky et al., 2015). We use the standard data augmentation, training, and evaluation
pipeline as in (Xie et al., 2017). We train with SGD on 8 GPUs for 90 epochs, with a total batch size
of 2048 and initial learning rate 0.8. For the 1.0 ShuffleNet g8 architecture, we reduce total batch size
to 1792 to fit into GPU memory, and linear scale initial learning rate to 0.7. Other hyperparameters
(e.g. learning rate schedule, weight decay, etc.) are the same as the ShuffleNet paper (Zhang et al.,
2018). We use the training script from Nvidia’s deep learning examples repository6.

B.2.3 ADDITIONAL RESULTS

In Table 6, we report top-5 classification accuracy on ImageNet, to complement the Top-1 accuracy
in Table 2.

Table 6: Top-5 classification accuracy of ShuffleNet on ImageNet validation set. We report results for
different network width multipliers (number of channels), and for different kinds of matrices used for
channel mixing. Using a learnable K-matrix in place of each fixed permutation (shuffle) or Hadamard
matrix improves top-5 accuracy by up to 4.8%. Parameter counts are the same as in Table 2.

Shuffle Hadamard Kaleidoscope (K.) K. vs. Shuffle

0.25 ShuffleNet g8 68.6% 68.4% 73.4% +4.8%
0.5 ShuffleNet g8 79.9% 79.2% 81.7% +1.8%
1.0 ShuffleNet g8 86.0% 85.8% 86.8% +0.8%

In each setting, the total training time of our K-matrix approach is within 20% of the total training
time of vanilla ShuffleNet.

B.3 LEARNING PERMUTATIONS

B.3.1 DATASET

The permuted CIFAR-10 dataset is constructed by applying a fixed permutation to every input. We
choose to use the 2-D bit-reversal permutation7, i.e., the bit reversal permutation on 32 elements is
applied to the rows and to the columns. This permutation was chosen because it is locality-destroying:
if two indices i, j are close, they must differ in a lower-order bit, so that the bit-reversed indices i′, j′
are far. This makes it a particularly difficult test case for architectures that rely on spatial locality
such as “vanilla” CNNs.

B.3.2 MODEL AND TRAINING

We describe the model architectures used in Section 3.1 (those reported in Table 3).

Our model (K + CNN) The model represents a fixed permutation P , parametrized as a K-matrix, to
learn to recover the true permutation, followed by a standard ResNet18 architecture (He et al., 2016).

6https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
Classification/RN50v1.5

7The bit-reversal permutation reverses the order of the bits in the binary representation of the indices. For
example, indices [0, 1, ..., 7] with binary representations [000, 001, ..., 111] are mapped to [000, 100, ..., 111],
which corresponds to [0, 4, 2, 6, 1, 5, 3, 7]

17

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5

Under review as a conference paper at ICLR 2020

Because of the simple decomposable nature of the butterfly factors (Section 2.1), our parameterization
is easily extensible with additional techniques:

(i) We constrain each butterfly factor matrix in the K-matrix to be doubly-stochastic. For
example, each 2 × 2 block in the butterfly factor matrix of block size 2 has the form[

a 1− a
1− a a

]
, where a ∈ [0, 1]. We treat this block as a distribution over permutations,

generating the identity
[
1 0
0 1

]
with probability a and the swap

[
0 1
1 0

]
with probability

1−a. Butterfly factor matrices with larger block sizes are constrained to be doubly-stochastic
in a similar manner. In this way, a permutation is sampled for each butterfly factor matrix,
and these permutations are composed to get the final permutation that is applied to the
image.

(ii) For each minibatch, the examples Px by applying permutation samples on the (permuted)
inputs are fed into an additional unsupervised reconstruction loss∑

0≤i,j<n

∥∥∥∥[(Px)[i+ 1, j]− (Px)[i, j]
(Px)[i, j + 1]− (Px)[i, j]

]∥∥∥∥
2

(1)

measuring total variation smoothness of the de-noised inputs. Such loss functions are often
used in image denoising (Rudin et al., 1992). A final regularization loss was placed on the
entropy of P , which was annealed over time to encourage P to converge toward a sharper
doubly-stochastic matrix (in other words, a permutation).
We first train the model with just the reconstruction loss for 100 epochs before training
jointly with the classification less and reconstruction loss for another 100 epochs.

Although these techniques were crucial for helping the K-matrix nearly recover the true permutation,
they are not applicable to a general linear layer. We also remark that other classes of structured
linear maps such as low-rank, circulant, and so on, are simply to this task, as they are incapable of
representing all permutations.

Baseline architectures

1. Fully connected (FC): This is a 3-layer MLP, with hidden size 1024 and ReLU nonlinearity
in-between the fully connected layers.

2. Recurrent neural network (RNN): We use a gated recurrent unit (GRU) model (Cho et al.,
2014), with hidden size 1024. Many RNN architectures have been proposed to capture
long-range dependency on permuted image dataset such as Permuted MNIST (Arjovsky
et al., 2016). Standard gated architectures such as LSTM and GRU have shown competitive
performance on the Permuted MNIST dataset, and we choose GRU as a baseline since it has
been reported to slightly outperform LSTM (Bai et al., 2018).

3. CNN: We use the standard ResNet18 architecture, adapted to smaller image size of the
CIFAR-10 dataset (changing stride from 2 to 1 of the first convolutional layer, and removing
max-pooling layer that follows).

4. Dense + CNN: We add an additional linear layer (i.e. a dense matrix) of size 1024× 1024
before the ResNet18 architecture. This dense layer can in theory represent a permutation.

5. Baseline CNN (unpermuted): We use the standard ResNet18 architecture applied to the
unpermuted CIFAR-10 dataset.

All models are trained for 200 total epochs, with the Adam optimizer. We use the standard learning
rate schedule and weight decay from Mostafa & Wang (2019b). We use Hyperband (Li et al., 2017)
to tune other hyperparameters such as the initial learning rate and annealing temperature.

B.4 SPEEDING UP DYNAMICCONV’S INFERENCE

B.4.1 MODEL ARCHITECTURE

We start with the DynamicConv Transformer architecture (Wu et al., 2019), which is a variant of the
Transformer architecture (Vaswani et al., 2017) where the self-attention in each layer is replaced with

18

Under review as a conference paper at ICLR 2020

a light-weight DynamicConv module. We use the implementation from the Fairseq library(Ott et al.,
2019)8, with PyTorch version 1.2.

The architecture of each layer of the decoder is: Linear→ DynamicConv→ Linear→ LayerNorm
→ Encoder-decoder attention→ LayerNorm→ Linear→ ReLU→ Linear→ ReLU→ LayerNorm.
For every layer of the decoder, we replace all four dense weight matrices in the four Linear layers
with four K-matrices from the B class (i.e. butterfly matrices).

B.4.2 TRAINING AND EVALUATION

The models are trained from scratch using the training script from the Fairseq repository, with
the same hyperparameters (optimizer, learning rate, number of updates) used in the DynamicConv
paper (Wu et al., 2019).

To evaluate inference speed, we run the decoding script on the IWSLT-14 De-En test set in single-
threaded mode on a server Intel Xeon CPU E5-2690 v4 at 2.60GHz, and measure wall clock time.
The test set contains 6750 sentences, with 149241 tokens. Following Wu et al. (2019), we set batch
size to 1 and beam size to 1.

C SPEED BENCHMARK AND IMPLEMENTATION DETAILS

Each K-matrix (for fixed width and expansion), has an O(n log n) matrix-vector multiplication
algorithm by sequentially multiply the input vector with each of the sparse factor. Our implementation
of this simple algorithm is surprisingly competitive with optimized subroutines both on GPU (e.g.
for training) and on CPU (e.g. for inference). In Figure 4, we compare the speed of multiplying by
a K-matrix in class B (i.e. a butterfly matrix) against specialized implementation of the FFT. We
normalize the speed by the speed of dense matrix-matrix multiply (on GPU) or dense matrix-vector
multiply (on CPU). On GPU, with input sizes n = 1024 and batch size 256, the training time
(forward and backward) of K-matrices matrix is 23% faster than dense matrix multiply (GEMM from
cuBLAS). For inference on CPU, the kaleidoscope fast multiplication can be one or two orders of
magnitude faster than GEMV. Over a range of matrix sizes, our implementation is within a factor of
4x of specialized implementation of the FFT, a highly optimized kernel.

Our implementation is also memory efficient. In the forward pass through the O(log n) sparse factors,
we do not store the intermediate results, but recompute them during the backward pass. Therefore the
activation memory required is O(bn) for input batch size b.

(a) Training (GPU) (b) Inference (CPU)

Figure 4: Speedup of FFT and Kaleidoscope against dense matrix-matrix multiply (GEMM) for
training, and against dense matrix-vector multiply (GEMV) for inference.

8This library can be found at https://github.com/pytorch/fairseq

19

https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2020

D SYNTHETIC MATRIX RECOVERY

We directly validate Theorem 1 on well-known types of structured matrices used in machine learning.
Given a structured matrix M, we attempt to represent M as closely as possible using K-matrices as
well as the standard classes of structured matrices: sparsity and low-rank. In Table 7, we quantify
the expressivity of each of the three methods, as measured by their ability to approximate a range of
different structures. Results for “global minimum” of kaleidoscope matrices are obtained from the
theoretical expressiveness results in Section I and Section J. Low-rank and sparse approximation have
closed form solutions: truncating the SVD and keeping the largest-magnitude entries, respectively.
We also report the results using SGD for kaleidoscope matrices to validate that good approximation
with K-matrices can be obtained even from standard first-order optimization algorithms. Even with
imperfect optimization, kaleidoscope matrices can still capture out-of-class target matrices better
than low-rank and sparse matrices.

Table 7: Expressiveness of different classes of structured matrices: Frobenius error of represent-
ing common structured matrices (columns) of dimension 256 using three structured representations
of matrices with adjustable numbers of parameters. (Left group: Target matrices in the same class
as the methods. Middle group: Target matrices with fixed number of parameters. Right: Random
matrix to show typical scale of error.) Each method is allotted the same number of parameters, equal
to a log n factor more than that of the target matrix. Low-rank and sparse matrices are unable to
capture any structure outside their own class, while the minima for kaleidoscope matrices found via
optimization better capture the actual structure for out-of-class targets better than the baselines.

Method
Target Kaleidoscope Low-rank Sparse Convolution Fastfood Random

Kaleidoscope 0.0 0.0 0.0 0.0 0.0
Global Min. Low-rank 14.9 0.0 10.8 14.6 11.6 15.5

Sparse 11.7 12.2 0.0 13.1 7.1 14.1

With SGD Kaleidoscope 0.0 0.01 8.0 0.0 5.1 14.5

The target matrices are kaleidoscope, low-rank, sparse, convolution (i.e. circulant matrices), Fast-
food (Le et al., 2013), and entrywise random iid Gaussian matrix (to show the typical magnitude of
the error). All target matrices M were randomly initialized such that E[MTM] = I.

To find a kaleidoscope approximation with SGD, we Hyperband to tune its learning rate (from 0.001
to 0.5).

E PROPERTIES OF THE BB∗ HIERARCHY

Here, we justify why the definitions in Section 2.2 give rise to a hierarchy. We first make some basic
observations about the parameterization.
Observation E.1. An n× n matrix M ∈ BB∗ has 4n log n parameters.

Proof. M can be expressed as a product of 2 log n butterfly factor matrices of size n× n. Each of
these factor matrices has 2 parameters per row, for a total of 2n parameters each. Hence, the total
number of parameters is 4n log n.

Observation E.2. Let M be an n×n matrix in (BB∗)we . Then, given an arbitrary vector v of length
n, we can compute Mv with O(wne log(ne)) field operations.

Proof. Since M ∈ (BB∗)we , we can decompose it as SE1E2 . . .EwST , where S is as given in
Definition 2.4, and each Ei is an en× en matrix in BB∗. Therefore, to compute Mv, we can use
associativity of matrix multiplication to multiply the vector by one of these matrices at a time.

Since all of these factors are sparse, we use the naïve sparse matrix-vector multiplication algorithm
(begin with a 0-vector and perform the corresponding multiplication and addition for each nonzero
matrix entry). S (and thus ST) have n NNZ. Therefore, matrix-vector multiplication by S or ST

requires O(n) operations, which is dominated by the butterfly matrix-vector multiplication. Each

20

Under review as a conference paper at ICLR 2020

Ei can be further decomposed into 2 log(ne) matrices with at most 2ne non-zero entries each (by
Observation E.1). Therefore, matrix vector multiplication by each Ei requires O(ne log(ne)). Since
there are w such Ei, we require a total of O(wne log(ne)) operations.

Now, we are ready to show that our definition of classes (BB∗)we forms a natural hierarchy.

First, we must argue that all matrices are contained within the hierarchy.

Lemma E.3. Let M be an arbitrary n× n matrix. Then M ∈ (BB∗)(2n−2).

Proof. Corollary E.3 in Appendix K shows that any n × n matrix can be written in the form
M1M

′
1
∗
. . .Mn−1M

′
n−1
∗
MMnM′

n
∗
. . .M2n−2M

′
n−2
∗, where Mi,M

′
i are orthogonal butterfly

matrices and M is a diagonal matrix. We can combine D with Mn to form another (possibly
not orthogonal) butterfly matrix. This yields a decomposition of M as products of (possibly not
orthogonal) butterfly matrices and their (conjugate) transposes, completing the proof.

Next, we argue that, up to a certain point, this hierarchy is strict.
Lemma E.4. For every fixed c ≥ 1, there is an n× n matrix Mn (with n sufficiently large) such that
Mn ∈ (BB∗)c+1 but Mn 6∈ (BB∗)c.

Proof. Given c, fix n to be a power of 2 such that c < n
4 log2 n

. For sake of contradiction, assume
that every n× n matrix in (BB∗)c+1 is also in (BB∗)c. Let A be an arbitrary n× n matrix. From
Lemma E.3, A ∈ (BB∗)(2n−2). From our assumption, we can replace the first c + 1 BB∗ factors
of A with c (potentially different) BB∗ factors and still recover A. We can repeat this process
until we are left with c BB∗ factors, implying that A ∈ (BB∗)c. From Observation E.1, we require
4cn log n < n2 (by our choice of n) parameters to completely describe A. This is a contradiction
since A is an arbitrary n× n matrix, and therefore has n2 arbitrary parameters. Hence, there must be
some n× n matrix in (BB∗)c+1 that is not in (BB∗)c.

F ARITHMETIC CIRCUITS IN BB∗ HIERARCHY

In this appendix, we prove our main theoretical result, namely, our ability to capture general trans-
formations, expressed as low-depth linear arithmetic circuits, in the BB∗ hierarchy. This result is
recorded in Theorem 1.
Theorem 1. Let M be an n×nmatrix such that matrix-vector multiplication of M times an arbitrary
vector v can be represented as a be a linear arithmetic circuit C comprised of s gates (including
inputs) and having depth d. Then, M ∈ (BB∗)O(d)

O(s
n).

To prove Theorem 1, we make use of the following two theorems.
Theorem 2. Let P be an n× n permutation matrix (with n a power of 2). Then P ∈ BB∗.

Theorem 3. Let S be an n× n matrix of s NNZ. Then S ∈ (BB∗)5d
s
ne

4 .

Theorem 2 is proven in Appendix G, and Theorem 3 is proven in Appendix I.

Proof of Theorem 1. We will represent C as a product of d matrices, each of size s′ × s′, where s′ is
the smallest power of 2 that is greater than or equal to s.

To introduce some notation, define w1, . . . wd such that wk represents the number of gates in the
k’th layer of C (note that s = n +

∑d
k=1 wk). Also, define z1, . . . zd such that z1 = n and

zk = wk−1 + zk−1 (zk is the number of gates that have already been used by the time we get to layer
k).

Let gi denote the i’th gate (and its output) of C (0 ≤ i < s), defined such that:

gi =

{
vi 0 ≤ i < n

αjgi1 + βigi2 n ≤ i < s

where i1, i2 are indices of gates in earlier layers.

21

Under review as a conference paper at ICLR 2020

For the k’th layer of C, we define the s′ × s′ matrix Mk such that it performs the computations of
the gates in that layer. Define the i’th row of Mk to be:

Mk[i :] =


eTi 0 ≤ i < zk
αie

T
i1

+ βie
T
i2

zk ≤ i < zk + wk
0 i ≥ zk + wk

For any 0 ≤ k ≤ d, let vk be vector

vk = Mk . . .M2M1

[
v
0

]
.

We’d like to argue that vd contains the outputs of all gates in C (i.e, the n values that make up
Mv). To do this we argue, by induction on k, that vk is the vector whose first zk+1 entries are
g0, g1, . . . , g(zk−1), and whose remaining entries are 0. The base case, k = 0 is trivial. Assuming this
holds for the case k − 1, and consider multiplying vk−1 by Mk. The first zk rows of Mk duplicate
the first zk entries of vk−1 The next wk rows perform the computation of gates gzk , . . . , g(zk+1−1).
Finally, the remaining rows pad the output vector with zeros. Therefore, vk is exactly as desired.

The final matrix product will contain all n elements of the output. By left multiplying by some
permutation matrix P, we can reorder this vector such that the first n entries are exactly Mv. Hence,
we are left to argue the position of PMd . . .M2M1 within the BB∗ hierarchy. Each Mk is a matrix
with total 2wk + zk < 2s′ NNZ. From Theorem 3, we can, therefore, represent Mk as a product
of O(1) matrices (of size 2s′) in BB∗. From Theorem 2, P ∈ BB∗. Note that s ≤ s′ < 2s, so
s′ = Θ(s).

Our final decomposition will have O(d) BB∗ factors, and requires an expansion from size n to size
2s′, or an expansion factor of O(sn). Therefore, M ∈ (BB∗)O(d)

O(s
n), as desired.

Remark F.1. By applying Observation E.2, we see that Theorem 1 gives an O(sd log s) matrix
vector multiplication algorithm for M.

G PERMUTATIONS IN BB∗

In this appendix, we prove Theorem 2.

To do this, we decompose permutation matrix P into P = LR, with L ∈ B and R ∈ B∗. Throughout
the proof, we make use of the following definition.
Definition G.1. Let L be an n× n permutation matrix (n a power of 2). We say that L meets the
2j balance condition if L can be divided into chunks of 2j (with each chunk having all columns
i such that

⌊
i
2j

⌋
has the same value) such that for every 0 ≤ m < 2j , each chunk has exactly

one L[:, k] = eπk
with πk ≡ m (mod 2j). We say that L is modular-balanced if it meets the 2j

balance condition for each 2 ≤ 2j ≤ n.

0
1
2
3
4
5
6
7

(0)
(1)
(2)
(3)
(0)
(1)
(2)
(3)

L

=

Bn L′

Figure 5: First step of decomposition of modular-balanced matrix L. Here, the red entries must be
permuted into the main diagonal blocks.

22

Under review as a conference paper at ICLR 2020

Lemma G.1. Let L be an n× n modular-balanced matrix. Then L ∈ B.

Proof. We proceed by induction on n. The base case n = 2 is trivial. As our inductive hypothesis,
we assume that all modular-balanced matrices of size n

2 ×
n
2 are butterfly matrices of size n

2 . From
Definition 2.3, it is sufficient to show that L can be decomposed as:

L = Bn

[
L1 0
0 L2

]
︸ ︷︷ ︸

L′

,

where Bn is a butterfly factor of size n and each Lj is an n
2 ×

n
2 modular-balanced matrix.

Define L1 and L2 such that:

L1[i, j] = L[i, j] + L
[
i+

n

2
, j
]

L2[i, j] = L
[
i, j +

n

2

]
+ L

[
i+

n

2
, j +

n

2

]
.

Note that since L is a permutation matrix (and thus has exactly one non-zero entry per column), at
most one term of each of these sums can be non-zero.

For sake of contradiction, assume L1 is not modular-balanced. Then, for some 2j ≤ n
2 , there are two

columns c1, c2 such that
⌊
c1
2j

⌋
=
⌊
c2
2j

⌋
and such that indices of the non-zero entries of L1 in columns

c1 and c2 are the same modulo 2j . However, from the definition of L1, this implies that the indices of
the non-zero entries of L in columns c1 and c2 are also the same modulo 2j , contradicting L being
modular-balanced. Hence, L1 is modular-balanced. An analogous argument (that instead considers
columns c1 + n

2 , c2 + n
2 of L) shows that L2 is also modular-balanced.

To complete the proof, we must argue that Bn is a butterfly factor of size n. Since each Li is
modular-balanced, it is a permutation matrix. Therefore, L′ has exactly 1 non-zero entry in each of
the first n2 rows and columns from L1 and exactly 1 non-zero entry in each of the second n

2 rows
and columns from L2. Hence, L′ is a permutation matrix. Since both L and L′ are permutation
matrices, B = L (L′)

−1 must also be a permutation matrix. Therefore, we can view B as performing
a permutation of the rows of L′ to get L.

Consider the i’th row of L′, with 0 ≤ i < n
2 . There are two possible cases.

Case 1: L′[i, :] = L[i, :]

In this case, the column of L with a non-zero entry in row i is in the left n2 columns. The column
of L with a non-zero entry in row i + n

2 must, therefore, be in the right n
2 columns, otherwise

L would not satisfy the n
2 balance condition. Therefore, L′

[
i+ n

2 , :
]

= L
[
i+ n

2 , :
]
, so we set

B[i, i] = B
[
i+ n

2 , i+ n
2

]
= 1.

Case 2: L′[i, :] 6= L[i, :]

By the definition of L′, L′[i, :] = vL
[
i+ n

2 , :
]
. In this case, the column of L with a non-zero entry

in row i+ n
2 must be in the left n2 columns. By the n

2 balance condition of L, the column of L with a
non-zero entry in row i must be in the right n2 columns. Therefore, L′

[
i+ n

2 , :
]

= L [i, :], so we set
B
[
i, i+ n

2

]
= B

[
i+ n

2 , i
]

= 1.

In both cases, the non-zero entries of B fall into the correct diagonal bands (the main diagonal, and
the bands n

2 away). Hence, B is a butterfly factor of size n.

Now, we consider the process of transforming P into a modular-balanced matrix. We make use of
the following lemma.

23

Under review as a conference paper at ICLR 2020

0
1
2
3
4
5
6
7

(0)
(1)
(2)
(3)
(0)
(1)
(2)
(3)

P

G

0 1

2 3

Bn

Figure 6: First step of balancing 8× 8 bit reversal permutation (a component of the 8× 8 DFT). Red
signifies edges that must be flipped.

Lemma G.2. Let M be a k × k matrix with 1 non-zero entry per column, such that for each
0 ≤ m < k

2 , there are exactly 2 columns with non-zero entry in a row with index ≡ m
(
mod k

2

)
.

Then, there is a butterfly factor Bk such that MBk = M′, where M′ meets the k
2 balance condition.

Proof. We construct a directed graph G with nodes in
[
k
2

]
. For each 0 ≤ i < k

2 we add a directed
edge from node

(
s mod k

2

)
to node

(
t mod k

2

)
if M[:, i] = es and M

[
:, i+ k

2

]
= et. Each node

has (undirected) degree exactly 2 by the structure of M. Hence, G is a union of disjoint (undirected)
cycles.

If M met the k
2 balance condition, then each node would additionally have in-degree exactly 1 and

out-degree exactly 1. By reversing edges of G such that each (undirected) cycle becomes a directed
cycle, we can achieve this. However, reversing edges corresponds to swapping columns of M that
are k

2 apart. Let Bk be the permutation matrix that performs all such swaps. Bk has non-zero entries
only along the main diagonal and the diagonal bands k

2 away, and thus is a butterfly factor of size
k.

We are ready to present the decomposition of P.

Lemma G.3. Let P be an n × n permutation matrix. Then we can decompose P into P = LR,
where L is modular-balanced and R ∈ B∗.

Proof. We repeatedly apply Lemma G.2. First, we conclude that there is a butterfly factor Bn such
that

PBn = P′,

where P′ meets the n
2 balance condition. Now, we consider the first and last n

2 columns of P′

independently. We can again apply Lemma G.2 (twice) to conclude that there are butterfly factors[
Bn

2

]
1
,
[
Bn

2

]
2

such that

PBn

[[
Bn

2

]
1

0

0
[
Bn

2

]
2

]
= PB(n)

n B
(n)
n
2

= P′′,

where P′′ meets the n
2 and n

4 balance conditions.

We continue this process until we obtain a matrix that meets all of the balance conditions. Our final
equation is of the form:

P ·B(n)
n B

(n)
n
2
. . .B

(n)
2 = PB = L,

where B is a butterfly matrix and L is a modular-balanced matrix. Let R = B−1 = B∗ (since B is a
permutation matrix, and thus is orthogonal) and hence R ∈ B∗. Then P = LR, as desired.

Theorem 2 follows immediately from Lemmas G.3 and G.1.

24

Under review as a conference paper at ICLR 2020

H BB∗ CLOSURE LEMMAS

Here, we present some basic facts of the BB∗ hierarchy that will be useful for later constructions. For
simplicity, we assume (WLOG via 0-padding) that all matrices are square matrices with size that is a
power of 2.
Lemma H.1. If M ∈ B (or M ∈ B∗), then DM,MD ∈ B (B∗ resp.) for any diagonal matrix D.

Proof. Left multiplication by a diagonal matrix scales the rows of M by the corresponding diagonal
entries. The same can be achieved by scaling all entries the leftmost butterfly factor matrix. Similarly,
right multiplication by a diagonal matrix scales the columns of M, which can be achieved by scaling
all entries in the columns of the rightmost butterfly factor matrix.

Lemma H.2. Let A,B ∈ Fn×n. If A ∈ (BB∗)w1
e and B ∈ (BB∗)w2

e then AB ∈ (BB∗)w1+w2
e .

Proof. Let EA,EB ∈ Fen×en be defined such that A = SEAST , B = SEBST (with S as in
Definition 2.4). Then

AB = S

[
In 0
0 0

]
︸ ︷︷ ︸
en× en

EA

[
In 0
0 0

]
︸ ︷︷ ︸
en× en

EB ST

[
In 0
0 0

]
EA ∈ (BB∗)w1 ,

[
In 0
0 0

]
EB ∈ (BB∗)w2 by Lemma H.1. Hence, AB ∈ (BB∗)w1+w2

e by

Definition 2.4.

Lemma H.3. Let A1, . . . ,Am ∈ Fk×k. If A1, . . . ,Am ∈ (BB∗)we then Diag(A1, . . . ,Am) ∈
(BB∗)w+2

e .

Proof. For each 1 ≤ i ≤ m, let EAi ∈ Fek×ek be defined such that Ai = SEAiS
T (with S as in

Definition 2.4). Then
A1 0 . . . 0
0 A2 . . . 0
...

...
. . . 0

0 0 . . . Am

 = SP


EA1 0 . . . 0

0 EA2
. . . 0

...
...

. . . 0
0 0 . . . EAm

PTST

where P is a permutation that that moves the first k rows of each EAi
(in order) into the top mk

rows. From Theorem 2, P ∈ BB∗, (and so is PT , also a permutation). Within the RHS block
matrix, the decompositions of each EAi

can be done in parallel, requiring total width w. Hence,
Diag(A1, . . . ,Am) ∈ (BB∗)w+2

e , as desired.

Remark H.4. If e = 1 in Lemma H.3, then P is unnecessary. Hence, Diag(A1, . . . ,Am) ∈
(BB∗)w.
Lemma H.5. Let A1, . . . ,Am be k × k matrices in (BB∗)we then

∑m
i=1 Ai ∈ (BB∗)mw4e .

Proof. For each 1 ≤ i ≤ m, let EAi
∈ Fek×ek be defined such that Ai = SEAi

ST (with S as in
Definition 2.4). Note that EAi

∈ (BB∗)w. Consider matrices of the form:Iek EAi
0 0

0 Iek 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Mi ∈ F4ek×4ek

=

[
I2ek I2ek

0 0

]
︸ ︷︷ ︸

L

Iek 0 0 0
0 Iek 0 0
0 0 EAi 0
0 0 0 0


︸ ︷︷ ︸

S


Iek 0
0 Iek

0 0
0 0

0 0
0 0

0 Iek
Iek 0


︸ ︷︷ ︸

P1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

.

Here, L and R compute the sum of the 2ek × 2ek matrices on the diagonal of SP1, where P1 is a
permutation swapping EAi

to the 4th ek-block column. Note that S is the diagonalization of four
matrices in (BB∗)w, so S ∈ (BB∗)w by Remark H.4. In addition, since each block in S is a butterfly
matrix of size ek, S only uses butterfly factors up to size ek, so the outer factor matrices of sizes 4ek

25

Under review as a conference paper at ICLR 2020

and 2ek in S are unused. Also note that L and R are butterfly factor matrices of size 4ek (or B
(4ek)
4ek),

and P1 is a butterfly factor matrix of size 2ek (or B
(4ek)
2ek). This allows us to fold the surrounding

matrices L,P1,R into S, so Mi ∈ (BB∗)w.

Through repeated application (m times) of the identity[
I A
0 I

] [
I B
0 I

]
=

[
I A + B
0 I

]
,

we see that Iek
∑m
i=1 EAi 0 0

0 Iek 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

M ∈ F4en×4en

=

m∏
i=1

Mi. (2)

From Lemma H.2, M ∈ (BB∗)mw. Finally, note that
∑m
i=1 Ai = SMP2S

T , where P2 is a
permutation that moves the first k columns of the second block-column of M to the left. P2 can be
folded into the final summation factor Mm as follows:

Iek 0
0 Iek

0 0
0 0

0 0
0 0

0 Iek
Iek 0


︸ ︷︷ ︸

P1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

 0 Iek 0 0
Iek 0 0 0
0 0 Iek 0
0 0 0 Iek


︸ ︷︷ ︸

P2

=


0 Iek

Iek 0
0 0
0 0

0 0
0 0

Iek 0
0 Iek


︸ ︷︷ ︸

P′1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

(3)

Hence,
∑m
i=1 Ai ∈ (BB∗)mw4e , as desired.

Lemma H.6. Let M be an invertible n× n matrix such that M ∈ B. Then M−1 ∈ B∗.

Proof. We prove this in a series of steps.

First, let Bk be an invertible butterfly factor of size k. Consider the method of computing B−1k by
performing Gaussian elimination on the matrix [Bk|Ik] to obtain the matrix

[
Ik|B−1k

]
. By the form

of B, non-zero entries within a row or column are always exactly k
2 positions apart. Therefore, the

only row operations needed for this Gaussian elimination are:

• Scaling a row by a constant factor c 6= 0

• Addition of a row to another row exactly k
2 rows apart

Performing these operations on Ik will only allow non-zeros on the main diagonal and k
2 diagonals

away from the main diagonal. Hence, B−1k is also a butterfly factor of size k.

Next, let B
(n)
k be an invertible butterfly factor matrix of size n and block size k. Its inverse is the

block diagonal matrix formed by the inverses of each of its constituent butterfly factors. From above,(
B

(n)
k

)−1
is also a butterfly factor matrix of size n and block size k.

Finally, consider M ∈ B.

M−1 =
(
B(n)
n B

(n)
n
2
. . .B

(n)
2

)−1
=
(
B

(n)
2

)−1(
B

(n)
4

)−1
. . .
(
B(n)
n

)−1
= B′2

(n)
B′4

(n)
. . .B′n

(n) ∈ B∗

26

Under review as a conference paper at ICLR 2020

I SPARSE MATRICES IN BB∗ HIERARCHY

In this appendix, we prove Theorem 3. First, we consider matrices with at most n NNZ.

Lemma I.1. let S be an n× n matrix with at most n NNZ. Then, S ∈ (BB∗)5.

We use this lemma and the addition closure lemma to prove Theorem 3.

Proof of Theorem 3. We note that any s sparse matrix is the sum of
⌈
s
n

⌉
matrices of at most n NNZ,

and we appeal to Lemma H.5.

In the rest of the section we will prove Lemma I.1. We begin by defining two classes of matrices that
will be used in our decomposition.

Definition I.1. An n × n matrix H is a horizontal step matrix if for every 0 ≤ i, i′ < n and
0 ≤ j ≤ j′ < n, if H[i, j] 6= 0 and H[i′, j′] 6= 0, then j′ − j ≥ (i′ − i) mod n.

An n× n matrix V is a vertical step matrix if V∗ is a horizontal step matrix.

With this definition, the horizontal step matrix obeys a “Lipschitz-like" condition. Each column of a
horizontal step matrix can have at most one non-zero entry, and given two non-zero columns k apart,
the non-zero entry in the right column must be between 0 and k rows below the non-zero entry in the
left column. Note that to show that a matrix is a horizontal step matrix, it is sufficient to argue that
this condition holds for each pair of neighboring non-zero columns.

Similarly, each row of a vertical step matrix can have at most one non-zero entry, and given two
non-zero rows k apart, the non-zero entry in the lower row must be between 0 and k columns to the
right of the non-zero entry in the upper row.

Lemma I.2. Let H be an n× n horizontal step matrix. Then H ∈ B.

Proof. We proceed by induction on n. The base case n = 2 is trivial. As our inductive hypothesis,
we assume that all horizontal step matrices of size n

2 ×
n
2 are butterfly matrices of size n

2 . From
Definition 2.3, it is sufficient to show that H can be decomposed as:

H =

[
D1 D2

D3 D4

] [
H1 0
0 H2

]
=

[
D1H1 D2H2

D3H1 D4H2

]
, (4)

where H1,H2 are n
2 ×

n
2 horizontal step matrices and each Dk is a n

2 ×
n
2 diagonal matrix. Denote

the four, n2 ×
n
2 corner submatrices of H by:

H =

[
H11 H12

H21 H22

]
.

Then, define H1 and H2 by:

H1 = H11 + H21 H2 = H12 + H22

For sake of contradiction, assume that H1 is not a horizontal step matrix. Then, there are 0 ≤ i, i′ < n
2 ,

0 ≤ j ≤ j′ < n
2 such that H1[i, j] 6= 0, H1[i′, j′] 6= 0, and j′ − j < (i′ − i) mod n

2 . From our
definition of H1, the non-zero entries in columns j and j′ of H are either

(
(i′ − i) mod n

2

)
or(

n
2 + (i′ − i) mod n

2

)
, both of which are greater than j′ − j, rows apart. This contradicts H being

a horizontal step matrix. Hence, H1 must be a horizontal step matrix, as must H2 from an analogous
argument.

Next, we define D1,D2,D3,D4 by:

D1[k, k] =

{
1 H21[k, :] = 0

0 otherwise
D2[k, k] =

{
1 H22[k, :] = 0

0 otherwise

D3[k, k] =

{
1 H11[k, :] = 0

0 otherwise.
D4[k, k] =

{
1 H12[k, :] = 0

0 otherwise.

27

Under review as a conference paper at ICLR 2020

To finish the proof, we argue the correctness of the decomposition by equating arbitrary entries of
each of the 4 corner submatrices. We begin with the upper left submatrix.

D1H1[i, j] =

n
2∑

k=0

D1[i, k] ·H1[k, j] by definition of matrix multiplication

= D1[i, i] ·H1[i, j] D1 is a diagonal matrix
= 1(H21[i,:]=0) · (H11[i, j] + H21[i, j]) by definition of D1 and H1

Here, we consider two cases:

Case 1: H21[i, j] 6= 0

Since H is a horizontal step matrix (and hence may have at most one non-zero entry per column), it
follows that H11[i, j] = 0. In this case, the indicator function evaluates to 0, so D1H1[i, j] = 0 =
H11[i, j], as desired.

Case 2: H21[i, j] = 0

If H11[i, j] = 0, then D1H1[i, j] = 0 = H11[i, j]. Otherwise, for sake of contradiction, suppose
that H21[i, :] 6= 0. Then, two of the first n2 columns of H would have non-zero entries n

2 rows apart,
contradicting H being a horizontal step matrix. Hence, H21[i, :] = 0, so D1H1[i, j] = H11[i, j], as
desired.

In all cases, D1H1[i, j] = H11[i, j], so our decomposition correctly recovers the upper left corner of
H. Analogous arguments show that the other three corners are also correctly recovered. Hence, our
decomposition is correct, and by induction, H ∈ B.

Corollary I.1. Let V be a vertical step matrix. Then V ∈ B∗.

1

2

3 4

S

=

1

1

1

1

P1

1

2

3 4

S′

1

1

1

1

P3
||

1

2

3 4

H

1

1

1

1

V′
||

1

1

1

1

P2

1

1

1

1

V

Figure 7: Decomposition of 4× 4 sparse matrix S into P1HP2VP3

Now, we use step matrices to prove Lemma I.1.

28

Under review as a conference paper at ICLR 2020

Proof of Lemma I.1. Given S, we decompose it as S = P1HP2VP3, where eachP` is a permutation
matrix, H is a horizontal step matrix, and V is a vertical step matrix. For an example of this, see
Figure 7.

We first decompose S as S = P1S
′P3, where P1 is the permutation that moves all 0 rows of S to

the bottom and P3 is the permutation that moves all 0 columns of S to the right.

Next, we further decompose S′ into S′ = HV′ as follows. Since S′ has s ≤ n NNZ, we can
parameterize S′ by θ = {(ck, ik, jk) : 0 ≤ k < s} such that S′[ik, jk] = ck, with the non-zero
entries indexed in row-major order. Define matrix H by:

H[:, k] =

{
ck · eik 0 ≤ k < s

0 otherwise.

Define matrix V′ by:

V′[k, :] =

{
eTjk 0 ≤ k < s

0 otherwise.

To show that S′ = HV′, we consider an arbitrary entry:

HV′[i, j] =

n∑
k=0

H[i, k] ·V′[k, j] by definition of matrix multiplication

=

s∑
k=0

H[i, k] ·V′[k, j] H is 0 in all but first s columns

=

s∑
k=0

ck · 1i=ik · 1j=jk by definition of H and V′

Here, we note that (i, j) can equal (ik, jk) for at most one value of k since the locations in θ are
unique. Hence, HV′[i, j] = ck only if (i, j) = (ik, jk) for some k, which is exactly the definition of
S′. Hence, S′ = HV′.

We argue that H is a horizontal step matrix through a series of assertions. First, note that H has
exactly one non-zero entry in each of its first s columns. Also, note that since θ is in row-major
order, these non-zero entries are sorted (any column to the right cannot have a non-zero entry in a
higher row). Hence, to show that H is a horizontal step matrix, it is sufficient to argue that adjacent
columns of H have non-zero entries at most one row apart. This is equivalent to S′ having no zero
rows between two non-zero rows, which is guaranteed by P1. Hence, H is a horizontal step matrix.

Since V′ has at most one non-zero entry per row, we may permute the rows of V′ to obtain a matrix
V, where the non-zero entries of V are sorted (any lower row below cannot have a non-zero entry in
an earlier column). Hence, for some permutation matrix (P2)

−1, V = (P2)
−1

V′, which implies
that V′ = P2V. It has exactly one non-zero entry in each of its first s columns. From the action
of P2, these non-zero entries are sorted. Therefore, by the same argument as for H above, VT is a
horizontal step matrix. Hence, V is a vertical step matrix.

In all, we have found a decomposition S = P1HP2VP3, where each P` is a permutation matrix
(∈ BB∗ by Theorem 2), H is a horizontal step matrix (∈ BB∗ by Lemma I.2), and V is a vertical
step matrix (∈ BB∗ by Corollary I.1). By Lemma H.2, S ∈ (BB∗)5.

Corollary I.2. Let R be an n× n matrix of rank r. Then R ∈ (BB∗)10r4 .

Proof. We can decompose R as R = GH∗ where G,H are n × r matrices. With appropriate
zero-padding, both of these can be made into n×n matrices with at most rn NNZ. The proof follows
immediately from Theorem 3 and Lemma H.2.

J COMPARISON TO BP HIERARCHY

In this appendix, we draw comparisons between the BB∗ hierarchy and the BP hierarchy introduced
by Dao et al. (2019).
Lemma J.1. Let Fn be the Discrete Fourier Transform of size n. Then Fn ∈ (BB∗)2.

29

Under review as a conference paper at ICLR 2020

Proof. From Parker (1995), we can express Fn as Fn = B P, where B ∈ B and P is a permutation
(the bit reversal permutation). From Theorem 2, P ∈ BB∗. Hence, by Lemma H.2, Fn ∈ (BB∗)2.

Lemma J.2. Let Hn be the Hadamard Transform of size n. Then Hn ∈ BB∗.

Proof. Hn ∈ B, so trivially Hn ∈ BB∗.

Lemma J.3. Let Sn be the Discrete Sine Transform of size n. Then Sn ∈ (BB∗)2.

Proof. As described in Makhoul (1980), Sn can be performed as a scaled permutation (separating
the even and odd indices of the input, and reversing and negating the odd indices) composed with Fn.
Therefore, we may decompose Sn as Sn = B P2 D P1, where P1,P2 are permutations, B ∈ B,
and D is a diagonal matrix. P2 D P1 is simply a permutation matrix with scaled entries, which can
be equivalently expressed as D′ P′ for some diagonal matrix D′ and permutation P′. By Lemma H.1,
B D′ ∈ BB∗. By Theorem 2, P′ ∈ BB∗. Hence, by Lemma H.2, Sn ∈ (BB∗)2.

Remark J.4. An analogous argument shows that the Discrete Cosine Transform is also in (BB∗)2.
Lemma J.5. Let Cn be an n× n circulant (convolution) matrix. Then Cn ∈ BB∗.

Proof. Using Theorem 2.6.4 of Pan (2001), we can express Cn as Cn = (Fn)
−1

DFn where Fn
is the Discrete Fourier Transform and D is a diagonal matrix. (Fn)

−1
= B P (with B ∈ B, P a

permutation), which implies that Fn = (P)
−1

(B)
−1. Therefore

Cn = B P D (P)
−1

(B)
−1
.

The middle three factors have the effect of performing a permutation, scaling each element, and
undoing the permutation, which is equivalent to simply scaling by some diagonal matrix D′. Hence,
we are left with

Cn = B D′ (B)
−1
.

By Lemma H.1, B D′ ∈ B. By Lemma H.6, (B)
−1 ∈ B∗. Hence, Cn ∈ BB∗.

Remark J.6. We can expand any n× n Toeplitz matrix Tn into a 2n× 2n circulant matrix (with
upper left n× n submatrix equal to Tn). Hence, Tn ∈ (BB∗)12 by Lemma J.5.
Remark J.7. Within each butterfly factor matrix of the DFT (excluding the bit reversal permutation)
and the Hadamard transform, the columns are pairwise orthogonal and have norm 2. Hence, we can
divide all factors by

√
2 to make orthogonal factor matrices. To counteract this scaling, we can add a

diagonal matrix with
√

2
log2(n) =

√
n in all entries to the factorization. By doing this we can place

all of the above transforms in the OBB hierarchy (defined in Appendix K) with the same width and
expansion factor.

J.1 MULTI-DIMENSIONAL TRANSFORMS

Here, we show that, using larger matrices, we are able to similarly capture multi-dimensional versions
of the above transforms.
Lemma J.8. Let F2

n be the 2-dimensional Discrete Fourier Transform (represented as an n2 × n2
matrix). Then F2

n ∈ (BB∗)2.

Proof. The separation property of the 2-D DFT allows us to express its action on an n× n matrix as
the composition of a 1-D DFT on each of its rows and a 1-D DFT on each of its columns. If we view
the 2-D DFT as an n2 × n2 matrix, its input and outputs will both be column vectors of size n2. As
our convention, we list the entries of the input vector in the row-major order corresponding to the
n× n input matrix. Then, we consider the 2-D DFT in four steps, where the first two steps perform
the 1-D DFT row-wise, and the second two steps perform the 1-D DFT column-wise:

Step 1: Permute the columns:

We permute the columns (with a bit reversal permutation), which performs a bit reversal permutation
on each row. Viewing the input as a vector, this step corresponds to left multiplication by a permutation

30

Under review as a conference paper at ICLR 2020

matrix Pc that permutes the entries of each chunk of size n of the input vector. Step 2: Multiply each
row by a butterfly matrix

Since the entries of the input were listed in row major order, this step is achieved through multiplication
by a block diagonal matrix of n butterfly matrices of size n, which can be viewed as a product of
butterfly factor matrices B

(n2)
n . . .B

(n2)
n
2

B
(n2)
2 .

Step 3: Permute the rows:

We permute the rows (with a bit reversal permutation), which performs a bit reversal permutation
on each column. This corresponds to left multiplication by a permutation matrix Pr. Since we are
permuting the rows, Pr permutes the entries at the granularity of each n-chunk. Since Steps 1 and 2
each performed an identical computation to each n-chunk we can move this row permutation before
Step 2, combining Pc and Pr into a single permutation P.

Step 4: Multiply each column by a butterfly matrix

Consider multiplication by the first factor matrix. In each row, this matrix is taking linear combinations
of adjacent column entries. In our length-n2 vector, these entries will be exactly n indices apart.
Therefore this multiplication can be handled by a butterfly factor matrix B

(n2)
2n . Similarly, we find

that this butterfly multiplication can be expressed as multiplication by a product of butterfly factor
matrices B

(n2)
n2 . . .B

(n2)
n2

2

B
(n2)
2n . Combined with the factor matrices from Step 2, these form a butterfly

matrix B of size n2.

In all, we see that the 2-D DFT may be realized as multiplication by a permutation matrix P
followed by multiplication by a butterfly matrix B. The same argument as Lemma J.1 shows that
F2
n ∈ (BB∗)2.

Remark J.9. An analogous argument (using the separation property of the respective transforms)
can be used to argue that 2-D Discrete Sine and Discrete Cosine transforms are in (BB∗)2, and that
2-D Hadamard Transforms are in BB∗.
Lemma J.10. Let C2

n be a 2-dimensional convolution matrix. Then C2
n ∈ BB∗.

Proof. We can express a 2-D convolution matrix as C2
n = (F2

n)−1DF2
n, where D is diagonal, F2

n
is the 2-D Fourier transform and (F2

n)−1 is the inverse 2-D Fourier transform. From the proof
of Lemma J.8, we see that that we can express F2

n (and similarly (F2
n)−1) as the product of a

butterfly matrix and a permutation matrix. The rest of the argument is analogous to the proof of
Lemma J.5.

Remark J.11. Using an inductive argument, we can show that all k-dimensional (k ∈ Z) variants of
the above transforms, expressed as nk × nk matrices are contained in BB∗ or (BB∗)2. To do this,
we use the separation property of the transforms to break them into a k − 1-dimensional transform
(the inductive hypothesis) followed by a 1-dimensional transform.

K THE ORTHOGONAL KALEIDOSCOPE HIERARCHY

Through practical application of the butterfly matrices, it has been found useful to constrain them
in orthogonality. In Section K.1 we will modify the existing kaleidoscope hierarchy to create the
orthogonal kaleidoscope hierarchy OBB. Then, in Section K.2, we will argue that all orthogonal
matrices, and as a result all matrices, can also be expressed in this hierarchy in O(n) width. Lastly, in
Section K.3, we will argue that permutation matrices and sparse matrices also exist in this hierarchy
in O(1) width, which in turn implies a corresponding result for matrices with low-depth arithmetic
circuits.

K.1 DEFINITION

The definition of the orthogonal butterfly is identical to the original butterfly, with the constraint that
all butterfly factors are orthogonal. We specify this definition below:
Definition K.1 (Analog of Definition 2.1). An orthogonal butterfly factor of size k ≥ 2 (denoted as
B̃k) is a butterfly factor that is also orthogonal.

31

Under review as a conference paper at ICLR 2020

Definition K.2 (Analog of Definition 2.3). An orthogonal butterfly matrix of size n (denoted as
B̃(n)) is a butterfly matrix with all butterfly factor matrices being orthogonal.

Note that the above definition implies that an orthogonal butterfly matrix, as well as its conjugate
transpose, is orthogonal.

The orthogonal hierarchy definition nearly mimics the original hierarchy Definition 2.4, as follows:
Definition K.3.

• We say that an n× n matrix M ∈ B̃ if we can express M = B̃(n).

• We say that an n× n matrix M ∈ B̃∗ if we can express M =
[
B̃(n)

]∗
.

• We say that an n × n matrix M ∈ OBB if we can express M = M1DM2 for some
M1 ∈ B̃,M2 ∈ B̃∗, and diagonal matrix D. Note that D need not be full rank.

• Width w and expansion e in (OBB)we mimic the same definition as in the original hierarchy,
using OBB instead of BB∗, such that E ∈ (OBB)w.

By padding if necessary, we will assume that n is a power of 2.

K.2 EXPRESSIVITY

In this subsection we prove that all orthogonal (resp. unitary) matrices are contained in OBBn. To
do this, we consider the class of Householder reflections, given by I− 2uu∗ for any unit vector u
(Householder, 1958):
Lemma K.1. All Householder reflections are in OBB with inner diagonal matrix I.

We will prove this lemma shortly. First, we use this lemma to present a decomposition for all
orthogonal (resp. unitary) matrices.
Lemma K.2. Let M be an n× n orthogonal/unitary matrix. Then M ∈ (OBB)n−1.

Proof. We consider the QR decomposition of M. It is known that we can compose M into a product
of n− 1 Householder reflections and an orthogonal/unitary diagonal matrix (Householder, 1958).9
From Lemma K.1, each Householder reflection is in OBB.

To complete the proof, we argue that R can be folded into the rightmost butterfly matrix. Let Q1 be
the rightmost butterfly factor matrix in Q (∈ B̃

(n)
n). Right multiplication of Q1 by R scales each

columns of Q1 by some c ∈ C with ||c|| = 1 (R is unitary diagonal). This preserves both the sparsity
pattern of Q1 and the orthogonality of its columns. Moreover, the norm of each column of Q1R is 1.
Therefore, Q1R is an orthogonal butterfly factor matrix, so M = QR ∈ (OBB)n−1, as desired.

We now return to the proof of Lemma K.1

Proof of Lemma K.1. Given u ∈ Cn (n a power of 2), let u0 = u[: n/2] ∈ Cn/2,u1 = u[n/2 :] ∈
Cn/2 denote the first and second halves of u.

To show that H ∈ OBB with inner diagonal matrix I, we proceed by induction. The base case for
n = 2 is trivial. It suffices to show that there exist unitary butterfly factors L,R such that LHR has

the form
[
In/2 − 2v0v

∗
0 0

0 In/2 − 2v1v
∗
1

]
for some unit vectors v0,v1 ∈ Cn/2.

Define

(v0[i],v1[i]) =


(

u0[i]√
|u0[i]|2+|u1[i]|2

, u1[i]√
|u0[i]|2+|u1[i]|2

)
if |u0[i]|2 + |u1[i]|2 6= 0

(1, 0) otherwise
. (5)

9Q is the (orthogonal/unitary) product of n− 1 Householder reflections. R, the remaining upper triangular
matrix after performing these reflections, is itself orthogonal/unitary, and therefore diagonal.

32

Under review as a conference paper at ICLR 2020

It is easily checked that

v0[i]∗v0[i] + v1[i]∗v1[i] = 1

v0[i]∗u0[i] + v1[i]∗u1[i] =
√
|u0[i]|2 + |u1[i]|2

v1[i]u0[i]− v0[i]∗u1[i] = 0

. (6)

We choose

L =

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]

and R = L∗. L,R are (permuted) direct sums of blocks of the form
[
v0[i]∗ v1[i]∗

v1[i] −v0[i]

]
, which are

orthogonal by construction (via (5)). Hence, L ∈ B̃
(n)
n and R ∈ (B̃∗)

(n)
n . Further,

LHR =

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

](
I− 2

[
u0

u1

] [
u0

u1

]∗)[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]∗
= I− 2

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

] [
u0

u1

] [
u0

u1

]∗ [
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]∗
= I− 2

[
v∗0 ◦ u0 + v∗1 ◦ u1

v1 ◦ u0 − v0 ◦ u1

]
︸ ︷︷ ︸

w

[
v∗0 ◦ u0 + v∗1 ◦ u1

v1 ◦ u0 − v0 ◦ u1

]
︸ ︷︷ ︸

w

∗

,

where ◦ denotes the Hadamard product. From (6)

w[i] =

{√
|u0[i]|2 + |u1[i]|2 i ∈ [n/2]

0 i ∈ [n/2 : n]

Denoting the first half of this vector by w0 ∈ Cn/2, we have

LHR =

[
I− 2w0w

∗
0 0

0 I

]
,

where ‖w0‖2 = ‖u‖2 = 1. The result follows inductively.

As an immediate corollary, we can use Singular Value Decomposition to obtain a factorization for an
arbitrary n× n matrix.
Corollary K.1. Let M be an arbitrary n × n matrix. Then, M ∈ (OBB)2n−1, where all but one
matrix in the decomposition is orthogonal (unitary).

Proof. By employing Singular Value Decomposition, we can decompose M as M = UΣV∗, where
U,V∗ are orthogonal and Σ is diagonal. By Lemma K.2, U,V∗ ∈ (OBB)n−1, and trivially
Σ ∈ OBB. Hence, M ∈ (OBB)2n−1. Note that Σ is the only matrix in the decomposition that is
not orthogonal (unitary).

K.3 CONSTRUCTIONS

We show that we can construct s-sparse matrices in the OBB hierarchy with the same width as the
BB∗ hierarchy. The proof follows a structure to that of Theorem 3. We begin by arguing about
permutation and step matrices, then using the same factorization to argue that matrices with at most
n NNZ are contained in (BB∗)5. Then, we will appeal to a modified sum closure lemma to extend
the argument to matrices of general s NNZ. Similar to Appendix F, we can use these results to place
all matrices with low-depth circuits for matrix vector multiplication in the OBB hierarchy.

K.3.1 PERMUTATIONS

We begin by presenting the argument that permutations are included in OBB as a corollary to
Theorem 2.

33

Under review as a conference paper at ICLR 2020

Corollary K.2. Let P be a permutation matrix. Then P ∈ B̃B̃∗.

Proof. We appeal to the decomposition from Theorem 2, noting that all butterfly factor matrices
constructed in the proofs of Lemmas G.3 and G.1 are permutation matrices, and thus are orthogonal.
Hence, P ∈ OBB where the inner diagonal matrix is I.

To prove the containment of sparse matrices within theOBB hierarchy, we make use of the following
lemma.
Lemma K.3. Let P be a permutation matrix and D a diagonal matrix. Then there exist diagonal
matrices D′ and D′′ such that:

PD = D′P DP = PD′′.

Proof. Let σ be the permutation such that P[i, j] = δi,σ(j).

Define D′ such that D′[σ(j), σ(j)] = D[j, j]. Then, if i = σ(j):

(PD)[i, j] = P[i, j]D[j, j] = D′[σ(j), σ(j)]P[σ(j), j] = (D′P)[σ(j), j] = (D′P)[i, j].

Otherwise, if i 6= σ(j), then (PD)[i, j] = 0 = (D′P)[i, j]. Hence, PD = D′P.

Define D′′ such that D′′[j, j] = D[σ(j), σ(j)]. An analogous argument to above shows that
DP = PD′′.

K.3.2 STEP MATRICES

In the BB∗ hierarchy (Lemma I.2), we were able to show that horizontal step matrices are butterfly
matrices. Here, we present a similar result for the OBB hierarchy.
Lemma K.4. Let H be an n× n horizontal step matrix. Then we can decompose H = DO, where
D is a diagonal matrix and O ∈ B̃.

Proof. Throughout the proof, we make reference to the original horizontal step matrix construction
given in Lemma I.2 and its proof.

To begin, we show that an arbitrary 2k × 2k butterfly factor H2k in the decomposition of H can be
expressed as the product of a diagonal matrix and an orthogonal butterfly factor. Since a butterfly
factor is direct sum of 2 × 2 matrices, there is a permutation matrix P2k such that conjugation of
H2k by P2k gives a block diagonal matrix H′2k of n2 2× 2 matrices, i.e.

P2kH2kP∗2k = H′2k .

(See Figure 8 for an illustration.) Specifically, P2k is the permutation where:

Ps[2i, :] = eTi Ps[2i+ 1, :] = eTi+n
2
.

1

1

1

1

1

1

1

1

P8 H8

1

1

1

1

1

1

1

1

P∗8

=

H′8

Figure 8: Block diagonalization of H8

34

Under review as a conference paper at ICLR 2020

We argue that each of these 2×2 blocks can be decomposed into a diagonal matrix times an orthogonal
matrix. Note that the butterfly factor matrices constructed in the proof of Lemma I.2 each have at
most one non-zero entry per column. Hence, there are 4 cases to consider. Note that matrices with at
most one non-zero entry are exhausted by Cases 1 and 2.

Case 1:
[
a 0
0 b

]
=

[
a 0
0 b

]
︸ ︷︷ ︸

D

[
1 0
0 1

]
︸ ︷︷ ︸

O

Case 2:
[
0 a
b 0

]
=

[
a 0
0 b

]
︸ ︷︷ ︸

D

[
0 1
1 0

]
︸ ︷︷ ︸

O

Case 3:
[
a b
0 0

]
=

[√
a2 + b2 0

0 0

]
︸ ︷︷ ︸

D

[
a√

a2+b2
b√

a2+b2
b√

a2+b2
−a√
a2+b2

]
︸ ︷︷ ︸

O

, a, b 6= 0

Case 4:
[
0 0
a b

]
=

[
0 0
0
√
a2 + b2

]
︸ ︷︷ ︸

D

[
b√

a2+b2
−a√
a2+b2

a√
a2+b2

b√
a2+b2

]
︸ ︷︷ ︸

O

, a, b 6= 0

In the last two cases, O is a 2 × 2 rotation matrix, which is commonly known to be orthogonal.
Assume that we perform the above decomposition on all of the blocks of H′2k in parallel, therefore
expressing H′2k = D′O′. We now have

H2k = P∗2kD′O′P2k .

By Lemma K.3, we can rewrite this as
H2k = D′′P∗2kO′P2k .

Note that P∗2kO′P2k is the product of three orthogonal matrices, and thus orthogonal. Additionally,
the construction of P2k ensures that P∗2kO′P2k is butterfly factor.10 Hence, H2k can be expressed
as the product of a diagonal matrix and an orthogonal butterfly factor, as desired.

Now, we show that this decomposition of butterfly factors implies Lemma K.4. By performing this
decomposition in parallel on each butterfly factor, we conclude that any butterfly factor matrix H

(n)

2k

of H can be decomposed as H
(n)

2k
= D2kO

(n)

2k
.11

We complete the argument by induction on n. The base case n = 2 holds by the observation about
butterfly factor matrices above. Assume that any horizontal step matrix of size n

2 ×
n
2 can be expressed

as a diagonal matrix times an orthogonal butterfly matrix. Now, consider the n× n horizontal step
matrix H. From Lemma I.2, H can be expressed as

H = B(n)
n

[
H1 0
0 H2

]
,

where H1,H2 are n
2 ×

n
2 horizontal step matrices. By our inductive hypothesis,

H = B(n)
n D1

[
O1 0
0 O2

]
,

where D1 is diagonal and O1,O2 are n
2 ×

n
2 matrices in B̃. However, B

(n)
n D1 is a butterfly factor,

and therefore can be expressed as DnO
(n)
n . Therefore,

H = DnO(n)
n

[
O1 0
0 O2

]
= DnO,

with O ∈ B̃, as desired.
10Conjugation by P2k is an isomorphism from 2k × 2k butterfly factors onto block diagonal matrices with

2k−1, 2× 2 blocks. Therefore, conjugation by P−1

2k
= P∗2k maps a block diagonal matrix to a butterfly factor.

11Note that a block diagonal matrix composed of orthogonal matrices is, itself, orthogonal.

35

Under review as a conference paper at ICLR 2020

Just as with the BB∗ hierarchy, the decomposition of vertical step matrices falls out as an immediate
corollary to the horizontal step matrix proof.
Corollary K.3. Let V be a vertical step matrix. Then we can decompose V = O∗D, where D is a
diagonal matrix and O∗ ∈ B̃∗.

K.3.3 SPARSE MATRICES

Now that we have argued about the decomposition of permutation and step matrices in the OBB
hierarchy, we can leverage the construction from Lemma I.1 to argue about matrices with at most n
NNZ.
Corollary K.4. Let S be an n× n matrix with at most n NNZ. Then, S ∈ (OBB)5.

Proof. We use the construction from Lemma I.1, along with Lemma K.4 and Corollary K.3, to
express S as:

S = O1O
′
1︸ ︷︷ ︸

P1

D2O2︸ ︷︷ ︸
H

O3O
′
3︸ ︷︷ ︸

P2

O′4D4︸ ︷︷ ︸
V

O5O
′
5︸ ︷︷ ︸

P3

,

with each Oi ∈ B̃, each O′j ∈ B̃∗, and each Dk diagonal. Noting that O′1 and O5 are permutations,
we make use of Lemma K.3 to re-express S as:

S = O1D
′
2O
′
1︸ ︷︷ ︸

M1

O2︸︷︷︸
M2

O3O
′
3︸ ︷︷ ︸

M3

O′4︸︷︷︸
M4

O5D
′
4O
′
5︸ ︷︷ ︸

M5

.

Note that each M` ∈ OBB. Hence, S ∈ (OBB)5, as desired.

Just as in Appendix I, we would like to extend this orthogonal-based construction to capture matrices
of general sparsity. To accomplish this, we introduce an addition closure lemma analogous to
Lemma K.5 for the OBB hierarchy.
Lemma K.5. Let A1, . . . ,Am be k × k matrices in (OBB)we then

∑m
i=1 Ai ∈ (OBB)mw4e .

With Lemma K.5, we arrive at the following Corollary on general orthogonal sparsity.

Corollary K.5. Let S be an n× n matrix with s NNZ. Then, S ∈ (OBB)
5d s

ne
4 .

Proof. Just as in the proof of Theorem 3, we accomplish this using a sum of
⌈
s
n

⌉
matrices of at most

n NNZ. For handling the sum of matrices, we need to appeal to Lemma K.5.

To conclude the argument, we give the proof of Lemma K.5.

Proof of Lemma K.5. For each 1 ≤ i ≤ m, let EAi
∈ Fek×ek be defined such that Ai = SEAi

S∗

(with S as in Definition 2.4). Note that EAi
∈ (OBB)w. Consider matrices of the form:Iek 0 0 EAi

0 Iek 0 0
Iek 0 0 -EAi

0 Iek 0 0


︸ ︷︷ ︸

Mi ∈ F4ek×4ek

=
√

2

[
1√
2
I2ek

1√
2
I2ek

1√
2
I2ek - 1√

2
I2ek

]
︸ ︷︷ ︸

O ∈ B̃
(4ek)
4ek

Iek 0 0 0
0 Iek 0 0
0 0 EAi 0
0 0 0 0


︸ ︷︷ ︸

K

Iek 0 0 0
0 Iek 0 0
0 0 0 Iek
0 0 Iek 0


︸ ︷︷ ︸

P ∈ B̃
(4ek)
2ek

Note that K, a block diagonal matrix composed of matrices in (OBB)w, is itself in (OBB)w since

K =

w∏
j=1

Iek 0 0 0
0 Iek 0 0
0 0 Oj 0
0 0 0 Iek


︸ ︷︷ ︸

Lj ∈ B̃

Iek 0 0 0
0 Iek 0 0
0 0 Dj 0
0 0 0 0


︸ ︷︷ ︸

Diagonal

Iek 0 0 0
0 Iek 0 0
0 0 O′j 0
0 0 0 Iek


︸ ︷︷ ︸

Rj ∈ B̃∗

,

36

Under review as a conference paper at ICLR 2020

where each Oj is a ek × ek matrix in B̃, and each O′j is a ek × ek matrix in B̃∗. Lw (the leftmost
factor) is a block diagonal matrix composed of 4 ek × ek matrices in B̃. Therefore, we can fold O

into this factor (since a butterfly factor in B̃
(4ek)
4ek was not yet used in Lw) to conclude that OLw ∈ B̃.

Similarly, since no btterfly factor from B̃
(4ek)
2ek has been used in R1, we may fold P into R1 to

conclude that R1P ∈ B̃∗. Finally, we address the scalar multiple of
√

2 by multiplying all entries of
any diagonal matrix in the decomposition of K by

√
2. Hence, we may conclude that Mi ∈ (OBB)w.

Through repeated application (m times) of the identityI A1 0 B1

0 I 0 0
I A2 0 B2

0 I 0 0


I 0 0 C1

0 I 0 0
I 0 0 C2

0 I 0 0

 =

I A1 + B1 0 C1

0 I 0 0
I A2 + B2 0 C1

0 I 0 0

 , (7)

we see that

m∏
i=1

Mi =

Iek
∑m
i=2 EAi

0 EA1

0 Iek 0 0

Iek -EAm
+
∑m−1
i=2 EAi

0 EA1

0 Iek 0 0


︸ ︷︷ ︸

M ∈ F4en×4en

.

Therefore, M ∈ (OBB)mw. Next, we note that

m∑
i=1

Ai = SM

 0 Iek 0 Iek
Iek 0 Iek 0
0 Iek 0 -Iek

Iek 0 -Iek 0


︸ ︷︷ ︸

Q

ST .

We would like to show that we can fold Q into the rightmostOBB factor of M. The rightmost matrix
in the decomposition of M is P. Note that

PQ =

 0 Iek 0 Iek
Iek 0 Iek 0
Iek 0 -Iek 0
0 Iek 0 -Iek

 =
√

2

 0 Iek 0 0
Iek 0 0 0
0 0 Iek 0
0 0 0 Iek


︸ ︷︷ ︸

B̃
(4ek)
2ek

[
1√
2
I2ek

1√
2
I2ek

1√
2
I2ek - 1√

2
I2ek

]
︸ ︷︷ ︸

B̃
(4ek)
4ek

.

Just as earlier, the factor of
√

2 can be multiplied through any diagonal matrix. Also, these two
orthogonal butterfly factor matrices can be folded into the the rightmost R matrix (the decomposition
of K above does not use these two, rightmost butterfly factors). Hence,

∑m
i=1 Ai ∈ (OBB)mw4e , as

desired.

K.3.4 ARITHMETIC CIRCUITS

Just as in Theorem 1, we can use the sparsity result in Lemma K.5 to place matrices with low-depth
(linear) arithmetic circuits for matrix vector multiplication in the OBB hierarchy.

Corollary K.6. Let M be an n × n matrix such that matrix-vector multiplication of M times an
arbitrary vector v can be represented as a be a linear arithmetic circuit C comprised of s gates
(including inputs) and having depth d. Then, M ∈ (OBB)

O(d)
O(s

n).

Proof. We use the construction given in the proof of Theorem 1. Corollaries K.4 and K.2 allow us to
recover the same width and expansion factor with the OBB hierarchy.

37

Under review as a conference paper at ICLR 2020

L RELU NETWORK WITH STRUCTURED WEIGHT MATRICES

We show that for any neural network with ReLU nonlinearities and whose weight matrices have
arithmetic circuits with few gates, its linear network counterpart (obtained by removing all the
ReLU’s) also has an arithmetic circuit with not too many more gates. This implies that in trying to
find the smallest arithmetic circuit augmented with ReLU gates to represent a ReLU network, one
might as well try to find the smallest arithmetic circuits that represent the matrix-vector multiplication
of each weight matrix.
Proposition 2. Consider a neural network architecture consisting of L layers with weight matrices
W1, . . . ,WL ∈ Fn×n and ReLU nonlinearity in between.

Suppose that matrix-vector multiplication of Wi times an arbitrary vector v can be represented
as a linear arithmetic circuit with si gates (including inputs). Then there exists an arithmetic
circuit augmented with ReLU gates with

∑L
i=1 si + Ln total gates that computes the output

ReLU(WL(. . .ReLU(W1v))) of the network for an arbitrary input vector v.

Conversely, if there is an arithmetic circuit augmented with ReLU gates with s total gates that
computes all the activations of the network ReLU(W1v), . . . ,ReLU(WL . . .ReLU(W1v)) for an
arbitrary input v, then there exists an arithmetic circuit augmented with ReLU gates with 2s+ 2Ln
total gates that computes the activations of the network without ReLU W1v, . . . ,WL . . .W1v.

Proof of Proposition 2. To compute the output of the network ReLU(WL(. . .ReLU(W1v))), we
first compute the matrix-vector product W1v with an arithmetic circuit of s1 gates by assumption,
and use n other ReLU gates to compute the pointwise ReLU. Then we repeat the process for layer
2, 3, . . . , L, using the arithmetic circuits of W1, . . . ,WL and Ln additional gates for ReLU. In total
we obtain an arithmetic circuit augmented with ReLU gates with

∑L
i=1 si + Ln total gates.

Conversely, to build an arithmetic circuit augmented with ReLU gates to compute
W1v, . . . ,WL . . .W1v, we pass v and then−v through the circuit that computes ReLU(W1x) for
an arbitrary x to get ReLU(W1v) and ReLU(−W1v). Noting that x = ReLU(x)− ReLU(−x),
we can use n additional gates to compute W1v from ReLU(W1v) and ReLU(−W1v).

Repeat the process for layer 2, 3, . . . , L (for example, pass W1v and −W1v to the circuit that
computes W2x for an arbitrary x on layer 2). Overall we need to double the circuits that computes all
the activations of the network ReLU(W1v), . . . ,ReLU(WL . . .ReLU(W1v)), requiring 2s gates.
We also need n additional gates per layer to compute the negation of the input to that layer (e.g.
computing −v from v), and n additional gates per layer to subtract the output of the ReLU circuit
(e.g. computing W1v from ReLU(W1v) and ReLU(−W1v).) Therefore we can construct an
arithmetic circuit augmented with ReLU gates with 2s+ 2L total gates that computes the activations
of the network without ReLU W1v, . . . ,WL . . .W1v.

We now prove an asymptotic bound on the VC dimension of a ReLU network whose weight matrices
are kaleidoscope matrices with bounded width and expansion.
Proposition 3. Let F be the class of ReLU neural networks consisting of L layers, where each
layer is a K-matrix with width and expansion bounded by some constant C. Suppose that the
network has W total parameters. Let signF denote the corresponding classification functions:
{x 7→ sign f(x) : f ∈ F}. Then this class has VC dimension:

VCdim(signF) = O(LW logW).

We leverage the result from Thomas et al. (2018) for the case where the entries of the weight matrices
interact multiplicatively, but with polynomially bounded degrees. This proof is similar to the VC
bound for ReLU networks whose weight matrices are butterfly matrices (Dao et al., 2019).

Proof. To use Theorem 3 of Thomas et al. (2018), we simply need to check that the entries of the
linear layer, as polynomials of the parameters, has degree at most c1mc2

l for some universal constant
c1, c2 > 0, where ml is the size of output of the l-th layer. If the network weight matrices are
K-matrices with bounded width and expansion, each weight matrix is a product of at most c3 logml

sparse factors, for some universal constant c3 > 0. This means that the degree is polynomially

38

Under review as a conference paper at ICLR 2020

bounded, which satisfies the condition of the theorem. Therefore the VC dimension is bounded to be
almost linear in the number of parameters:

VCdim(signF) = O(LW logW).

M ARITHMETIC CIRCUIT PRIMER

We give a quick overview of arithmetic circuits. This is a model of computation that has been
studied for numerous computational problems (and is the basic model for algebraic complexity
theory). For our purposes, we will exclusively focus on arithmetic circuits for the matrix-vector
multiplication problem. For a more detailed exposition, the reader is referred to the standard book on
this topic (Bürgisser et al., 2013).

Definition M.1 (Arithmetic Circuits). An arithmetic circuit that computes y = Ax (for A ∈ Fm×n)
has n input gates (corresponding to x[0], . . . ,x[n − 1]) and m output gates (corresponding to
y[0], . . . ,y[m− 1]). All the internal gates correspond to addition, subtraction, multiplication and
division12 over the underlying field F. The circuit is also allowed to use constants from F for ‘free.’
The definition of the internal gates can depend on A (as well as x of course). In other words, one
can ‘bake’ the knowledge about A into the circuit.

The size s of a circuit is n plus the number of addition, multiplication, subtraction and division gates
used in the circuit. The depth d of a circuit is the minimum number of layers such that all gates in a
given layer take as its input gates from previous layers.13

One drawback of arithmetic circuits (especially for infinite fields e.g. F = R, which is our preferred
choice in this work) is that they assume operations over F can be performed exactly. In particular, it
ignores precision issues involved with real arithmetic. Nonetheless, this model turns out to be a very
useful model in reasoning about the complexity of doing matrix-vector multplication for any family
of matrices.

Perhaps the strongest argument in support of arithmetic circuits is that a large (if not an overwhelming)
majority of matrix-vector multplication algorithm also imply an arithmetic circuit of size comparable
to the runtime of the algorithm (and the depth of the circuit roughly correponds to the time taken to
compute it by a parallel algorithm). For example consider the obvious algorithm to compute Ax (i.e.
for each i ∈ [m], compute y[i] as the sum

∑n−1
i=0 A[i, j]x[j]). It is easy to see that this algorithm

implies an arithmetic circuit of size O(nm) and depth O(log n).14

One thing to note about the arithmetic circuit above is that all the multplications involve at least one
input that is a constant from F (recall that we can assume that the entries of A are constants that can
be used to build the circuit). This leads to the following important sub-class of arithmetic circuits:

Definition M.2 (Linear Arithmetic Circuits). An arithmetic circuit is called a linear arithmetic
circuit if it only uses addition, subtraction and multiplication. Further, every multiplcation has a
fixed constant from F as at least one of its two inputs. In other words, all gates in the circuit are
linear functions of their inputs (i.e. of the form ax+ by for fixed constants a, b ∈ F).

Intuitively for the matrix-vector multiplication, it makes sense to consider linear arithmetic circuits
since the final function we want to compute Ax is indeed a linear function of its inputs. For inifinite
fields (e.g. F = R or F = C), it turns out that this is essentially without loss of generality:

Theorem 4 ((Bürgisser et al., 2013)). Let F be an infinite field. Any (general) arithmetic circuit to
compute Ax over F of size s and depth d can be converted into a linear arithmetic circuit of size
O(s) and depth O(d).

12Here we assume all the gates have two inputs.
13The input layer corresponding to the input gates does not contriubte to the depth.
14The claim on the depth follow from the fact that each of the sums

∑n−1
i=0 A[i][j]x[j] can be computed in

parallel. Further, the sum for each i ∈ [m] can be done in log2 m depth by first computing the partial sums
A[i][2j′]x[2j′] +A[i][2j′ + 1]x[2j′ + 1] for all j′ ∈ [n/2] in parallel and recursively computing pair-wise
sums till we are done.

39

Under review as a conference paper at ICLR 2020

The above result implies that for asymptotic considerations, linear arithmetic circuits for matrix-vector
multiplication are equivalent to general arithmetic circuits.15

One important property of linear arithmetic circuits of depth d, which we will use in our arguments,
is that such a circuit can be equivalently represented as product of d sparse matrices (see the proof of
Theorem 1 for the precise derivation16).

As mentioned earlier, a vast majority of efficient matrix vector multiplication algorithms are equivalent
to small (both in size and depth) linear arithmetic circuit. For example the FFT can be thought of as an
efficient arithmetic circuit to compute the Discrete Fourier Transform (indeed when one converts the
linear arithmetic circuit for FFT into a matrix decomposition,17 then each matrix in the decomposition
is a butterfly factor, with each block matrix in each factor being the same). For an illustration of this
consider the DFT with n = 4 as illustrated in Figure 9.

1 1 1 1

1 -i -1 i

1 -1 1 -1

1 i -1 -i

Figure 9: DFT of order 4.

Figure 10 represent the arithmetic circuit corresponding to FFT with n = 4.

v0 v1 v2 v3

+ + + +

+ + + +

1
1 1 11 −1 1

−1

1
1 1 11 −1 −i

i

w0 w1 w2 w3

+

x

a

y

b

ax+ by

Semantics of a gate

Figure 10: Arithmetic circuit for 4-DFT from Figure 9.

Finally, Figure 11 is representation of the arithmetic circuit of Figure 10 as a product of a butterfly
matrix and (the bit-reversal) permutation. We note that our generic arithmetic circuit to decomposition
into BB∗ is not as tight as in Figure 11.

15This follows from the fact that by definition any linear arithmetic circuit is also an arithmetic circuit; the
other direction follows from Theorem 4.

16To the best of our knowledge, this connection was explicitly made by De Sa et al. (2018) though the
connection seems to be folklore.

17Using the conversion mentioned in the paragraph above.

40

Under review as a conference paper at ICLR 2020

1 1

1 -i

1 -1

1 i

B
(4)
4

1 1

1 -1

1 1

1 -1

B
(4)
2

1

1

1

1

P

Figure 11: Decomposition of DFT of Figure 9 via the arithmetic circuit of Figure 10.

One reason for the vast majority of existing efficient matrix vector algorithms leading to (linear)
arithmetic circuits is that they generally are divide and conquer algorithms that use polynomial
operations such as polynomial multiplication or evaluation (both of which themselves are divide and
conquer algorithms that use FFT as a blackbox) or polynomial addition. Each of these pieces are
well known to have small (depth and size) linear arithmetic circuits (since FFT has these properties).
Finally, the divide and conquer structure of the algorithms leads to the circuit being of low depth. See
the book of Pan (Pan, 2001) for a more elaborate description of this connection.

In fact, the recent work of De Sa et al. (De Sa et al., 2018) makes this fact explicit and presents the
most general known structure on matrices that imply near-linear size linear arithmetic circuits for the
corresponding matrix vector multiplication. Their work combines two separate classes of structures
matrices– orthogonal polynomial transforms (Driscoll et al., 1997; Szegö, 1967) as well as matrices
with low displacement rank (Kailath et al., 1979; Olshevsky & Shokrollahi, 2000)– and presents a
linear class of linear arithmetic circuits to solve their matrix vector multiplication problem. We note
that structured matrices with low displacement rank have been used to replace fully connected layers
in some neural network architectures (Sainath et al., 2013; Thomas et al., 2018).

41

	Introduction
	A nearly-tight parameterization of all structured matrices
	Background: sparse factorization, butterfly matrices
	The kaleidoscope hierarchy
	All low-depth structured matrices are in the kaleidoscope hierarchy
	Extensions

	Empirical Evaluation
	Replacing hand-crafted structures
	Speech preprocessing
	Replacing CNN channel shuffle

	Learning a latent permutation
	Speeding up Inference

	Conclusion
	Related Work
	Structured matrices in machine learning
	Sparse matrices
	Speech recognition from raw audio
	Learning permutations

	Additional Experimental Details
	Speech preprocessing
	Experimental setup
	Model and evaluation
	Extension: Combining MFSC and kaleidoscope

	Replacing CNN channel shuffle
	Model architectures
	Experimental setup
	Additional results

	Learning permutations
	Dataset
	Model and Training

	Speeding up DynamicConv's inference
	Model architecture
	Training and evaluation

	Speed benchmark and implementation details
	Synthetic matrix recovery
	Properties of the BB* Hierarchy
	Arithmetic Circuits in BB* Hierarchy
	Permutations in BB*
	BB* Closure Lemmas
	Sparse Matrices in BB* Hierarchy
	Comparison to BP Hierarchy
	Multi-dimensional transforms

	The Orthogonal Kaleidoscope Hierarchy
	Definition
	Expressivity
	Constructions
	Permutations
	Step Matrices
	Sparse Matrices
	Arithmetic Circuits

	ReLU network with structured weight matrices
	Arithmetic Circuit Primer

