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ABSTRACT

Generative neural models have improved dramatically recently. With this progress
comes the risk that such models will be used to attack systems that rely on sensor
data for authentication and anomaly detection. Many such learning systems are
installed worldwide, protecting critical infrastructure or private data against mal-
function and cyber attacks. We formulate the scenario of such an authentication
system facing generative impersonation attacks, characterize it from a theoretical
perspective and explore its practical implications. In particular, we ask fundamen-
tal theoretical questions in learning, statistics and information theory: How hard
is it to detect a “fake reality”? How much data does the attacker need to collect
before it can reliably generate nominally-looking artificial data? Are there optimal
strategies for the attacker or the authenticator? We cast the problem as a maximin
game, characterize the optimal strategy for both attacker and authenticator in the
general case, and provide the optimal strategies in closed form for the case of
Gaussian source distributions. Our analysis reveals the structure of the optimal
attack and the relative importance of data collection for both authenticator and at-
tacker. Based on these insights we design practical learning approaches, and show
that they result in models that are more robust to various attacks on real-world
data. Code will be made publicly available upon publication.

1 INTRODUCTION

Generative models have attracted considerable attention since the introduction of Generative Adver-
sarial Networks (Goodfellow et al., 2014a). Empirically, GANs have been shown to generate novel
data instances that resemble those in the true distribution of the data. The success of GANs also
comes with the risk that generative models will be used for attacking sensor-based security systems.
One example is identity authentication systems, where an individual is identified via her images, and
GANs might be able to generate such images to gain access (Thies et al., 2016). Another is anomaly
detection systems protecting critical infrastructure. As demonstrated by recent cyber-attacks (no-
tably the Stuxnet attack) sensors of these systems can be hijacked, so that GANs can be used to
generate “normal” looking activity while the actual system is being tampered with. The latter is in
fact a new form of a man-in-the-middle attack.

Our goal here is to construct a theoretical framework for studying the security risk arising from
generative models, and explore its practical implications. We begin with a simple key insight. If the
attacker (i.e. the generative model) has unlimited observations of the source it is trying to imitate, it
will be able to fool any authenticator. On the other hand, if the attacker has access to fewer sensor
observations than the number of fake observations it needs to generate, it seems intuitively clear that
it cannot always succeed (as we indeed prove in Sec. 4). Therefore, the optimal defense and attack
strategies depend crucially on the amount of information available to the attacker and authenticator.

Motivated by the above insight, we cast the authentication setting as a two player maximin game
(authenticator vs. attacker) where all observations are finite. Specifically, there are three key obser-
vation sets to consider: those available to the attacker, those that the attacker needs to generate, and
those available to the authenticator when designing the system. Our goal is to understand how these
three information sources determine the optimal strategies for both players. Under the realistic as-
sumption that cyber attackers are sophisticated enough to play optimal or close to optimal strategies,
a characterization of the maximin authentication strategy can be of significant value.

1



Under review as a conference paper at ICLR 2020

We prove several theoretical results characterizing the optimal strategy for both players. These
results highlight the role played by the available observations as well as the functional form for an
optimal attacker and authenticator. We refer to the setting above as “GAN in The Middle” (GIM)
due to its similarity to “man in the middle” attacks. After describing our theoretical results, we
show how to learn both authenticator and attacker policies in practice, where both are based on
neural architectures. Our GIM method can be applied to multiple practical problems. The first is
building an authentication system that is robust to impersonation attacks. The second is building a
data generating mechanism that can generate novel data instances. Finally, we evaluate the method
empirically, showing that it outperforms existing methods in terms of resilience to generative attacks,
and that it can be used effectively for data-augmentation in the few-shot learning setting.

2 PROBLEM STATEMENT

We begin by motivating our problem, and formulating it as a two player zero sum game. As a sim-
ple illustrative example, consider a face authentication security system whose goal is to maximize
authentication accuracy. The system is initialized by registering k images of an individual θ (the
”source”), whose identity is to be authenticated. At test-time, each entity claiming to be θ is re-
quired to present to the system n of its images, and the authentication system decides whether the
entity is θ or an impersonator. We let m denote the maximum number of “leaked” images any at-
tacker obtained. We observe that if an attacker obtainedm ě n images of θ, it can present n of those
images. Thus the observations generated by the attacker are indistinguishable from ones generated
by θ, leading to failure of the authentication system (see Sec. 4.2 below). Namely, the number of
images of θ that the attacker obtains and the size of the authentication sample are of key importance.
We now turn to formally stating the problem.
Notation. The set of possible observations is denoted by X . Let H denote the known set of
possible sources θ, where each source θ P H is defined by a probability density fθ, and an ob-
servation of a source θ P H is an X -valued random variable with density fθ. We assume that
subsequent observations of the source are IID, so that n sequential observations have density
f
pnq
θ px1, . . . , xnq :“

śn
i“1 fθpxiq. We allow θ to be sampled from a known distribution Q on

H and denote the corresponding H-valued random variable by Θ. In what follows we will denote
the number of observations leaked to the attacker by m, the number of “registration” observations
available to the authenticator by k, and the number of observations required at authentication by n
(these may be generated by either the attacker or the true source).
The Authentication Game. The game begins with a random source Θ being drawn from H accord-
ing to Q. The authenticator first receives information about the drawn source, and then chooses a
decision rule for deciding whether a given test sequence x P Xn is an authentic sequence of obser-
vations sampled from f

pnq
θ , or a fake sequence generated by the attacker. Formally the authenticator

learns about the source by seeing k IID “registration” observations A “ A1, . . . , Ak „ f
pkq
θ . The

set of all possible decisions rules is then D : X k ˆXn Ñ t0, 1u (where a decision of 1 corresponds
to the true source, and 0 to an attacker). After the authenticator fixes its strategy, the attacker can
seek the best attack strategy. We assume that the attacker has access to m “leaked” IID observations
Y “ Y1, . . . , Ym „ f

pmq
θ as information about the source θ. Then it generates an attack sequence

X P Xn and presents it to the authenticator which uses its decision rule to decide whether X is an
authentic sequence of observations sampled from f

pnq
θ , or a fake sequence generated by the attacker.

Formally, the strategy set of the attacker is all functions G : Xm Ñ ∆pXnq, where ∆pXnq is the set
of probability distributions over Xn, and gX|Y is the associated conditional probability density. We
note that the set H, the parametric family fθ, and the prior probability Q are known to both players.
Also, note that the leaked sample Y revealed to the attacker is not available to the authenticator, and
the “registration” sample A is not available to the attacker.

The goal of the authenticator is to maximize its expected accuracy, and the goal of the attacker is
to minimize it (or equivalently maximize its success probability). We define the utility (payoff) of
the game as the expected prediction accuracy of the authenticator. To define expected accuracy we
consider the case of equal priors for attack and real samples.1 Formally, for a pair of strategies

1 We give equal prior probability to attack and real samples for simplicity and clarity, and since this is
common in GAN formulations. All results can be trivially generalized to any prior probability for attack.
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pD,Gq and a specific source θ, the expected accuracy of the authenticator is then:

V pθ,D,Gq “ 1

2
E
A„f

pkq
θ

E
Y„f

pmq
θ

”

E
X„f

pnq
θ

rDpA,Xqs ` EX„GpY qr1´DpA,Xqs
ı

(2.1)

Since this utility only depends on G in the second term, minimizing it is equivalent to G maximizing
its success probability. To obtain the overall utility for the authenticator, we take the expected value
w.r.t θ and define V pD,Gq “ EΘ„QV pΘ,D,Gq. Finally, we arrive at the following maximin game:

Vgame “ max
DPD

min
GPG

V pD,Gq (2.2)

where D,G are the set of all possible authenticator and attacker strategies, respectively. In Sec. 4 we
show that this game has a Nash equilibrium, we characterize the optimal strategies and game value
in general, and find them in closed form for the case of Multivariate Gaussian sources.

3 RELATED WORK

Adversarial hypothesis testing (AHT): Hypothesis testing (HT) is a rich field in statistics which
studies how one can detect whether a sample was generated by one of two sets of distributions. A
variant of HT that is related to our work but distinct from it is AHT (e.g., see Brandão et al., 2014;
Barni & Tondi, 2013b;a; 2014; Bao et al., 2011; Zhou et al., 2019; Brückner & Scheffer, 2011;
Brückner et al., 2012). These works describe an HT setting where the sample is generated by one of
two hypotheses classes, but is then modified by an adversary in some restricted way. e.g., in Barni
& Tondi (2013b;a; 2014) the adversary can change the sample of one class up to a fixed distance
(e.g., Hamming). Given the quality of current generative models and the rapid pace of progress,
when considering an impersonation attack, it seems that the only relevant restriction one can assume
on an attacker is on the information it has. This is not captured by prior work since it assumes that
the adversary has a restricted strategy set. In contrast, our work considers a novel problem setting
where both players are not limited in their strategy set in any way. This leads to a novel analysis that
focuses on the dependence on the finite information available to each player (m,n, k).
Adversarial Examples: It has been observed (Goodfellow et al., 2014b) that deep learning models
can be very sensitive to small changes in their input. Such “misleading” inputs are known as ad-
versarial examples and much recent work has analysed the phenomenon (Ilyas et al., 2019; Shamir
et al., 2019; Zhang et al., 2019), addressed the problem of robustness to these (Moosavi-Dezfooli
et al., 2016; Papernot et al., 2017; Yuan et al., 2017), and certifying robustness (Raghunathan et al.,
2018; Wong et al., 2018). The setting of robust classification in the presence of adversarial examples
can also be thought of as a specific case of AHT (see above), where a classifier is required to predict
the class of an observation that could have been perturbed by a restricted adversary (Wong et al.,
2018; 2019) or generated by an adversary limited to generating examples that will be classified cor-
rectly by humans (Song et al., 2018). In contrast, in our setting the attacker is not limited in any way,
nor does it have another utility in addition to impersonating the source. Furthermore, in adversarial
examples there is no notion of limited information for the adversary, whereas our work focuses on
the dependence of the game on the information available to the players (sample sizes n,m, k).
GAN: The GAN model is a game between a generator and discriminator. While our concept of
generative attacks is inspired by a GAN it is very different from it: a successful GAN generator is
not necessarily a successful attacker in our setting, and vice-versa (e.g., given sufficiently expressive
generators and discriminators, GANs can “memorize” the training data, and thus the discriminator
will perform at chance level.2 Such a discriminator will not be useful as a defence against generative
attacks). Unlike GANs, in our setting, sample sizes are of key importance. Thus, our attacker will
not memorize the data it sees, as this will be detected when generating n ą m examples.
Conditional GANs: In conditional GANs (Mirza & Osindero, 2014) the generator uses side infor-
mation for generating new samples. The attacker in our approach (analogous to GAN generator) has
input, but this input is not available to the authenticator (analogous to GAN discriminator). Thus,
the objective of the learning process is fundamentally different.
Few shot learning and generation: Our work relates to few shot learning (Snell et al., 2017;
Vinyals et al., 2016; Finn et al., 2017; Lake et al., 2011; Koch et al., 2015) and few shot generative
models (Rezende et al., 2016; Zakharov et al., 2019; Lake et al., 2015; Edwards & Storkey, 2017;
Hewitt et al., 2018) in the sense that both authenticator and attacker need to learn from a limited set

2If the generator is not expressive enough, the learned GAN may have small support (Arora et al., 2017).
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of observations. However, in our setting the authenticator is required to predict whether a sample
came from the true source or an attacker impersonating the source, while taking into consideration
the amount of information both players have. These are notions that are not part of the general few
shot learning setup. Also, in prior work on few-shot generation, the generator is either measured
through human evaluation (Lake et al., 2015) or trained to maximize the likelihood of its generated
sample (Rezende et al., 2016; Edwards & Storkey, 2017; Hewitt et al., 2018). In contrast, in our set-
ting the attacker’s objective is to maximize the probability that its generated sample will be labeled
as real by an authenticator. To this end, we show that the attacker must consider the sample sizes
m,n, k, which the generative models in other works do not account for. Furthermore, we show in
Sec. F.4, and in Figures 1c,6, that the ML solution is indeed sub-optimal in our setting.
Image to image translation: Several GAN models have been introduced for mapping between two
domains (Zhu et al., 2017; Huang et al., 2018; Isola et al., 2017; Wang et al., 2017; Park et al., 2019).
This relates to our work since the attacker also needs to learn to map the leaked sample to an attack
sample. However, in our setting the mapping is not to a different domain but rather to other images
from the same distribution, which results in a different objective.
Data Augmentation: Generative models have also been used for augmenting data in supervised
learning, and in particular few-shot learning (Koch et al., 2015; Snell et al., 2017; Vinyals et al.,
2016; Lake et al., 2011). One such approach is Data Augmentation GAN (DAGAN) (Antoniou
et al., 2018), which takes as input an image and generates a new image. It relates to our framework
in the limited case of m “ 1, n “ 2, k “ 1, in the sense that the generator objective is to map one
image to two. However, in DAGAN the only goal of the discriminator is to improve the generator,
and the generator is limited to the functional form of adding a new image to the existing one, which
is a sub-optimal attack strategy, as can be seen from the Gaussian case of our problem.

4 THEORETICAL RESULTS

In this section we study the game defined in Eq. 2.2. First, in Sec. 4.1 we show the existence of a
Nash equilibrium and characterize the optimal strategies for both players. Specifically we show that
the optimal attacker strategy minimizes a certain divergence between its marginal distribution and
f
pnq
Θ . Next, Sec. 4.2 shows that when there are more leaked samples m than generated samples n,

the authenticator will fail. Finally, in Sec. 4.3 we provide a closed form solution for both attacker
and authenticator for the case of multivariate Gaussian distributions, and analyze the significance of
the observations’ dimension, and the sample sizes m,n and k. Proofs are provided in the appendix.

4.1 CHARACTERIZING THE OPTIMAL STRATEGIES

We begin by showing that the game defined in Eq. 2.2 admits a Nash equilibrium. Namely, Theorem
4.1 below shows that there exists a pair of strategies pD˚,G˚q that satisfy:

max
DPD

min
GPG

V pD,Gq “ min
GPG

max
DPD

V pD,Gq “ V pD˚,G˚q (4.1)

Theorem 4.1. Let fApaq “
ş

θPHQpθqf
pkq
θ paqdθ denote the marginal density of A, let QΘ|A denote

the posterior probability over H given A, and let fX|A, gX|A, denote the conditional densities of X
given A generated by the source and the attacker respectively. Consider the attacker defined by:

g˚X|Y P argmin
gX|Y

EA„fA
„
ż

xPXn

ˇ

ˇfX|Apx|Aq ´ gX|Apx|Aq
ˇ

ˇ dx



(4.2)

and let G˚ be the corresponding map from Xm to the set of probability distributions over Xn.
Consider the authenticator defined by: D˚pa, xq “ I

”

fX|Apx|aq ą g˚X|Apx|aq
ı

, where I is the

indicator function. Then pD˚,G˚q is a solution of Eq. 2.2 that satisfies Eq. 4.1.

The proof (see Sec. D) follows by first showing that since Dpa, xq P t0, 1u, then for any G its optimal
strategy is a MAP test between the two hypotheses (true source or attacker). We then show that given
D˚, the game objective for G becomes the `1 distance over the space X k ˆ Xn between the true
source distribution and the marginal distribution of the attacker, and thus any optimal G minimizes
it. Therefore it holds that minG V pD˚,Gq “ V pD˚,G˚q “ maxD V pD,G˚q and it follows that
D˚,G˚ satisfy Eq. 4.1.
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4.2 REPLAY ATTACKS: AUTHENTICATION FAILURE FOR n ď m

When n ď m, the attacker generates a number of observations that is at most the number of ob-
servations it has seen. Intuitively, an optimal attack in this case is to simply “replay” a subset of
size n from the m observations. This is known as a replay-attack (Syverson, 1994). This subset
constitutes an IID sample of length n of the observed source, and is therefore a legitimate “fresh”
sample. In this case, it seems like the attack cannot be detected by the authenticator. Indeed it
is easy to show using Theorem 4.1 that this attack is optimal and therefore for n ď m we have:
maxDPD minGPG V pD,Gq “ 0.5 (see Sec. E)

4.3 THE GAUSSIAN CASE

We now turn to the case of multivariate Gaussian distributions where we can find the exact form of
the attacker and authenticator, providing insight into the general problem. Specifically, we consider
the setting where the source distributions are d-dimensional multivariate Gaussians with an unknown
mean and known covariance, and the prior Q over H is the improper uniform prior.3 We assume
n ą m to keep the problem non-trivial. Let the observations be d-dimensional Gaussian vectors
with a known covariance matrix Σ P Rdˆd and an unknown mean vector θ P Rd. The set of
possible sources H becomes Rd, the Gaussian mean vectors. Finally, for any v P Rd, B P Rdˆd,
we define }v}2B “ vTBv. The following theorem gives a closed-form solution for both attacker and
authenticator for the game defined in Eq. 2.2.

Theorem 4.2. Define δ “ m{n ď 1 and let ρ “ m{k. Consider the attacker G˚ defined by the
following generative process: Given a leaked sample Y P Rmˆd, G˚ generates a sample X P Rnˆd

as follows: it first samples n vectors W1, . . . ,Wn
iid
„ N p0,Σq and then sets: Xi “ Wi ´ W̄ ` Ȳ

where Ȳ “ 1
m

řm
i“1 Yi and W̄ “ 1

n

řn
i“1Wi. Define the authenticator D˚ by:

D˚pa, xq “ I

«

}x̄´ ā}
2
Σ´1 ă

d p1` ρq
`

1` ρδ´1
˘

np1´ δq
log

ˆ

ρ` 1

ρ` δ

˙

ff

(4.3)

Then pD˚,G˚q is a solution of Eq. 2.2 that satisfies Eq. 4.1.

The proof (see Sec. F) starts by showing that @α ą 0, given Dpa, xq “ Ir}x̄´ ā}
2
Σ´1 ă αs, the

optimal strategy for G is to set x̄ “ ȳ with probability 1 (as done in G˚). To prove this, we first use
the Prekopa-Leindler inequality (Prkopa, 1973) to show that in this case G’s maximization objective
is log-concave. We then show that any G that satisfies x̄ “ ȳ with probability 1 is a local extremum,
and since the objective is log-concave it follows that it is the global maximum. We continue by
showing that given G˚, D˚ is optimal. To do so, we first find the distribution of G˚’s attack sample
using the Woodbury matrix identity, and then show that D˚ is indeed the optimal decision rule.
Finally, using the max-min inequality, this implies that pD˚,G˚q satisfy Eq. 4.1.

There are several interesting observations about the above optimal strategies. Perhaps the most
intuitive strategy for the attacker would have been to sample n elements from a Gaussian with mean
Ȳ and the known covariance Σ. In expectation this sample would have the correct mean. However,
this turns out to be sub-optimal, as can be seen in Figures 1c, 6 (we refer to this as an ML attack,
see Sec. F.4 in the appendix for the derivation and visualizations). Instead, the optimal attacker
begins by drawing an IID sample, W , from a Gaussian distribution with mean 0, and then “forces”
the sample mean to be exactly Ȳ by shifting the sample points by Ȳ ´ W̄ . This optimal attacker
strategy can be viewed as matching the sufficient statistics of the leaked sample Y in the generated
sample X . The optimal authenticator is a MAP test for the optimal attacker, as in Theorem 4.1.

As a corollary to Theorem 4.2 we obtain the value of the game (i.e., the accuracy of D˚).

Corollary 4.3. Define δ and ρ as in Theorem 4.2. Then the game value for the Gaussian case is:

1

2
`

1

2Γpd2 q

„

γ

ˆ

d

2
,
dp1` ρq

2p1´ δq
log

1` ρ

δ ` ρ

˙

´ γ

ˆ

d

2
,
dpδ ` ρq

2p1´ δq
log

1` ρ

δ ` ρ

˙

(4.4)

Where γ is the lower incomplete gamma function, and Γ is the Gamma function.

3Similar results can be derived for the conjugate prior case, namely, proper Gaussian priors.
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The proof (see Sec. F) follows by showing that the test statistic used by D˚ is Gamma distributed.
Fig. 1 demonstrates several interesting aspects of the above results. First, Fig. 1a shows that the
authenticator accuracy improves as n the size of the test sample grows. Furthermore, accuracy
also improves as the dimension d grows, meaning that for a specified authentication accuracy, the
required ratio n{m becomes smaller with the dimension d. This is a very encouraging result, since
although this dimensional dependency is proved only for Gaussian sources, it suggests that for real
world high-dimensional sources (e.g. faces, video, voice, etc.) the authenticator can achieve high
accuracy even when requiring a small (and practical) authentication sample.

Intuitively it may seem like authentication is impossible when the authenticator has less data than the
attacker (i.e.,m ą k). Surprisingly, this is not the case. As can be seen in Fig. 1b, even whenm ą k,
the authenticator can achieve non trivial accuracy.4 An intuitive explanation to this phenomenon is
that the test statistic used by the authenticator is

›

›X̄ ´ Ā
›

›, which, due to the variance in the attacker
estimation, has higher variance when X is generated by an attacker than when X is generated by
the true source. This in turn allows the authenticator to discriminate between the hypotheses.

A closed-form solution for the general case remains an open problem. We believe that solving
for Gaussians is an important step forward, since it exposes interesting structural properties of the
solution, which we use in practice. Furthermore, if G has an encoder-decoder structure, it is not
unreasonable that the source distribution in latent space can be approximately Gaussian (as in VAE).

5 GAN IN THE MIDDLE NETWORKS

So far we explored the general formalism of authentication games. Here we consider specific archi-
tectures for D and G. As in GAN based models (Mirza & Osindero, 2014; Mescheder et al., 2018;
Karras et al., 2018a;b), we use neural nets to model these, while using insights from our theoretical
analysis. Below we provide implementation details for the GIM model (see Sec. H and code for
more details). In our analysis we considered the non-differentiable zero-one loss since it is the real
accuracy measure. In practice we will use cross-entropy as used in most GAN approaches.
Authenticator Architecture: The authenticator is implemented as a neural network Dpa, xq that
maps from a source information sample a P X k and a test sample x P Xn to a probability that
the test sample came from the true source. Our framework does not restrict the authenticator to any
specific function type, but in practice one must of course implement it using some model. We recall
that our theoretical results do suggest a certain functional form. The Gaussian results in Sec. 4.3
show that the optimal authenticator is a test on the sufficient statistic of the source parameters. Mo-
tivated by this result, and in the spirit of Siamese networks (Koch et al., 2015; Chopra et al., 2005),
we consider the following form for the authenticator. We define a function TD that maps a sample
to a fixed sized vector, analogous to the sufficient statistic in the theorem. We apply TD to both a
and x. Then, these two outputs are used as input to a comparison function σ which outputs a scalar
reflecting their similarity. Thus the authenticator can be expressed as: Dpa, xq “ σpTDpaq, TDpxqq.
Attacker Architecture: The attacker is implemented as a stochastic neural network Gpyq that maps
a leaked sample y P Xm to an attack sample x P Xn. Our theoretical results suggest a certain
functional form for this network. The Gaussian analysis in Sec. 4.3 shows that the optimal attacker
generates a sample whose sufficient statistic matches that of the leaked sample. Motivated by this
result, we consider the following functional form for the attacker. First it applies a function TG that
maps the leaked sample Y to a fixed sized vector TGpY q, analogous to the sufficient statistic in the
theorem. It then draws n random latent vectors W1, . . . ,Wn and matches their mean to the leaked
sufficient statistic to obtain the latent vectors W 1

i . I.e it sets W 1
i “ Wi ´ W̄ ` TGpY q as done in

Theorem 4.2. Finally, it uses a decoder function ϕ that maps each latent vector W 1
i to the domain

X . Thus, the attacker can be expressed as: GpY qi “ ϕpWi ´ W̄ ` TGpY qq @i P rns.
Optimization Details: Each iteration begins when a source θ is chosen randomly from the set of
sources in the training dataset (e.g., a person to be authenticated). Samples A, Y,Xθ are drawn from
the set of examples available for θ, where Xθ represents a test sample from θ. Then, given a leaked
sample Y , G generates a fake sample XG , passes it to D and suffers the the appropriate loss. Fi-
nally, D receives as input the source information sample A, outputs a prediction for each of the test
samples Xθ, XG , and suffers the the appropriate loss. Optimization is done via gradient ascent on
authenticator parameters and descent on attacker parameters, as is typical for GAN problems.

4See appendix for additional figures showing that as the dimension grows, the expected accuracy goes to 1.
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6 EXPERIMENTS

We next evaluate our method empirically. In all experiments we use the model described in Sec. 5.
We optimize the model with adversarial training, using the loss suggested by Mescheder et al. (2018)
and Adam (Kingma & Ba, 2015). See Sec. H for further Implementation details.
Gaussian sources: For the case of Gaussian sources we arrived at a complete characterization of the
solution in Sec. 4.3. Thus, we can learn the models using our GIM algorithm and check whether it
finds the correct solution. This is important, as the GIM objective is clearly non-convex and GANs
are generally hard to train in practice and lack convergence guarantees (Mescheder et al., 2018). We
ran all experiments using a multivariate Gaussian with Σ “ Id, and in each game the source mean
was drawn from the prior distribution Q “ N p0, 10Idq. This approximates the improper uniform
prior since the prior has much larger variance than the sources. Fig. 1a shows the empirical game
value compared to the theoretical one as a function of the test sample size n, for fixedm “ 1, k “ 10,
and different values of d. It can be seen that there is an excellent fit between theory and experiment.

(a) (b) (c)

Figure 1: Game value (expected authentication accuracy) for the Gaussian case. (a) A comparison between
empirical and theoretical game value for different d values (m “ 1, k “ 10). Solid lines describe the theoretical
game values whereas the ˚ markers describe the empirical accuracy when learning with the GIM model. (b)
Theoretical game value as a function of δ, ρ (see Corollary 4.3) for d “ 100. (c) Empirical accuracy of
an optimal authenticator against two attacks: the theoretically optimal attack G˚ from Theorem 4.2 and a
maximum likelihood (ML) attack (See Sec. F.4) for the Gaussian case. It can be seen that the ML attack is
inferior in that it results in better accuracy for the authenticator, as predicted by our theoretical results.

Authentication on Faces and Characters: We next evaluate GIM in an authentication setting on
two datasets: the VoxCeleb2 faces dataset (Nagrani et al., 2017; Chung & Zisserman, 2018), and
the Omniglot handwritten character dataset (Lake et al., 2015). Additional information about the
datasets, splits, and modeling details is provided in Sec. G, H. Our goal is to check whether the GIM
authenticator is more robust to generative attacks than a state of the art authentication system. To
evaluate this, we consider several attackers: 1) A “random source” attacker (RS): a naive attacker
that ignores the leaked sample Y , and simply samples real images from a random source. This is
equivalent to a sample version of the verification task (Koch et al., 2015; Schroff et al., 2015; Deng
et al., 2018), in which an agent is presented with a pair of real images and needs to decide whether
they are from the same source or not. 2) Replay attacker (Replay): an attacker which upon seeing
a leaked sample Y , draws n random images of the leaked sample (with replacement). 3) A GIM
attack, which is the “worst case” attacker G, learned by our GIM model.

For VoxCeleb we compare the GIM authenticator to the ArcFace method (Deng et al., 2018), which
is currently state of the art in face verification. As a baseline for Omniglot we use the Siamese
network suggested by Koch et al. (2015), which achieves state of the art in the verification task
on Omniglot. Results are shown in Table 1. It can be seen that on average across attacks, GIM
outperforms the baselines. The only attack for which GIM is inferior is RS. This is not surprising as
this is the objective that both baselines are trained for.

Qualitative evaluation of attacker: In Fig. 2 we provide images generated by the GIM attacker
for the test set of both Omniglot and Voxceleb. The images demonstrate qualitatively the strategy
learned by the attacker. In the Voxceleb2 dataset, face images are drawn from a video of the person
talking. Note that as in real samples from the data, the attack sample varies in pose and expression
and not in the background or clothing.
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Table 1: Accuracy of GIM and baselines against attacks. Avg acc denotes average over all attacks.

Authenticator Dataset m n k RS Replay GIM Avg acc

GIM VoxCeleb2 1 5 5 0.897 0.837 0.822 0.852
ArcFace VoxCeleb2 1 5 5 0.998 0.598 0.526 0.707
GIM Omniglot 1 5 5 0.912 0.942 0.868 0.907
Siamese Omniglot 1 5 5 0.994 0.509 0.785 0.763

(a) (b)

Figure 2: Images generated by the GIM attacker based on one leaked image. In each row the leftmost image
is the real leaked image, and the rest of the images are an attack sample generated by the GIM attacker. (a)
Voxceleb2 dataset. (b) Omniglot dataset.

Data augmentation: Finally, we use GIM for data augmentation in one-shot classification on Om-
niglot. This is done by using the GIM attacker to generate more data for a given class. We first train
GIM on the training set with parameters m “ 1, n “ 5, k “ 5. Then, during both training and test-
ing of one shot classification, given an example, we use the attacker to augment the single example
available for each of the classes, by adding to it the n “ 5 examples our attacker generated from
it. We use Prototypical Nets (Snell et al., 2017) as the baseline model. We find that without using
our augmentation method, Prototypical Nets achieve 95.9% accuracy on the test split, and with our
method they achieve 96.5%, which is similar to the improvement achieved by Antoniou et al. (2018)
with Matching networks (Vinyals et al., 2016) as the few shot classification algorithm.

7 CONCLUSIONS

We defined the notion of authentication in the face of generative attacks, in which a generative model
attempts to produce a fake reality based on observations of reality. These attacks raise numerous in-
teresting theoretical questions and are very important and timely from a practical standpoint. We
proposed to study generative attacks as a two-person zero-sum game between attacker and authen-
ticator. In our most general setup both attacker and authenticator have access to a finite set of
observations of the source. We show that this game has a Nash equilibrium, and we characterize
the optimal strategies. In the Gaussian version of the game a closed form of the optimal strate-
gies is available. A nice outcome of the analysis is that the game value depends on m,n, k only
through their ratios δ “ m{n (i.e., the ”expansion ratio” between attack and leaked sample sizes)
and ρ “ m{k (i.e., the “information ratio” between the number of source observations available to
attacker and authenticator). As we show in Fig. 1b, there is a large range of values for which high
accuracy authentication is possible, and as d grows we observe that the high authentication accuracy
region in the pδ, ρq plane grows sharply. We introduce the GIM model, which is a practical approach
to learning both authenticator and attacker, and whose structure is inspired by our analysis. GIM
achieves accuracy that is very close to the theoretical rates in the Gaussian case, and is also more
robust to attacks, when compared to state of the art authenticators on real data. Many theoretical
and practical questions remain. For example finding closed form optimal strategies for other distri-
butions, and going beyond IID generation. The non IID setting is of particular importance for the
problem of fake video (Thies et al., 2016) and audio (Arik et al., 2018) generation, which we intend
to study in the future.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Antreas Antoniou, Amos J. Storkey, and Harrison Edwards. Augmenting image classifiers using
data augmentation generative adversarial networks. In Artificial Neural Networks and Machine
Learning, pp. 594–603, 2018.

Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou. Neural voice cloning with a
few samples. In Advances in Neural Information Processing Systems, pp. 10040–10050, 2018.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 224–232. JMLR. org, 2017.

Ning Bao, O. Patrick Kreidl, and John Musacchio. A network security classification game. In
Game Theory for Networks - 2nd International ICST Conference, GAMENETS 2011, Shang-
hai, China, April 16-18, 2011, Revised Selected Papers, pp. 265–280, 2011. doi: 10.1007/
978-3-642-30373-9z 19. URL https://doi.org/10.1007/978-3-642-30373-9_
19.

Mauro Barni and Benedetta Tondi. Multiple-observation hypothesis testing under adversarial con-
ditions. In 2013 IEEE International Workshop on Information Forensics and Security, WIFS
2013, Guangzhou, China, November 18-21, 2013, pp. 91–96, 2013a. doi: 10.1109/WIFS.2013.
6707800. URL https://doi.org/10.1109/WIFS.2013.6707800.

Mauro Barni and Benedetta Tondi. The source identification game: An information-theoretic per-
spective. IEEE Trans. Information Forensics and Security, 8(3):450–463, 2013b. doi: 10.1109/
TIFS.2012.2237397. URL https://doi.org/10.1109/TIFS.2012.2237397.

Mauro Barni and Benedetta Tondi. Binary hypothesis testing game with training data. IEEE Trans.
Information Theory, 60(8):4848–4866, 2014. doi: 10.1109/TIT.2014.2325571. URL https:
//doi.org/10.1109/TIT.2014.2325571.

Fernando G. S. L. Brandão, Aram Wettroth Harrow, James R. Lee, and Yuval Peres. Adversarial
hypothesis testing and a quantum stein’s lemma for restricted measurements. In Innovations in
Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pp. 183–194,
2014. doi: 10.1145/2554797.2554816. URL https://doi.org/10.1145/2554797.
2554816.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, USA, August 21-24, 2011, pp. 547–555, 2011. doi: 10.1145/
2020408.2020495. URL https://doi.org/10.1145/2020408.2020495.

Michael Brückner, Christian Kanzow, and Tobias Scheffer. Static prediction games for adversarial
learning problems. J. Mach. Learn. Res., 13:2617–2654, 2012. URL http://dl.acm.org/
citation.cfm?id=2503326.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 539–546, 2005.

Arsha Nagrani Chung, Joon Son and Andrew Zisserman. Voxceleb2: Deep speaker recognition. In
Interspeech, 2018.

Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. arXiv preprint arXiv:1801.07698, 2018.

Harrison Edwards and Amos Storkey. Towards a neural statistician. In International Conference on
Learning Representations, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

9

https://doi.org/10.1007/978-3-642-30373-9_19
https://doi.org/10.1007/978-3-642-30373-9_19
https://doi.org/10.1109/WIFS.2013.6707800
https://doi.org/10.1109/TIFS.2012.2237397
https://doi.org/10.1109/TIT.2014.2325571
https://doi.org/10.1109/TIT.2014.2325571
https://doi.org/10.1145/2554797.2554816
https://doi.org/10.1145/2554797.2554816
https://doi.org/10.1145/2020408.2020495
http://dl.acm.org/citation.cfm?id=2503326
http://dl.acm.org/citation.cfm?id=2503326
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400


Under review as a conference paper at ICLR 2020

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2014b.

Luke B Hewitt, Maxwell I Nye, Andreea Gane, Tommi Jaakkola, and Joshua B Tenenbaum. The
variational homoencoder: Learning to learn high capacity generative models from few examples.
In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 988–
997, 2018.

Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with adaptive instance nor-
malization. In IEEE International Conference on Computer Vision, pp. 1510–1519, 2017.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In Proceedings of the European Conference on Computer Vision, pp. 172–189,
2018.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. ArXiv, abs/1905.02175, 2019.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with con-
ditional adversarial networks. In The IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 5967–5976, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018a.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. arXiv preprint arXiv:1812.04948, 2018b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2, 2015.

Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the 33th Annual Meeting of the Cognitive Science
Society, 2011.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do
actually converge? In Proceedings of the 35th International Conference on Machine Learning,
pp. 3478–3487, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb: a large-scale speaker identification dataset.
In Interspeech, 2017.

10



Under review as a conference paper at ICLR 2020

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. CoRR, abs/1903.07291, 2019. URL http://arxiv.org/
abs/1903.07291.

Andrs Prkopa. On logarithmic concave measures and functions. Acta Scientiarium Mathemati-
carum, 34:335–343, 1973.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial exam-
ples. In International Conference on Learning Representations, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-
shot generalization in deep generative models. In Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 1521–
1529, 2016. URL http://proceedings.mlr.press/v48/rezende16.html.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In The IEEE Conference on Computer Vision and Pattern Recognition,
pp. 815–823, 2015.

Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. A simple explanation for the existence of
adversarial examples with small hamming distance. CoRR, abs/1901.10861, 2019. URL http:
//arxiv.org/abs/1901.10861.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4080–4090, 2017.

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted adversarial
examples with generative models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp. 8312–8323. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8052-constructing-unrestricted-adversarial-examples-with-generative-models.
pdf.

Paul Syverson. A taxonomy of replay attacks [cryptographic protocols]. pp. 187 – 191, 07 1994.
ISBN 0-8186-6230-1. doi: 10.1109/CSFW.1994.315935.

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner.
Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2387–2395, 2016.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems, pp. 3630–
3638, 2016.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
High-resolution image synthesis and semantic manipulation with conditional gans. CoRR,
abs/1711.11585, 2017. URL http://arxiv.org/abs/1711.11585.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, pp. 8400–8409. Curran Associates,
Inc., 2018.

Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 6808–6817, 2019. URL http:
//proceedings.mlr.press/v97/wong19a.html.

11

http://arxiv.org/abs/1903.07291
http://arxiv.org/abs/1903.07291
http://proceedings.mlr.press/v48/rezende16.html
http://arxiv.org/abs/1901.10861
http://arxiv.org/abs/1901.10861
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models.pdf
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models.pdf
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models.pdf
http://arxiv.org/abs/1711.11585
http://proceedings.mlr.press/v97/wong19a.html
http://proceedings.mlr.press/v97/wong19a.html


Under review as a conference paper at ICLR 2020

Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and Xiaolin Li. Adversarial examples:
Attacks and defenses for deep learning. CoRR, abs/1712.07107, 2017. URL http://arxiv.
org/abs/1712.07107.

Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor S. Lempitsky. Few-shot adversarial
learning of realistic neural talking head models. CoRR, abs/1905.08233, 2019. URL http:
//arxiv.org/abs/1905.08233.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
dan. Theoretically principled trade-off between robustness and accuracy. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, pp. 7472–7482, 2019. URL http://proceedings.mlr.press/v97/
zhang19p.html.

Yan Zhou, Murat Kantarcioglu, and Bowei Xi. A survey of game theoretic approach for adversarial
machine learning. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 9(3), 2019. doi: 10.1002/
widm.1259. URL https://doi.org/10.1002/widm.1259.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, 2017.

12

http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1905.08233
http://arxiv.org/abs/1905.08233
http://proceedings.mlr.press/v97/zhang19p.html
http://proceedings.mlr.press/v97/zhang19p.html
https://doi.org/10.1002/widm.1259


Under review as a conference paper at ICLR 2020

A INTRODUCTION TO THE APPENDIX

Here we provide additional information and proofs for the main paper. In Sec. B we provide a
visualization of the game setting. In Sec. C we plot the game value in the Gaussian case for different
parameter values. In Sec. D we provide a proof for Theorem 4.1, in Sec. E we formally state the
theorem discussed in Sec. 4.2 and provide proof, and in Sec. F we prove Theorem 4.2 and also derive
the game value for the sub-optimal ”ML attacker”. Finally in Sec. G,H we provide additional details
about the experiments and the implementation of GIM.

B GAME FORMULATION VISUALIZATION

Our problem setup is illustrated in Figure 3 for a face authentication scenario. A source θ (in this
case an individual) generates IID observations (images). k images are used by the authenticator to
study the source, which it aims to authenticate. m images are “leaked” and obtained by an attacker
who wishes to impersonate the source and pass the authentication. At test time the authenticator
is presented with n images that were generated either by the true source θ, or by the attacker, and
decides whether the entity that generated the images was the source θ or an attacker.

Attacker

(  ୀଵ


 ୀଵ
 )

Leaked Samples

Real/
FakeLabel

Generator
ଵ 

ଵ 

ଵ 

ଵ 

Source

ଵ 

Authenticator

Preliminary Observations

Figure 3: An illustration of the game described in the main text. An authenticator receives a sample
of n images and needs to decide whether these were generated by a known source, or by an adversary
that had access to leaked examples. In order to decide, the authenticator is supplied with k samples
from the real source.

C GAME VALUE VISUALIZATIONS

In corollary 4.3 we provide the game value (the expected authenticator accuracy) for multivariate
Gaussian sources. In this section we present additional visualizations of the game value as a function
of the different parameters of the game. Figure 4 visualizes the game value for different values of
d (the observation dimension), as a function of δ “ m

n , the “expansion ratio” between the source
information available to the attacker through the leaked sample and the size of the attacker’s attack
sample, and ρ “ m

k , the information ratio between number of source observations available to
attacker and authenticator. One can clearly see that as d, the observation dimension, grows large,
so does the accuracy of the authenticator. Even for δ values higher then 0.5, and ρ values which
intuitively would give the attacker an advantage (e.g., mk “ 10).

13



Under review as a conference paper at ICLR 2020

Figure 5 visualizes the game value for different values of d (the observation dimension), as a function
of δ “ m

n and ε “ n
k , the“information expansion” of the attacker with respect to the authenticator

source information. Again, one can clearly see that as d, the observation dimension, grows large, so
does the accuracy of the authenticator.

Figure 4: Game value as a function of δ, ρ for different dimensions d.

Figure 5: Game value as a function of δ, ε for different dimensions d.

D ADDITIONAL THEOREMS AND PROOFS FOR SEC. 4.1

We begin with some additional notation. Let

fApaq “

ż

θPH
Qpθqf

pkq
θ paqdθ
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denote the marginal density of A, let QΘ|A denote the posterior probability over H given A. That is:

QΘ|Apθ|aq “
Qpθqf

pkq
θ paq

ş

νPHQpνqf
pkq
ν paqdν

”
Qpθqf

pkq
θ paq

fApaq

Also let fY |A, fX|A, gX|A, denote the conditional densities defined by:

fY |Apy|aq “

ż

θPH
f
pmq
θ pyqQΘ|Apθ|aqdθ

fX|Apx|aq “

ż

θPH
f
pnq
θ pxqQΘ|Apθ|aqdθ

gX|Apx|aq “

ż

yPXm

gX|Y px|yqfY |Apy|aqdy

Lemma D.1. Let G be an attacker defined by the conditional probability distribution gX|Y . Then
@a P X k, x P Xn a best response strategy for D is:

Dpa, xq “ IrfX|Apx|aq ą gX|Apx|aqs (D.1)

Proof. Given an attacker strategy gX|Y , the objective for D is given by:

argmax
D

EΘ„QV pΘ,D,Gq

“ argmax
D

EΘ„QEA„fpkqΘ

rE
X„f

pnq
Θ

rDpA,Xqs ` E
Y„f

pmq
Θ

EX„gX|Y p¨|yqr1´DpA,Xqss

“ argmax
D

EA„fArEX„fX|Ap¨|AqrDpA,Xqs ` EY„fY |Ap¨|AqEX„gX|Y p¨|Y qr1´DpA,Xqss

“ argmax
D

ż

aPXk

fApaq

ż

xPXn

fX|Apx|aqDpa, xq ` gX|Apx|aqr1´Dpa, xqsdxs

Note that D can be optimized independently for each pair a, x P X kˆXn. Hence, @a, x P X kˆXn

the objective is:

argmax
Dpa,xqPt0,1u

tfX|Apx|aqDpa, xq ` gX|Apx|aqr1´Dpa, xqsu

And thus the optimal decision rule for D is:

Dpa, xq “ IrfX|Apx|aq ą gX|Apx|aqs

As required.

Lemma D.2. @a, x P X k ˆ Xn let the strategy for D be defined by:

Dpa, xq “ IrfX|Apx|aq ą gX|Apx|aqs

Then G˚ is a best response strategy for G, iff it minimizes the `1 distance between the distributions
fX|A, gX|A over the space X k ˆ Xn. Namely:

g˚X|Y P argmin
gX|Y

EA„fA
ż

xPXn

ˇ

ˇfX|Apx|Aq ´ gX|Apx|Aq
ˇ

ˇ dx (D.2)
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Proof. Let D be defined as in Eq. D.1, the objective for G is:

argmin
G

1

2
Eθ„QV pΘ,D,Gq

“ argmin
gX|Y

Eθ„QEA„fpkqΘ

rE
X„f

pnq
Θ

rDpA,Xqs ` E
Y„f

pmq
Θ

EX„gX|Y p¨|Y qr1´DpA,Xqss

“ argmin
gX|Y

EA„fArEX„fX|Ap¨|AqrDpA,Xqs ` EX„gX|Ap¨|Aqr1´DpA,Xqss

“ argmin
gX|Y

ż

aPXk

dafApaq

ż

xPXn

dxtfX|Apx|aqDpa, xq ` gX|Apx|aqr1´Dpa, xqsu

“ argmin
gX|Y

ż

aPXk

dafApaq

ż

xPXn

dxmaxtfX|Apx|aq, gX|Apx|aqu (D.3)

“ argmin
gX|Y

1

2

ż

aPXk

dafApaq

ż

xPXn

dxrfX|Apx|aq ` gX|Apx|aq `
ˇ

ˇfX|Apx|aq ´ gX|Apx|aq
ˇ

ˇs

“ argmin
gX|Y

2`

ż

aPXk

dafApaq

ż

xPXn

dx
ˇ

ˇfX|Apx|aq ´ gX|Apx|aq
ˇ

ˇ

“ argmin
gX|Y

ż

aPXk

dafApaq

ż

xPXn

dx
ˇ

ˇfX|Apx|aq ´ gX|Apx|aq
ˇ

ˇ

(D.4)

as required. Where in Eq. D.3 we used the definition of D.

Theorem 4.1. Consider the attacker defined by:

g˚X|Y P argmin
gX|Y

EA„fA
„
ż

xPXn

ˇ

ˇfX|Apx|Aq ´ gX|Apx|Aq
ˇ

ˇ dx



(D.5)

and let G˚ be the corresponding map from Xm to the set of probability distributions over Xn.
Consider the authenticator defined by:

D˚pa, xq “ I
”

fX|Apx|aq ą g˚X|Apx|aq
ı

(D.6)

where I is the indicator function. Then pD˚,G˚q is a solution of Eq. 2.2 that satisfies Eq. 4.1.

Proof. From Lemmas D.1, D.2, we have that maxD V pD,G˚q “ V pD˚,G˚q “ minG V pD˚,Gq
form which it follows that Eq. 4.1 is satisfied and thus pD˚,G˚q is a solution of Eq. 2.2.

E THEOREM AND PROOF FOR SEC. 4.2

Theorem E.1. For all n ď m it holds that:

max
DPD

min
GPG

V pD,Gq “ 0.5

Proof. Consider the attacker Greplay defined by the following generative process: Given a leaked
sample Y P Rmˆd, Greplay generates a sample X P Rnˆd such that Xi “ Yi @i P rns. (This is
possible since we assumed n ď m). Namely, we have:

gX|Y px|yq “
n
ź

i“1

δpxi ´ yiq

16
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Where δ is the Dirac delta. Thus @a, x P X k ˆ Xn:

gX|Apx|aq “

ż

yPXm

dygX|Y px|yqfY |Apy|aq

“

ż

yPXm

dygX|Y px|yq

ż

θPH
dθf

pmq
θ pyqQΘ|Apθ|aq

“

ż

θPH
dθ

ż

yPXm

dy
n
ź

i“1

δpxi ´ yiqf
pmq
θ pyqQΘ|Apθ|aq

“

ż

θPH
dθQΘ|Apθ|aq

ż

yPXn

dy
n
ź

i“1

δpxi ´ yiqf
pnq
θ pyq

ż

y1PXm´n

dy1f
pm´nq
θ py1q

“

ż

θPH
dθQΘ|Apθ|aq

ż

yPXn

dy
n
ź

i“1

δpxi ´ yiqf
pnq
θ pyq

“

ż

θPH
dθQΘ|Apθ|aqf

pnq
θ pxq

“fX|Apx|aq

Define:
D0pa, xq “ 0 @a, x P X k ˆ Xn

Then according to Theorem 4.1 pD0,Greplayq is a solution of Eq. 2.2 that satisfies Eq. 4.1, and there-
fore:

max
DPD

min
GPG

V pD,Gq “V pD0,Greplayq

“
1

2
EΘ„QEA„fpkqθ

E
Y„f

pmq
θ

”

E
X„f

pnq
θ

rDpA,Xqs ` EX„GpY qr1´DpA,Xqs
ı

“
1

2
EΘ„QEA„fpkqθ

E
Y„f

pmq
θ

”

E
X„f

pnq
θ

r0s ` EX„GpY qr1s
ı

“
1

2
As required.

F ADDITIONAL THEOREMS AND PROOFS FOR SEC. 4.3

F.1 NOTATION AND DEFINITIONS

In this section we consider the case where the sources are d-dimensional Gaussian vectors with a
known covariance matrix Σ “ CCT P Rdˆd and unknown mean vector θ P Rd. That is the set of
possible sources is H “ Rd, and given θ P H the associated probability density over the domain
X “ Rd is fθpxq “ 1?

p2πqd| detpΣq|
exp p´ 1

2 px´ θq
TΣ´1px´ θqq

A sample of n examples x P Xn, is considered a matrix x P Rnˆd, where the first dimension is the
sample and the second is the dimension in the observation space, Rd. i.e. xij P R is the j’th element
of the i’th example in the sample x P Rnˆd.

We continue with a few more notations that simplify the proofs. Given a matrix x P Rnˆd, we let
xc “

“

xT1 , . . . , xTn
‰T
P Rnd be the concatenation vector representing x. Given a vector θ P Rd

we let θc,n “
“

θT , . . . , θT
‰T
P Rnd be the concatenation of n copies of θ. Given a matrix

x P Rnˆd we let x̄ ” 1
n

řn
i“1 xi P Rd denote its mean along the sample dimension. For any matrix

B P Rdˆd, we denote:

diagpB, kq “

»

—

–

B 0
. . .

0 B

fi

ffi

fl

P Rkdˆkd

17
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and

reppB, kq “

»

—

–

B ¨ ¨ ¨ B
...

. . .
...

B ¨ ¨ ¨ B

fi

ffi

fl

P Rkdˆkd

Finally we define strategies for both attacker and authenticator which we prove in what follows to
be the optimal strategies for the game.

Definition F.1. Let G˚ denote an attacker defined by its associated conditional probability g˚X|Y as
follows: Given a leaked sample Y P Rmˆd, G˚ generates an attack sample X P Rnˆd as follows.
It first samples n vectors W1, . . . ,Wn

iid
„ N p0,Σq and then sets:

Xi “Wi ´ W̄ ` Ȳ (F.1)

Definition F.2. For any α P R`, let Dα denote an authenticator defined as:

Dαpa, xq “ Ir}x̄´ ā}
2
Σ´1 ă αs

Where I is the indicator function

F.2 TECHNICAL LEMMAS

Lemma F.3. Let X1, . . . , Xk
iid
„ N pµ,Σq Where µ P Rd,Σ P Rdˆd. Then

X̄ “
1

k

k
ÿ

j“1

Xj „ N pµ, 1

k
Σq

Proof. We begin by observing that: Xc „ N pµc,k, diagpΣ, kqq. LetB “ 1
k rId ¨ ¨ ¨ Ids P Rdˆkd

and observe that X̄ “ BXc. Therefore, since this is an affine transformation of a Gaussian vector
we have:

X̄ „ N pBµc,k, BdiagpΣ, kqBT q “ N pµ, 1

k
Σq

As required.

Lemma F.4. Let X P Rd be a Gaussian vector s.t X „ N pµ,Σq, and let Xc,n P Rnd be the
concatenation of n copies of X . Then:

Xc,n „ N pµc,n, reppΣ, nqq

Proof. Let

B “

»

—

–

Id
...
Id

fi

ffi

fl

P Rndˆd

And observe thatXc,n “ BX . Therefore, since this is an affine transformation of a gaussuian vector
we have:

Xc,n „ N pBµ,BΣBT q “ N pµc,n, reppΣ, nqq

As required.

Lemma F.5. Let θ P Rd,Σ P Rdˆd represent the mean and covariance of a Gaussian distribution.
Let X P Rnˆd be a random sample generated by the attacker defined in Def. F.1. Then:

Xc „ N pθc,n, diagpΣ, nq ` reppp
n´m

mn
qΣ, nqq

18
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Proof. Observe that Wc „ N p0, diagpΣ, nqq. Using Lemma F.3 we get Ȳ „ N pθ, 1
mΣq and

observe that: W̄c,n “ repp 1
nId, nqWc. and using Lemma F.4 we get: Ȳc,n „ N pθc,n, 1

mreppΣ, nqq.
We define the following block matrices

Z “

„

Wc

Ȳc,n



, B “
“

Ind ´
1
nreppId, nq, Ind

‰

and observe that:

Z „N p
„

0nd
θc,n



,

„

diagpΣ, nq 0
0 1

mreppΣ, nq



q

Note that Xc “Wc ´ W̄c,n ` Ȳc,n “ BZ, and therefore we get:

Xc „ N pB
„

0nd
θc,n



, B

„

diagpΣ, nq 0
0 1

mreppΣ, nq



BT q

“ N pθc,n, diagpΣ, nq ` reppp
n´m

mn
qΣ, n, nqq

as required.

Lemma F.6. Let Σ “ CCT P Rdˆd represent the covariance of a Gaussian distribution, and
consider the following covariance matrix:

Ψ “ diagpΣ, nq ` reppp
n´m

mn
qΣ, nq

Then its inverse is:

Ψ´1 “ diagpΣ´1, nq ´
n´m

n2
reppΣ´1, nq

And the determinant is:

detpΨq “ p
n

m
qd detpΣqn

Proof. We begin by defining the following block matrices:

U “

»

—

–

Σ
...
Σ

fi

ffi

fl

P Rndˆd (F.2)

V “ p
n´m

mn
q

»

—

–

Id
...
Id

fi

ffi

fl

P Rndˆd (F.3)
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And note that repppn´mmn qΣ, nq “ UV T . Then:

Ψ´1 “ pdiagpΣ, nq ` reppp
n´m

mn
qΣ, nqq´1

“ pdiagpΣ, nq ` UV T q´1

p˚q
“ diagpΣ, nq´1 ´ diagpΣ, nq´1UpId ` V

T diagpΣ, nq´1Uq´1V T diagpΣ, nq´1

p˚˚q
“ diagpΣ´1, nq ´ diagpΣ´1, nqUpId ` V

T diagpΣ´1, nqUq´1V T diagpΣ´1, nq

“ diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

pId `
n´m

nm
rId ¨ ¨ ¨ Ids

»

—

–

Id
...
Id

fi

ffi

fl

q´1n´m

nm

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“ diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

m

n
Id
n´m

nm

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“ diagpΣ´1, nq ´
n´m

n2

»

—

–

Id
...
Id

fi

ffi

fl

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“ diagpΣ´1, nq ´
n´m

n2
reppΣ´1, nq

As required. Where in p˚q we used the Woodbury matrix identity, and in p˚˚q we used the inverse
of a diagonal block matrix.

Next, we turn to finding the determinant of Ψ:

detpΨq “ detpdiagpΣ, nq ` reppp
n´m

mn
qΣ, nqq

“ detpdiagpΣ, nq ` UV T q

p˚q
“ detpdiagpΣ, nqqdetpId ` V

T diagpΣ, nq´1Uq

p˚˚q
“ detpΣqndetpId ` V

T diagpΣ´1, nqUq

“ detpΣqndetpId `
n´m

nm
rId ¨ ¨ ¨ Ids diagpΣ

´1, nq

»

—

–

Σ
...
Σ

fi

ffi

fl

q

“ detpΣqndetpId `
n´m

m
Idq

“ detpΣqnp
n

m
qd

Where in p˚q we used the matrix determinant lemma, and in p˚˚q we used the determinant of a
diagonal block matrix.

Lemma F.7. Let

hpx, µq “ expt´
1

2σ2
px´ µqTΣ´1px´ µquIrtx P Rd : xTΣ´1x ă αus @x, µ P Rd

And define the function:

ψpµq “

ż

txPRd:xTΣ´1xăαu

dxhpx, µq

Then ψpµq is log-concave over the space Rd.

Proof. We begin by noting that the function:

px´ µqTΣ´1px´ µq
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is convex w.r.t µ, hence its negative is concave, and by definition the function:

expt´
1

2σ2
px´ µqTΣ´1px´ µqu (F.4)

is log-concave w.r.t µ. We now show that hpx, µq is log concave w.r.t µ. Let β P r0, 1s, then we have
that:

hpβµ1 ` p1´ βqµ2q

“ expt´
1

2σ2
px´ βµ1 ´ p1´ βqµ2q

TΣ´1px´ βµ1 ´ p1´ βqµ2quIrtx P Rd : xTΣ´1x ă αus

p˚q

ě expt´
β

2σ2
px´ µ1q

TΣ´1px´ µ1qu expt´
p1´ βq

2σ2
px´ µ2q

TΣ´1px´ µ2quIrtx P Rd : xTΣ´1x ă αus

p˚˚q
“ expt´

β

2σ2
px´ µ1q

TΣ´1px´ µ1qupIrtx P Rd : xTΣ´1x ă αusqβpIrtx P Rd : xTΣ´1x ă αusqp1´βq

“ hpµ1q
βhpµ2q

p1´βq

Therefore hpµq is log-concave. Where in p˚q we used Eq. F.4, and in p˚˚q we used the fact that
Irtx P Rd : xTΣ´1x ă αus P t0, 1u.

Finally, by using Prekopa-Leindler inequality (Prkopa, 1973) we have that ψpµq is log concave, as
required.

F.3 PROOF OF THEOREM 4.2

Lemma F.8. Consider the attacker G˚, defined in Def. F.1 The best response strategy for the au-
thenticator against this attacker is:

D˚pa, xq “ Ir}x̄´ ā}
2
Σ´1 ă α˚s

Where

α˚ “
dpm` kqpn` kq

k2pn´mq
log

npm` kq

mpn` kq

Proof. The best response authenticator satisfies:

D˚ P argmax
DPD

V pD,Gq

“ argmax
DPD

1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

rE
X„f

pnq
Θ

rDpA,Xqs ` EX„gX|Y p¨|Y qr1´DpA,Xqss

“ argmax
DPD

EΘ„QEA„fpkqΘ

rE
X„f

pnq
Θ

rDpA,Xqs ` EX„gX|Θp¨|Θqr1´DpA,Xqss

F.5
“ argmax

DPD
EΘ„QEA„N pΘc,k,diagpΣ,kqqrEX„N pΘc,n,diagpΣ,nqqrDpA,Xqs ` EX„N pθc,n,Ψqr1´DpA,Xqss

F.6
“ argmax

DPD
EΘ„Q

ż

aPRkd
da

ż

xPRnd
dx expt´

1

2
pa´Θc,kq

T diagpΣ, kq´1pa´Θc,kqur

expt´
1

2
px´Θc,nq

T diagpΣ, nq´1px´Θc,nquDpa, xq`
d

1

p nm q
d

expt´
1

2
px´Θc,nq

TΨ´1px´Θc,nqur1´Dpa, xqss

D can be chosen independently for each pair pa, xq P X k ˆXn therefore for any pa, xq P X k ˆXn

the decision rule for Dpa, xq “ 1 is:
c

p
n

m
qd

ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

T diagpΣ, nq´1px´ θc,nqu expt´
1

2
pa´ θc,kq

T diagpΣ, kq´1pa´ θc,kqu

ą

ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

TΨ´1px´ θc,nqu expt´
1

2
pa´ θc,kq

T diagpΣ, kq´1pa´ θc,kqu
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Observing the LHS and using the improper uniform prior assumption we have:

c

p
n

m
qd

ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

T diagpΣ, nq´1px´ θc,nqu expt´
1

2
pa´ θc,kq

T diagpΣ, kq´1pa´ θc,kqu

“

c

p
n

m
qd

ż

θPRd
expt´

1

2
r

n
ÿ

i“1

pxi ´ θq
TΣ´1px´ θq `

k
ÿ

j“1

paj ´ θq
TΣ´1paj ´ θqsu

”

c

p
n

m
qd

ż

θPRd
expt´

1

2
r

n`k
ÿ

i“1

pzi ´ θq
TΣ´1pzi ´ θqsu

“

c

p
n

m
qd

ż

θPRd
expt´

1

2
r

n`k
ÿ

i“1

d
ÿ

r“1

d
ÿ

s“1

pzir ´ θrqΣ
´1
rs pzis ´ θsqsu

“

c

p
n

m
qd

ż

θPRd
expt´

1

2
r

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

pzirzis ´ zirθs ´ θrzis ` θrθsqsu

“

c

p
n

m
qd

ż

θPRd
expt´

1

2
pn` kqrθTΣ´1θ ´ 2θTΣ´1z̄ `

1

n` k

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzissu

“

c

p
n

m
qd expt´

1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn` kqz̄
TΣ´1z̄su

ż

θPRd
expt´

1

2
pn` kqrpθ ´ z̄qTΣ´1pθ ´ z̄qsu

“

c

p
n

m
qd expt´

1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn` kqz̄
TΣ´1z̄su

c

p2πqd detp
Σ

n` k
q

Observing the RHS and using the improper uniform prior assumption we have:

ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

TΨ´1px´ θc,nqu expt´
1

2
pa´ θc,kq

T diagpΣ´1, kqpa´ θc,kqu

“

ż

θPRd
expt´

1

2
rpx´ θc,nq

TΨ´1px´ θc,nq ` pa´ θc,kq
T diagpΣ´1, kqpa´ θc,kqsu

F.6
“

ż

θPRd
expt´

1

2
rpx´ θc,nq

T pdiagpΣ´1, nq ´
n´m

n2
reppΣ´1, nqqpx´ θc,nq ` pa´ θc,kq

T diagpΣ´1, kqpa´ θc,kqsu

“

ż

θPRd
expt´

1

2
r

n
ÿ

i“1

pxi ´ θq
TΣ´1px´ θq `

k
ÿ

j“1

paj ´ θq
TΣ´1paj ´ θq ´

n´m

n2

n
ÿ

i“1

n
ÿ

j“1

pxi ´ θq
TΣ´1pxj ´ θqsu

“

ż

θPRd
expt´

1

2
r

n
ÿ

i“1

pxi ´ θq
TΣ´1px´ θq `

k
ÿ

j“1

paj ´ θq
TΣ´1paj ´ θq ´ pn´mqpx̄´ θq

TΣ´1px̄´ θqsu

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2pn` kqθTΣ´1z̄ ` 2pn´mqθTΣ´1x̄su

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2pn` kqθTΣ´1p

n

n` k
x̄`

k

n` k
āq ` 2pn´mqθTΣ´1x̄su

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2nθTΣ´1x̄´ 2kθTΣ´1ā` 2pn´mqθTΣ´1x̄su
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“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2kθTΣ´1ā´ 2mθTΣ´1x̄su

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2θTΣ´1pkā`mx̄qsu

” expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄su

ż

θPRd
expt´

1

2
rpm` kqθTΣ´1θ ´ 2θTΣ´1pm` kqv̄su

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄´ pm` kqv̄TΣ´1v̄su

ż

θPRd
expt´

1

2
pm` kqrθTΣ´1θ ´ 2θTΣ´1v̄ ` v̄TΣ´1v̄su

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄´ pm` kqv̄TΣ´1v̄su

ż

θPRd
expt´

1

2
pm` kqpθ ´ v̄qTΣ´1pθ ´ v̄qu

“ expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄´ pm` kqv̄TΣ´1v̄su

c

p2πqd detp
Σ

m` k
q

Therefore the decision rule is
c

p
n

m
qd expt´

1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn` kqz̄
TΣ´1z̄su

c

p
2π

n` k
qd detpΣq ą

expt´
1

2
rp

d
ÿ

r“1

d
ÿ

s“1

Σ´1
rs

n`k
ÿ

i“1

zirzisq ´ pn´mqx̄
TΣ´1x̄´ pm` kqv̄TΣ´1v̄su

c

p
2π

m` k
qd detpΣq

ô

d

p
npm` kq

mpn` kq
qd expt´

1

2
r´pn` kqz̄TΣ´1z̄su ą expt´

1

2
r´pn´mqx̄TΣ´1x̄´ pm` kqv̄TΣ´1v̄su

ôd log
npm` kq

mpn` kq
ą

pn´mqx̄TΣ´1x̄` pm` kqv̄TΣ´1v̄ ´ pn` kqz̄TΣ´1z̄

ôd log
npm` kq

mpn` kq
ą

pn´mqx̄TΣ´1x̄`
1

m` k
pmx̄` kāqTΣ´1pmx̄` kāq ´

1

pn` kq
pnx̄` kāqTΣ´1pnx̄` kāq

ôd log
npm` kq

mpn` kq
ą

pn´mqx̄TΣ´1x̄`
1

m` k
rm2x̄TΣ´1x̄` 2mkx̄TΣ´1ā` k2āTΣ´1ās

´
1

pn` kq
rn2x̄TΣ´1x̄` 2nkx̄TΣ´1ā` k2āTΣ´1ās

ôd log
npm` kq

mpn` kq
ą

x̄TΣ´1x̄pn´m`
m2

m` k
´

n2

n` k
q ` x̄TΣ´1āp

2mk

m` k
´

2nk

pn` kq
q ` āTΣ´1āk2p

1

m` k
´

1

pn` kq
q
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ôdpm` kqpn` kq log
npm` kq

mpn` kq
ą

x̄TΣ´1x̄rpn´mqpm` kqpn` kq `m2pn` kq ´ n2pm` kqs

` r2mkpn` kq ´ 2nkpm` kqsx̄TΣ´1ā` pn´mqk2āTΣ´1ā

ô
dpm` kqpn` kq

k2pn´mq
log

npm` kq

mpn` kq
ą x̄TΣ´1x̄´ 2x̄TΣ´1ā` āTΣ´1ā

ô
dpm` kqpn` kq

k2pn´mq
log

npm` kq

mpn` kq
ą px̄´ āqTΣ´1px̄´ āq

As required.

Lemma F.9. Consider the authenticator Dα as defined in Def. F.2. Then any attacker G, represented
by a conditional probability gX|Y , that satisfies the condition: x̄ “ ȳ for any leaked sample y P
Rmˆd, and attacker generated sample x P tRnˆd : gX|Y px|yq ą 0u satisfies:

G P argmin
G1PG

V pDα,G1q @α P R`

Proof. The best response attacker satisfies:

g1X|Y P argmin
gX|Y

1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

rE
X„f

pnq
Θ

rDαpA,Xqs ` EX„gX|Y p¨|Y qr1´DαpA,Xqss

“ argmin
gX|Y

EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

EX„gX|Y p¨|Y qr1´DαpA,Xqs

“ argmax
gX|Y

EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

EX„gX|Y p¨|Y qrDαpA,Xqs

“ argmax
gX|Y

EΘ„QEA iid
„N pΘ,Σq

E
Y

iid
„N pΘ,Σq

EX„gX|Y p¨|Y q
”

I
”

›

›X̄ ´ Ā
›

›

2

Σ´1 ă α
ıı

Lemma F.3
“ argmax

gX|Y

EΘ„QEĀ„N pΘ, 1kΣqEY iid
„N pΘ,Σq

EX„gX|Y p¨|Y q
”

I
”

›

›X̄ ´ Ā
›

›

2

Σ´1 ă α
ıı

“ argmax
gX|Y

ż

yPRmˆd
dy

ż

xPRnˆd
dxgX|Y px|yq

ż

āPRd
dāI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθQpθq

expt´
k

2
pā´ θqTΣ´1pā´ θqu expt´

1

2

m
ÿ

j“1

pyj ´ θq
TΣ´1pyj ´ θqu

Note that since gX|Y px|yq can be chosen independently for each y P Rmˆd, we can optimize it
independently for each y P Rmˆd, and we have:

g1X|Y p¨|yq P argmax
gX|Y p¨|yq

ż

xPRnˆd
dxgX|Y px|yq

ż

āPRd
dāI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθQpθq

expt´
k

2
pā´ θqTΣ´1pā´ θqu expt´

1

2

m
ÿ

j“1

pyj ´ θq
TΣ´1pyj ´ θqu

Note that for any PDF f over Rnˆd and a function ϕ : Rnˆd Ñ R , it holds that
ş

xPRnˆd dxfpxqϕpxq ď supxϕpxq. Therefore there exists a deterministic distribution g1X|Y px|yq “
δpx ´ x1q that achieves the maximum. And thus its sufficient to find a vector xG that achieves the
maximum:

xG P argmax
x

ż

x1PRnˆd
dxδpx1 ´ xq

ż

āPRd
dāI

”

›

›x̄1 ´ ā
›

›

2

Σ´1 ă α
ı

ż

θPRd
dθQpθq

expt´
k

2
pā´ θqTΣ´1pā´ θqu expt´

1

2

m
ÿ

j“1

pyj ´ θq
TΣ´1pyj ´ θqu
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“ argmax
x

ż

āPRd
dāI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθQpθq

expt´
k

2
pā´ θqTΣ´1pā´ θqu expt´

1

2

m
ÿ

j“1

pyj ´ θq
TΣ´1pyj ´ θqu

p˚q
“ argmax

x

ż

āPRd
dāI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθ

expt´
1

2
rkpā´ θqTΣ´1pā´ θq `

m
ÿ

j“1

pyj ´ θq
TΣ´1pyj ´ θqsu

“ argmax
x

ż

āPRd
dāI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθ

expt´
1

2
rkāTΣ´1ā´ 2kθTΣ´1ā` kθTΣ´1θ `

m
ÿ

j“1

yTj Σ´1yj ´ 2mθTΣ´1ȳ `mθTΣ´1θsu

“ argmax
x

ż

āPRd
dā expt´

1

2
rkāTΣ´1āsuI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθ

expt´
1

2
rpm` kqθTΣ´1θ ´ 2θTΣ´1pmȳ ` kāqsu

“ argmax
x

ż

āPRd
dā expt´

1

2
rkāTΣ´1ā´

1

m` k
pmȳ ` kāqTΣ´1pmȳ ` kāqsuI

”

}x̄´ ā}
2
Σ´1 ă α

ı

ż

θPRd
dθ expt´

pm` kq

2
pθ ´

mȳ ` kā

m` k
qTΣ´1pθ ´

mȳ ` kā

m` k
qu

“ argmax
x

ż

āPRd
dā expt´

1

2
rkāTΣ´1ā´

1

m` k
pmȳ ` kāqTΣ´1pmȳ ` kāqsuI

”

}x̄´ ā}
2
Σ´1 ă α

ı

“ argmax
x

ż

āPRd
dā expt´

1

2
r
mk

m` k
āTΣ´1ā´

2mk

m` k
ȳTΣ´1ā`

mk

m` k
ȳTΣ´1ȳsuI

”

}x̄´ ā}
2
Σ´1 ă α

ı

“ argmax
x

ż

āPRd
dā expt´

mk

2pm` kq
rpā´ ȳqTΣ´1pā´ ȳqsuI

”

}x̄´ ā}
2
Σ´1 ă α

ı

Where in p˚q we used the fact that Qpθq is the improper uniform prior. Note that the expression
depends only on the mean x̄, therefore its sufficient to find an x̄ that maximizes the expression. We
substitute the integration variable to ϕ “ ā´ x̄ and obtain:

x̄G P argmax
x̄

ż

tϕPRd:ϕTΣ´1ϕăαu

dϕ expt´
mk

2pm` kq
rpϕ` x̄´ ȳqTΣ´1pϕ` x̄´ ȳqsu

” argmax
x̄

ψpȳ ´ x̄q ” argmax
x̄

ψpµq

Where ψ is defined as in Lemma F.7 (with σ “ m`k
mk ), from which it follows that ψpµq is log-

concave, and therefore has at most one local extremum which can be only a maximum. Therefore it
is sufficient to show that µ “ 0 (i.e x̄ “ ȳ) is a local extremum by equating the gradient at the point
to 0.
B

Bµ
ψpµq “

B

Bµ

ż

tϕPRd:ϕTΣ´1ϕăαu

dϕ expt´
mk

2pm` kq
rpϕ´ µqTΣ´1pϕ´ µqsu

“ ´
mk

2pm` kq

ż

tϕPRd:ϕTΣ´1ϕăαu

dϕ expt´
mk

2pm` kq
rpϕ´ µqTΣ´1pϕ´ µqsu

B

Bµ
pϕ´ µqTΣ´1pϕ´ µq

“ ´
mk

pm` kq

ż

tϕPRd:ϕTΣ´1ϕăαu

dϕ expt´
mk

2pm` kq
rpϕ´ µqTΣ´1pϕ´ µqsuΣ´1pµ´ ϕq

Therefore:
B

Bµ
ψpµq|µ“0 “

mk

pm` kq

ż

tϕPRd:ϕTΣ´1ϕăαu

dϕ expt´
mk

2pm` kq
rϕTΣ´1ϕsuΣ´1ϕ
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And since the domain of integration is symmetric about the origin and the integrand is odd with
respect to the the integration variable, the integral is equal to zero. i.e B

Bµψpµq|µ“0 “ 0. Therefore
x̄ “ ȳ (µ “ 0) achieves the global maximum, and any attacker that satisfies the condition: x̄ “ ȳ for
any leaked sample y P Rmˆd and attacker generated sample x P tRnˆd : gX|Y px|yq ą 0u satisfies:

G P argmin
G1PG

V pDα,G1q @α P R`

As required.

Corollary F.10. Consider an authenticator Dα as defined in Def. F.2. Then the attacker G˚ defined
in Def. F.1 is a best response. i.e.:

G˚ P argmin
G1PG

V pDα,G1q @α P R`

Proof. Directly from Lemma F.9

Theorem F.11. The game value is:

max
D

min
G
V pD,Gq “ min

G
max
D

V pD,Gq “ V pD˚,G˚q “

1

2
`

1

2Γpd2 q
rγp

d

2
,
dnpm` kq

2kpn´mq
log

npm` kq

mpn` kq
q ´ γp

d

2
,
dmpn` kq

2kpn´mq
log

npm` kq

mpn` kq
qs

Where γ is the lower incomplete gamma function.

Proof. From the max-min inequality we have:

max
D

min
G
V pD,Gq ď min

G
max
D

V pD,Gq

On the other hand using Lemma F.8 and Corollary F.10 we have:

max
D

min
G
V pD,Gq ě min

G
V pD˚,Gq F.10

“ V pD˚,G˚q F.8“ max
D

V pD,G˚q ě min
G

max
D

V pD,Gq

And therefore:

max
D

min
G
V pD,Gq “ min

G
max
D

V pD,Gq “ V pD˚,G˚q

The game value is given by:

V pD˚,G˚q “EΘ„QV pΘ,D˚,G˚q

“
1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

”

E
X„f

pnq
Θ

rD˚pA,Xqs ` EX„g˚
X|Y

p¨|Y qr1´D˚pA,Xqs
ı

“
1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

”

E
X„f

pnq
Θ

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă α˚s
ı

` EX„g˚
X|Y

p¨|Y q

”

1´ Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă α˚s
ıı

“
1

2
`

1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

”

Ir
›

›x̄´ Ā
›

›

2

Σ´1 ă α˚s
ı

´

1

2
EΘ„QEA„fpkqΘ

EX„g˚
X|Θ

p¨|Θq

”

Ir
›

›x̄´ Ā
›

›

2

Σ´1 ă α˚s
ı
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Observing the first term we have:
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă α˚s
ı

“
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrpX̄ ´ ĀqTΣ´1pX̄ ´ Āq ă α˚s
‰

“
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrpX̄ ´ ĀqT pCCT q´1pX̄ ´ Āq ă α˚s
‰

“
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrpX̄ ´ ĀqTC´TC´1pX̄ ´ Āq ă α˚s
‰

“
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrpC´1pX̄ ´ ĀqqT pC´1pX̄ ´ Āqq ă α˚s
‰

”
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrZTZ ă α˚s
‰

“p˚q

Observe that

Z “ C´1pX̄ ´ Āq “ C´1rId,´Ids

„

X̄
Ā



“ rC´1,´C´1s

„

X̄
Ā



And since:
„

X̄
Ā



„ N p02d,

„

1
nΣ 0dˆd

0dˆd
1
kΣ



q

Then:

Z „ N p0d, rC´1,´C´1s

„

1
nΣ 0dˆd

0dˆd
1
kΣ

 „

C´T

´C´T



q

“ N p0d, p
1

n
`

1

k
qC´1ΣC´T q

“ N p0d,
n` k

nk
C´1CCTC´T q

“ N p0d,
n` k

nk
Idq

We denote Z̃ “

b

nk
n`kZ „ N p0d, Idq, and thus Z̃1, . . . , Z̃d are independent standard normal

random variables and Z̃T Z̃ „ χ2pdq. Therefore ZTZ “ n`k
nk Z̃

T Z̃ „ Γpk “ d
2 , θ “ 2n`knk q and:

p˚q “
1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

“

IrZTZ ă α˚s
‰

“
1

2
EΘ„QEZTZ„Γpk“ d2 ,θ“2n`knk q

“

IrZTZ ă α˚s
‰

piq
“

1

2
EΘ„Q

1

Γpd2 q
γp
d

2
,
nkα˚

2pn` kq
q

“
1

2

1

Γpd2 q
γp
d

2
,
nkα˚

2pn` kq
q

Where in piqWe used the CDF of the Gamma distribution in which γ is the lower incomplete gamma
function.

Similarly, observing the second term we have:
1

2
EΘ„QEA„fpkqΘ

EX„g˚
X|Θ

p¨|Θq

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă α˚s
ı

”
1

2
EΘ„QEA„fpkqΘ

EX„g˚
X|Θ

p¨|Θq

“

IrV TV ă α˚s
‰

“p˚˚q
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Where:

V “ C´1pX̄ ´ Āq “ C´1rId,´Ids

„

X̄
Ā



“ rC´1,´C´1s

„

X̄
Ā



Using the definition of G˚ (Definition F.1) and Lemma F.3 we have:
„

X̄
Ā



„ N p02d,

„

1
mΣ 0dˆd

0dˆd
1
kΣ



q

Therefore:

V „ N p0d, rC´1,´C´1s

„

1
mΣ 0dˆd

0dˆd
1
kΣ

 „

C´T

´C´T



q “ N p0d,
m` k

mk
Idq

And similarly to the first term we get:

V TV „ Γpk “
d

2
, θ “ 2

m` k

mk
q

And thus:

p˚˚q “
1

2

1

Γpd2 q
γp
d

2
,
mkα˚

2pm` kq
q

Therefore the game value is given by:

V pD˚,G˚q “ 1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
nkα˚

2pn` kq
q ´ γp

d

2
,
mkα˚

2pm` kq
qs

“
1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
dnpm` kq

2kpn´mq
log

npm` kq

mpn` kq
q ´ γp

d

2
,
dmpn` kq

2kpn´mq
log

npm` kq

mpn` kq
qs

As required.

Finally we prove Theorem 4.2 and Corollary 4.3.

Theorem 4.2. Define δ “ m{n ď 1 and let ρ “ m{k. Consider the attacker G˚ defined by the
following generative process: Given a leaked sample Y P Rmˆd, G˚ generates a sample X P Rnˆd

as follows: it first samples n vectors W1, . . . ,Wn
iid
„ N p0,Σq and then sets: Xi “ Wi ´ W̄ ` Ȳ

where Ȳ “ 1
m

řm
i“1 Yi and W̄ “ 1

n

řn
i“1Wi. Define the authenticator D˚ by:

D˚pa, xq “ I

«

}x̄´ ā}
2
Σ´1 ă

d p1` ρq
`

1` ρδ´1
˘

np1´ δq
log

ˆ

ρ` 1

ρ` δ

˙

ff

(F.5)

Then pD˚,G˚q is a solution of Eq. 2.2 that satisfies Eq. 4.1.

Proof. Directly from Lemma F.8, Corollary F.10, and Theorem F.11 by assigning δ “ m
n , ρ “

m
k .

Corollary 4.3. Define δ and ρ as in Theorem 4.2. Then the game value for the Gaussian case is:

1

2
`

1

2Γpd2 q

„

γ

ˆ

d

2
,
dp1` ρq

2p1´ δq
log

1` ρ

δ ` ρ

˙

´ γ

ˆ

d

2
,
dpδ ` ρq

2p1´ δq
log

1` ρ

δ ` ρ

˙

(F.6)

Where γ is the lower incomplete gamma function, and Γ is the Gamma function.

Proof. Directly from Theorem F.11 by assigning δ “ m
n , ρ “

m
k .
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F.4 GAME VALUE FOR A MAXIMUM LIKELIHOOD ATTACKER

In this section we show that the intuitive “optimal attacker” is sub optimal as can be seen in Figure 1c
in the main paper. We consider an attacker that draws the attack sample from a Gaussian distribution
with the maximum likelihood estimate of the mean and the known covariance. We denote this
attacker by the name ML attacker. We find the best response autenticator for this attacker and
associated the game value. Figure 6 visualizes the difference in theoretical game value between the
ML attacker (see Definition F.12) and the optimal attacker (see Definition F.1) for different values
of d (the observations dimension), and demonstrates that the ML attacker is indeed sub-optimal.

(a) (b) (c)

Figure 6: The difference in game value (expected authentication accuracy of the optimal authenticator) be-
tween the ML attacker and the optimal attacker for different values of the observations dimension d, as a
function of the parameters ρ “ m

k
, delta “ m

n
. Namely: maxDtV pD,GMLqu ´ maxDtV pD,G˚

qu. (a)
Difference in game value for d “ 10. (b) Difference in game value for d “ 100. (c) Difference in game value
for d “ 1000.

Definition F.12. Let GML denote an attacker defined by the following generative process: Given a
leaked sample Y P Rmˆd, GML generates an attack sample X iid

„ N pȲ ,Σq
Lemma F.13. Let θ P Rd,Σ P Rdˆd represent the mean and covariance of a Gaussian distribution.
Let X P Rnˆd be a random sample generated by the attacker defined in Def. F.12. Then:

Xc „ N pθc,n, diagpΣ, nq ` reppp
1

m
qΣ, nqq ” N pθc,n,ΨMLq

Proof. Let W1, . . . ,Wn
iid
„ N p0,Σq, observe that Xi “ Ȳ `Wi @i P rns, and thus:

Xc “ Ȳc,n `Wc

WhereWc „ N p0 ¨1dn, diagpΣ, nq. Using Lemma F.3 we have Ȳ „ N pθ, 1
mΣq, and using Lemma

F.4 we have Ȳc,n „ N pθc,n, repp 1
mΣ, nqq.

Let Z “
„

Wc

Ȳc,n



and B “ rIndˆnd , Indˆnds, then Xc “Wc ` Ȳc,n “ BZ. Note that:

Z „ N p
„

0nd
θc,n



,

„

diagpΣ, nq 0
0 repp 1

mΣ, nq



q

and therefore we have:

Xc „N pB
„

0nd
θc,n



, B

„

diagpΣ, nq 0
0 repp 1

mΣ, nq



BT q

“N pθc,n, diagpΣ, nq ` repp
1

m
Σ, nqq

as required.

Lemma F.14. Let Σ “ CCT P Rdˆd represent the covariance of a Gaussian distribution, and
consider the following covariance matrix: ΨML “ diagpΣ, nq ` repp 1

mΣ, nq. Then:

Ψ´1
ML “ diagpΣ´1, nq ´

1

n`m
reppΣ´1, nq

And the determinant is:
detpΨq “ detpΣqnp

n`m

m
qd
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Proof. To find the inverse of ΨML we first define

U “

»

—

–

Σ
...
Σ

fi

ffi

fl

P Rndˆd, V “
1

m

»

—

–

Id
...
Id

fi

ffi

fl

P Rndˆd (F.7)

then we have:

Ψ´1
ML “pdiagpΣ, nq ` repp

1

m
Σ, nqq´1

“pdiagpΣ, nq ` UV T q´1

piq
“diagpΣ, nq´1 ´ diagpΣ, nq´1UpId ` V

T diagpΣ, nq´1Uq´1V T diagpΣ, nq´1

piiq
“ diagpΣ´1, nq ´ diagpΣ´1, nqUpId ` V

T diagpΣ´1, nqUq´1V T diagpΣ´1, nq

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

pId `
1

m
rId ¨ ¨ ¨ Ids

»

—

–

Id
...
Id

fi

ffi

fl

q´1 1

m

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

pId `
n

m
Idq

´1 1

m

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

pp
n`m

m
qIdq

´1 1

m

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

m

n`m
Id

1

m

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

1

n`m
Id

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´

»

—

–

Id
...
Id

fi

ffi

fl

1

n`m
Id

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´
1

n`m

»

—

–

Id
...
Id

fi

ffi

fl

“

Σ´1 ¨ ¨ ¨ Σ´1
‰

“diagpΣ´1, nq ´
1

n`m
reppΣ´1, nq

As required. Where in piq we used the Woodbury matrix identity, and in piiq we used the inverse of
a diagonal block matrix.

Next, we turn to finding the determinant of ΨML:

detpΨq “detpdiagpΣ, nq ` reppp
1

m
qΣ, nqq

“detpdiagpΣ, nq ` UV T q

piiiq
“ detpdiagpΣ, nqqdetpId ` V

T diagpΣ, nq´1Uq

pivq
“ detpΣqn detpId ` V

T diagpΣ´1, nqUq
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“detpΣqn detpId `
1

m
rId ¨ ¨ ¨ Ids diagpΣ

´1, nq

»

—

–

Σ
...
Σ

fi

ffi

fl

q

“detpΣqn detpp
n`m

m
qIdq

“detpΣqnp
n`m

m
qd

Where in piiiq we used the matrix determinant lemma, and in pivq we used the determinant of a
diagonal block matrix.

Lemma F.15. Consider the attacker GML, defined in F.12. The the best response strategy for the
authenticator against this attacker is:

DMLpa, xq “ I
”

}x̄´ ā}
2
Σ´1 ă αML

ı

Where:

αML “
dpn` kqpnm` nk `mkq

k2n2
logp

nm` nk `mk

mpn` kq
q

Proof. The best response authenticator satisfies:

D˚ P argmax
DPD

V pD,GMLq

“ argmax
DPD

1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

”

E
X„f

pnq
Θ

rDpA,Xqs ` EX„gML
X|Y

p¨|Y qr1´DpA,Xqs
ı

“ argmax
DPD

EΘ„QEA„fpkqΘ

”

E
X„f

pnq
Θ

rDpA,Xqs ` EX„gML
X|Θ

p¨|Θqr1´DpA,Xqs
ı

Lemma F.13
“ argmax

DPD
EΘ„QEA„N pΘc,k,diagpΣ,kqq

“

EX„N pΘc,n,diagpΣ,nqqrDpA,Xqs ` EX„N pθc,n,ΨMLqr1´DpA,Xqs
‰

Lemma F.14
“ argmax

DPD
EΘ„Q

ż

aPRkd
da

ż

xPRnd
dx expt´

1

2
pa´Θc,kq

T diagpΣ, kq´1pa´Θc,kqu

r

d

1

p2πqnd |detpdiagpΣ, nqq|
expt´

1

2
px´Θc,nq

T diagpΣ, nq´1px´Θc,nquDpa, xq`
d

1

p2πqnd |detpΨMLq|
expt´

1

2
px´Θc,nq

TΨ´1
MLpx´Θc,nqur1´Dpa, xqss

Lemma F.14
“ argmax

DPD
EΘ„Q

ż

aPRkd
da

ż

xPRnd
dx expt´

1

2
pa´Θc,kq

T diagpΣ, kq´1pa´Θc,kqur

c

p
n`m

m
qd expt´

1

2
px´Θc,nq

T diagpΣ, nq´1px´Θc,nquDpa, xq`

expt´
1

2
px´Θc,nq

TΨ´1
MLpx´Θc,nqur1´Dpa, xqss

D can be chosen independently for each pair pa, xq P X k ˆXn therefore for any pa, xq P X k ˆXn

the decision rule for Dpa, xq “ 1 is:
c

p
n`m

m
qd

ż

θPRd
Qpθq expt´

1

2
px´Θc,nq

T diagpΣ, nq´1px´Θc,nqu expt´
1

2
pa´Θc,kq

T diagpΣ, kq´1pa´Θc,kqu

ą

ż

θPRd
Qpθq expt´

1

2
px´Θc,nq

TΨ´1
MLpx´Θc,nqu expt´

1

2
pa´Θc,kq

T diagpΣ, kq´1pa´Θc,kqu
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Observing the LHS and using the improper uniform prior assumption we obtain:
c

p
n`m

m
qd

ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

T diagpΣ, nq´1px´ θc,nqu expt´
1

2
pa´ θc,kq

T diagpΣ, kq´1pa´ θc,kqu

“

c

p
n`m

m
qd

ż

θPRd
expt´

1

2
r

n
ÿ

i“1

xTi Σ´1xi `
k
ÿ

j“1

aTj Σ´1aj ´ 2θTΣ´1pnx̄` kāq ` pn` kqθTΣ´1θsu

“

c

p
n`m

m
qd expt´

1

2
r

n
ÿ

i“1

xTi Σ´1xi `
k
ÿ

j“1

aTj Σ´1aj ´ pn` kqp
nx̄` kā

n` k
qTΣ´1p

nx̄` kā

n` k
qsu

ż

θPRd
expt´

n` k

2
rpθ ´

nx̄` kā

n` k
qTΣ´1pθ ´

nx̄` kā

n` k
qsu

“

c

p
n`m

m
qd expt´

1

2
r

n
ÿ

i“1

xTi Σ´1xi `
k
ÿ

j“1

aTj Σ´1aj ´ pn` kqp
nx̄` kā

n` k
qTΣ´1p

nx̄` kā

n` k
qsu

c

p
2π

n` k
qd detpΣq

Observing the RHS and using the improper uniform prior assumption we have:
ż

θPRd
Qpθq expt´

1

2
px´ θc,nq

TΨ´1
MLpx´ θc,nqu expt´

1

2
pa´ θc,kq

T diagpΣ´1, kqpa´ θc,kqu

“

ż

θPRd
expt´

1

2
px´ θc,nq

TΨ´1
MLpx´ θc,nqu expt´

1

2
pa´ θc,kq

T diagpΣ´1, kqpa´ θc,kqu

F.14
“

ż

θPRd
expt´

1

2
px´ θc,nq

T pdiagpΣ´1, nq ´
1

n`m
reppΣ´1, nqqpx´ θc,nqu

expt´
1

2
pa´ θc,kq

T diagpΣ´1, kqpa´ θc,kqu

“

ż

θPRd
expt´

1

2
r

n
ÿ

i“1

pxi ´ θq
TΣ´1pxi ´ θq `

k
ÿ

j“1

paj ´ θq
TΣ´1paj ´ θq ´

n2

n`m
px̄´ θqTΣ´1px̄´ θqsu

piq
“ expt´

1

2
r

n
ÿ

i“1

xTi Σ´1xi `
k
ÿ

j“1

aTj Σ´1aj ´
n2

n`m
x̄TΣ´1x̄´

nm` nk `mk

n`m
vTΣ´1vsu

ż

θPRd
expt´

1

2

nm` nk `mk

n`m
rvTΣ´1vsu

“ expt´
1

2
r

n
ÿ

i“1

xTi Σ´1xi `
k
ÿ

j“1

aTj Σ´1aj ´
n2

n`m
x̄TΣ´1x̄´

nm` nk `mk

n`m
vTΣ´1vsu

c

p
2πpn`mq

nm` nk `mk
qd detpΣq

Where in piq we denoted v “ nmx̄`kpn`mqā
nm`nk`mk . Therefore the decision rule is

expt
1

2
rpn` kqp

nx̄` kā

n` k
qTΣ´1p

nx̄` kā

n` k
qsu

d

p
1

mpn` kq
qd ą

expt
1

2
r
n2

n`m
x̄TΣ´1x̄`

nm` nk `mk

n`m
vTΣ´1vsu

c

p
1

nm` nk `mk
qd

ô

d

p
nm` nk `mk

mpn` kq
qd ą

expt
1

2
r
n2

n`m
x̄TΣ´1x̄`

nm` nk `mk

n`m
vTΣ´1v ´ pn` kqp

nx̄` kā

n` k
qTΣ´1p

nx̄` kā

n` k
qsu

ôd logp
nm` nk `mk

mpn` kq
q ą

n2

n`m
x̄TΣ´1x̄`

nm` nk `mk

n`m
vTΣ´1v ´ pn` kqp

nx̄` kā

n` k
qTΣ´1p

nx̄` kā

n` k
q
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ôd logp
nm` nk `mk

mpn` kq
q ą

k2n2

pn` kqpnm` nk `mkq
px̄´ āqTΣ´1px̄´ āq

ôpx̄´ āqTΣ´1px̄´ āq ă
dpn` kqpnm` nk `mkq

k2n2
logp

nm` nk `mk

mpn` kq
q

As required.

Theorem F.16. Fix the attacker to be GML as defined in F.12, then the game value is:

max
D

V pD,GMLq
Lemma F.15
“ V pDML,GMLq “

1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
dpnm` nk `mkq

2nk
log

nm` nk `mk

mpn` kq
q ´ γp

d

2
,
dmpn` kq

2nk
log

nm` nk `mk

mpn` kq
qs “

1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
d

2
p1` ρ` δq log

1` ρ` δ

ρ` δ
q ´ γp

d

2
,
d

2
pρ` δq log

1` ρ` δ

ρ` δ
qs

Where ρ “ m
k , δ “

m
n , and γ is the lower incomplete gamma function

Proof. The game value is given by:

V pDML,GMLq “EΘ„QV pΘ,DML,GMLq

“
1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

”

E
X„f

pnq
Θ

rDMLpA,Xqs ` EX„gML
X|Y

p¨|Y qr1´DMLpA,Xqs
ı

“
1

2
EΘ„QEA„fpkqΘ

E
Y„f

pmq
Θ

”

E
X„f

pnq
Θ

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă αMLs

ı

` EX„gML
X|Y

p¨|Y q

”

1´ Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă αMLs

ıı

“
1

2
`

1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

”

Ir
›

›x̄´ Ā
›

›

2

Σ´1 ă αMLs

ı

´

1

2
EΘ„QEA„fpkqΘ

EX„gML
X|Θ

p¨|Θq

”

Ir
›

›x̄´ Ā
›

›

2

Σ´1 ă αMLs

ı

Observing the first term, we can see that by replacing α˚ with αML in the analogue part of the proof
for Theorem F.11 we get:

1

2
EΘ„QEA„fpkqΘ

E
X„f

pnq
Θ

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă αMLs

ı

“
1

2

1

Γpd2 q
γp
d

2
,
nkαML

2pn` kq
q

Again, similarly to analogue part of the proof for Theorem F.11, observing the second term we have:
1

2
EΘ„QEA„fpkqΘ

EX„gML
X|Θ

p¨|Θq

”

Ir
›

›X̄ ´ Ā
›

›

2

Σ´1 ă αMLs

ı

”
1

2
EΘ„QEA„fpkqΘ

EX„gML
X|Θ

p¨|Θq

“

IrV TV ă αMLs
‰

“p˚q

Where:

V “ C´1pX̄ ´ Āq “ C´1rId,´Ids

„

X̄
Ā



“ rC´1,´C´1s

„

X̄
Ā



Using the definition of GML (Definition F.12) we have X̄ „ N pθ, n`mnm Σq, using Lemma F.3 we
have Ā „ N pθ, 1

kΣq, and thus:
„

X̄
Ā



„ N p
„

θ
θ



,

„

n`m
nm Σ 0

0 1
kΣ



q
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Therefore:

V „ N p0, rC´1,´C´1s

„

n`m
nm Σ 0

0 1
kΣ

 „

C´T

´C´T



q “ N p0d,
nm` nk `mk

nmk
Idq

We denote Ṽ “

b

nmk
nm`nk`mkV and thus Ṽ1, . . . , Ṽd are independent standard normal random

variables and Ṽ T Ṽ „ χ2pdq. Therefore

V TV „ Γpk “
d

2
, θ “ 2

nm` nk `mk

nmk
q

And thus:

p˚q “
1

2

1

Γpd2 q
γp
d

2
,

nmkαML

2pnm` nk `mkq
q

Therefore the game value is given by:

V pD˚,G˚q “ 1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
nkαML

2pn` kq
q ´ γp

d

2
,

nmkαML

2pnm` nk `mkq
qs “

1

2
`

1

2

1

Γpd2 q
rγp

d

2
,
dpnm` nk `mkq

2nk
log

nm` nk `mk

mpn` kq
q ´ γp

d

2
,
dmpn` kq

2nk
log

nm` nk `mk

mpn` kq
qs

As required.

G EXPERIMENTS - DATASETS

Below we provide details on the datasets used in the authentication on faces and characters experi-
ments. The VoxCeleb2 (Nagrani et al., 2017; Chung & Zisserman, 2018) dataset contains cropped
face videos of 6112 identities. We used the original split of 5994 identities for training and 118 for
test. For each identity we saved every fifth frame and resized each frame to 64ˆ 64 and augmented
it using horizontal flip. The Omniglot dataset (Lake et al., 2015) contains handwritten character im-
ages from 50 alphabets. There are 1623 different characters, and 20 examples for each character. We
use the splits and augmentations suggested by Vinyals et al. (2016) and used by Snell et al. (2017).

H EXPERIMENTS - IMPLEMENTATION DETAILS

In this section we describe our implementation of the GIM model in detail for the different ex-
periments. Recall from Sec. 5, that in general the authenticator is a neural network Dpa, xq that
can be expressed as Dpa, xq “ σpTDpaq, TDpxqq, and the generator is a neural network Gpyq that
can be expressed as GpY qi “ ϕpWi ´ W̄ ` TGpY qq @i P rns. In what follows we describe our
implementation of these models for each of the experiments.

H.1 GAUSSIAN SOURCES

Authenticator Architecture: For the statistic function TD, we use a concatenation of the mean and
standard deviation of the sample. For the comparison function σ, we use the element-wise absolute
difference between the statistics TDpaq, TDpxq, followed by a linear layer.

Attacker Architecture: For the statistic function TG we use the sample mean, i.e TGpyq “ ȳ. The
noise vectors Wi are generated as follows: First, n Gaussian noise vectors Z1, . . . , Zn „ N p0, Idq
are drawn, then each vector Zi is passed through a linear layer to obtain Wi. Finally, the decoder ϕ
is the identity function.

Optimization details: The model is trained in an authentication setup as in our theoreti-
cal setup, using alternating gradient descent as is common in GAN optimization (Mescheder
et al., 2018). Each iteration begins when a source θ P Rd is drawn from the prior distribu-
tion Q “ N p0, 10Idq. Samples A P Rkˆd, Y P Rmˆd, Xθ P Rnˆd are drawn IID from
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fθ “ N pθ, Idq, where Xθ represents a real sample from θ. The attacker, given the leaked
sample Y , generates a fake sample XG “ GpY q P Rnˆd, passes it to D, and suffers the loss
´ logpsigmoidpDpA,XGqqq. The authenticator, D receives as input the source information sample
A, outputs a prediction for each of the test samplesXθ, XG , and suffers the binary cross entropy loss.
´0.5 plog psigmoidpDpA,Xθqqq ` log psigmoidp1´DpA,XGqqqq. Each experiment is trained for
200K iterations with a batch size of 4000 using the Adam optimizer (Kingma & Ba, 2015) with
learning rate 10´4.

H.2 EXPERIMENTS ON VOXCELEB2 AND OMNIGLOT

To describe the models we begin with some notation. We let c denote the number of image channels,
h denote the image size (we only consider square images of size cˆ hˆ h), and l denote the latent
dimension of the model.

Authenticator Architecture: The authenticator model consists of the following components: Two
image encoders ED,i : r0, 1scˆhˆh Ñ Rl that map an image to a latent vector, a statistic module ζ
that maps a set of latent vectors to a single fixed sized vector of size 5l, and the comparator module
σ that takes in two latent vectors and outputs a scalar. The exact specification of these components
can be seen in the published code.

The statistic function TD maps a sample of n images x P r0, 1snˆcˆhˆh to a statistic vector TDpxq P
R5l as follows: Every image Xi in the sample is mapped using ED,1 and ED,2 to latent vectors
vi, ui P Rl. The latent sample u is passed through ζ to obtain a single vector ũ P R5l which gets
concatenated to v̄, the sample mean of v. Namely,

TDpxq “ concat
`

¯ED,1pxq, ζ pED,2pxqq
˘

The comparison function σ : R5l Ñ R receives two latent vectors sA, sX representing the statistics
of the samples A and X respectively. The vectors are concatenated and then passed through a
Multi-Layered Perceptron which outputs a scalar reflecting their similarity. Namely:

σpsA, sXq “ MLP pconcat psA, sXqq

The full architecture of the authenticator is depicted in Fig. 7.

Attacker Architecture: Our implementation of the attacker is inspired by the architecture sug-
gested in (Zakharov et al., 2019), which relies on an implicit assumption that an image could be
modeled as a mapping of two latent vectors to image space. The first vector represents the source θ
and is the same for any image of θ, the second vector represents the environment (e.g pose, lighting,
expression) and is different for each image of the source.

The attacker model consists of the following components: An image encoder EG,src :
r0, 1scˆhˆh Ñ Rl that maps an image to a latent vector representing the source θ. an image encoder
EG,env : r0, 1scˆhˆh Ñ Rl that maps an image to a latent vector representing the environment,
a Multi-layered Perceptron MLPG : Rl Ñ Rl that maps gaussian noise to the environment latent
space, an environment decoder ϕenv : Rl Ñ Rcˆhˆh that maps a latent vector to an environment
image, which could represent aspects of the environment such as facial landmarks5, and finally a
generator φ : R2cˆhˆh ˆ Rl Ñ r0, 1scˆhˆh that maps an environment image concatenated to the
real image to a new image. The generator is based on the image to image model used in (Zakharov
et al., 2019; Johnson et al., 2016) and uses the source latent vector as input for Adaptive instance
normalization (Huang & Belongie, 2017). The exact specification of these components can be seen
in the published code.

The attacker generates a fake sample X P r0, 1snˆcˆhˆh based on a leaked sample Y P

r0, 1smˆcˆhˆh in the following way: Each image Yj in the leaked sample is mapped using EG,src
andEG,env to latent vectors srcj , envj P Rl. A latent environment vector, ˜envi, for each fake image
Xi is constructed in the following way: First, n IID Gaussian noise vectors Z1, . . . , Zn „ N p0, Ilq
are drawn, then each vector Zi is passed through MLPG to obtain Wi, and finally ˜envi is obtained
by matching the mean of the latent environment vectors to ¯env. Namely:

˜envi “Wi ´ W̄ ` ¯env @i P rns

5In (Zakharov et al., 2019), our so called environment image is indeed a facial landmarks image which is
used as input to the model. In our work we allow the model to learn which environment image is useful
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Figure 7: an overview on the implementation of the GIM authenticator architecture for the experiments on the
Voxceleb2 and Omniglot datasets.

Each fake image Xi is then generated deterministically from the latent vectors src, ˜envi. ˜envi is
used as input to the decoder ϕenv which outputs an environment image. This image is concatenated
along the channel dimension to a random image from the leaked sample Y , and then passed as input
to the generator φ, which also receives src as input to its Adaptive instance norm layers. The output
of the generator is the fake image Xi for all i P rns. The full architecture of the attacker is depicted
in Fig. 8.

Optimization details: The model is trained in an authentication setup as in our theoreti-
cal setup, using alternating gradient descent with the regularization parameter as suggested by
Mescheder et al. (2018). Each iteration begins when a source θ P Rd is drawn uniformly
from the dataset. Samples A P r´1, 1skˆcˆhˆh, Y P r´1, 1smˆcˆhˆh, Xθ P r´1, 1snˆcˆhˆh

are sampled uniformly from the images available for the source θ. The attacker, given the
leaked sample Y , generates a fake sample XG “ GpY q, passes it to D, and suffers the loss
´ logpsigmoidpDpA,XGqqq. The authenticator, D receives as input the source information sam-
ple A, outputs a prediction for each of the test samples Xθ, XG , and suffers the binary cross entropy
loss ´0.5 plog psigmoidpDpA,Xθqqq ` log psigmoidp1´DpA,XGqqqq.

The experiments on Omniglot were trained for 520k iterations with batch size 128 using the Adam
optimizer (Kingma & Ba, 2015) with learning rate 10´6 for D, 105 for G and 107 for MLPG (as
done in (Karras et al., 2018b)). The regularization parameter was set to 0.

The experiments on Voxceleb2 were trained for 250k iterations with batch size 64 using the Adam
optimizer (Kingma & Ba, 2015) with learning rate 10´4 for both D and G and 106 for MLPG . The
regularization parameter was set to 10 (as done in (Karras et al., 2018b)) since we noticed that it
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Figure 8: an overview on the implementation of the GIM attacker architecture for the experiments on the
Voxceleb2 and Omniglot datasets.

stabilized and sped up the training, and in contrast to Omniglot and the Gaussian experiments did
not seem to hurt the results.
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