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ABSTRACT

In this paper, we propose an end-to-end graph learning framework, namely
Iterative Deep Graph Learning (IDGL), for jointly learning graph structure and
graph embedding simultaneously. We first cast graph structure learning problem
as similarity metric learning problem and leverage an adapted graph regulariza-
tion for controlling smoothness, connectivity and sparsity of the generated graph.
We further propose a novel iterative method for searching for hidden graph struc-
ture that augments the initial graph structure. Our iterative method dynamically
stops when learning graph structure approaches close enough to the ground truth
graph. Our extensive experiments demonstrate that the proposed IDGL model can
consistently outperform or match state-of-the-art baselines in terms of both classi-
fication accuracy and computational time. The proposed approach can cope with
both transductive training and inductive training.

1 INTRODUCTION

Recent years have seen a significantly growing amount of interests in graph neural networks (GNNs),
especially on efforts devoted to developing more effective GNNs for node classification (Li et al.,
2016; [Kipf & Welling) |2016; Hamilton et al., 2017aj |Velickovi¢ et al.| [2017), graph classification
(Ying et al.L|[2018b; Ma et al.,2019), and graph generation (Samanta et al.,2018;|L1 et al., 2018b; |You
et al.,2018)). Encouraged by their huge success, GNNs have widely been used in a variety of domain
specific applications such as machine reading comprehension (Chen et al., | 2019a)), semantic parsing
(Xu et al.,|2018b)), natural language generation (Chen et al.,[2019b), and healthcare informatics (Gao
et al.L[2019; |L1 et al., 2018a).

Despite GNNs’ powerful ability of learning expressive node embeddings, unfortunately, GNNs can
only be used when there is graph-structured data available. Many real applications naturally ad-
mit network-structured data like social networks or graph-structured data like chemical compounds.
However, it is questionable if these intrinsic graph-structures are optimal for the supervised down-
stream tasks. This is partially because the raw graph were constructed from the original feature
space, which may not reflect the “true” graph topology after feature extraction and transformation.
Another potential reason is that real-world graphs are often noisy or even incomplete due to the in-
evitably error-prone data measurement or collection. More importantly, many applications such as
those in natural language processing (Chen et al.,2019b; |Xu et al., 2018b) may only have non-graph
structured data or even just the original feature matrix, requiring additional graph construction from
the original data matrix to formulate graph data.

Independently, there has been an increasing amount of work studying the dynamic model of in-
teracting systems utilizing implicit interaction models (Sukhbaatar et al., 2016; [Hoshen, 2017}
Van Steenkiste et al., 2018)). There models can be viewed as message passage based graph nerual
networks (Gilmer et al.l [2017) that pass messages over the fully connected graph through the mes-
sage passing function (Sukhbaatar et al., 2016) or the use of an attention mechanism (Hoshen, 2017}
Van Steenkiste et al., 2018). This has further extended by |Kipf et al.| (2018), where they addressed
the problem by inferring an explicit interaction structure using a variational graph auto-encoder.
However, these methods cannot be directly applicable to joint learning the graph structure and graph
representations when the graph is noisy or even not available.

More recently, [Franceschi et al.| (2019) presented a new approach for jointly learn the graph and
the parameter of GNNs, where they learnt a discrete probability distribution on the edges of the
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graph by approximately solving a bilevel program. Their experimental results have shown promising
performance in both cases where the input graph is either corrupted or not available. However,
this approach has severe scalability issue since it needs to learn N2 number of (Bernoulli) random
variables to model joint probability distribution on the edges of the graph consisting of N number
of vertices. More importantly, it can only be used for transductive setting, which means this method
cannot consider new nodes during the testing.

To address these limitations, in this paper, we propose an Iterative Deep Graph Learning (IDGL)
framework for jointly learning the graph structure and the GNN parameters that are optimized to-
wards the prediction task at hand. Our IDGL framework consisting of five parts: 1) a graph learning
neural network to generate a graph topology; 2) a graph regularization neural network for controlling
the smoothness, connectivity and sparsity of the generated graph; 3) a graph embedding neural net-
work for generating node embeddings; 4) an iterative method to dynamically stop learning when the
optimal graph is found; and 5) a prediction neural network for performing a downstream prediction
task. In particular, we present a graph learning neural network that casts a graph learning problem
as a data-driven similarity metric learning task for constructing a graph. We then adapt techniques
for learning graphs from smooth signals (Kalofolias| 2016)) to serve as graph regularization. More
importantly, we propose a novel iterative method to search for hidden graph structure that augments
the initial graph structure toward an optimal graph for the supervised prediction tasks.

We highlight three contributions of our approach as follows:

e We propose an end-to-end graph learning framework for jointly learning graph structure
and graph embedding simultaneously. The proposed approach can cope with both trans-
ductive training and inductive training.

e We first cast graph structure learning problem as similarity metric learning problem and
leverage an adapted graph regularization for controlling smoothness, connectivity and spar-
sity of the generated graph.

e We further propose a novel iterative method for searching for hidden graph structure that
augments the initial graph structure. Our iterative method dynamically stops when learning
graph structure approaches close enough to the ground truth graph.

e Our extensive experiments demonstrate that the proposed IDGL model can consistently
outperform or match state-of-the-art baselines in terms of both classification accuracy and
computational time.

2 AN ITERATIVE DEEP GRAPH LEARNING FRAMEWORK

N NG ~ - - o
A® = ALo + (1— N = A0 pA® 4 (1-n)AO® L LO+N Ot
{X,Aq, Lo} Al > =
y 430, L0
o9
O--0%

Prediction
task

Similarity learning {(X, A0 A0} Graph > EB > t
b b (t)
cos(Wi 0 u, W, ®v) regularization E(t) £
v g
€/ IHI ’
Data points GNN

t-th iteration 3 7t

Repeated until condition satisfied

Figure 1: Overall architecture of the proposed model. Dashed lines in the leftmost data points
indicate the initial graph topology A either from the ground-truth graph if it exists or otherwise
from the graph constructed using the kNN strategy. Best viewed in color.

With this paper we address the challenging problem of automatic graph structure learning for GNNs.
We are given a set of n objects V associated with a feature matrix X € R%*" encoding the feature
descriptions of the objects. The goal is to automatically learn the graph structure G, typically in the
form of an adjacency matrix A € R™*", underlying the set of objects, which will be consumed by a
GNN-based model for a downstream prediction task.
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Unlike most existing methods that construct graphs based on hand-crafted rules or features as a
preprocessing step, our proposed Iterative Deep Graph Learning (IDGL) framework formulates
the problem as an iterative learning problem that jointly learns the graph structure and the GNN
parameters iteratively in an end-to-end manner. The overall model architecture is shown in Fig. [T]

2.1 GRAPH LEARNING AS SIMILARITY METRIC LEARNING

In traditional graph theory, various methods have been explored to construct a graph from data
points. These methods usually apply a metric function to compute the similarity between pairs of
nodes during preprocessing, and then consume the constructed graph in a downstream task. Unlike
these methods, in this work, we design a learnable metric function for graph strcuture learning,
which will be jointly trained with the prediction model dedicated to a downstream task.

2.1.1 SIMILARITY METRIC LEARNING

Common options for metrics include cosine similarity, radial basis function (RBF) kernel and atten-
tion mechanisms. A good metric function is supposed to be learnable and expressively powerful.
We design a weighted cosine similarity as our metric function, defined as,

Sij =COS<W®XZ',W®XJ*) (l)

where © denotes the Hadamard product, and w is a learnable weight vector which has the same
dimension as the input vectors, and learns to highlight different dimensions of the input vectors.

After preliminary experiments, we have found extending the above metric function to a multi-head
version to be beneficial, similar to |Vaswani et al.| (2017); |Velickovi¢ et al.| (2017)). Specifically,
we compute m independent similarity matrices using Eq. (1)), and take their average as the final
similarity S:
1 m
sfj =cos(W, Ox;, WL OX;) ;5 = - sfj )
k=1
Intuitively, sfj computes the cosine similarity between two input vectors x; and x;, for the k-th
perspective where each perspective can be regarded as considering one part of the semantics captured
in the vector.

2.1.2 GRAPH SPARSIFICATION VIA e-NEIGHBORHOOD

An adjacency matrix (same for a metric) is supposed to be non-negative while s;; ranges between
[—1, 1]. In addition, many underlying graph structures are much more sparse than a fully connected
graph, which is not only computationally expensive but also makes little sense for most applications.
We hence proceed to extract a symmetric sparse adjacency matrix A from S by considering only
the e-neighborhood for each node. Specifically, we mask off those elements in S which are smaller
than certain non-negative threshold ¢.

o Sij Sij > €
Aij = { 0 otherwise 3)

2.2 GRAPH REGULARIZATION

In graph signal processing (Shuman et al.| |2013), each column of the feature matrix X can be
considered as a graph signal. A widely adopted assumption for graph signals is that values change
smoothly across adjacent nodes. Given an undirected graph with symmetric weighted adjacency
matrix A, the smoothness of a set of graph signals x1,...,x, € R? is usually measured by the
Dirichlet energy (Belkin & Niyogi, [2002),

1
QA,X) = 5 Z Ayjllx; — xj[)? = r(XTLX) @)
2,]

where tr(-) denotes the trace of a matrix, L = D — A is the graph Laplacian, and D = >} A;; is the

degree matrix. As can be seen, minimizing (A, X) forces adjacent nodes to have similar features,
thus enforces smoothness of the graph signals on the graph associated to A.
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However, solely minimizing the above smoothness loss will result in the trivial solution A = 0.
Also, it is desirable to have control of how sparse the resulting graph is. Following Kalofolias
(2016), we impose additional constraints to the learned graph,

f(A) = —B1Tlog(A1) + ~||All3 (3)

where || - || denotes the Frobenius norm of a matrix. As we can see, the first term penalizes the
formation of disconnected graphs via the logarithmic barrier, and the second term controls sparsity
by penalizing large degrees due to the first term.

In this work, we borrow the above techniques designed for learning graphs from smooth signals,
and apply them as regularization terms to the graph learned by Eqgs. and (3). The overall graph
regularization loss is defined as the sum of the above losses, which is able to control the smoothness,
connectivity and sparsity of the resulting graph,

Lg = aQ(A,X) + f(A) (6)

Note that «, 5 and -y are all non-negative hyperparameters.

2.3 ITERATIVE METHOD FOR JOINT GRAPH STRUCTURE AND REPRESENTATION LEARNING
2.3.1 JOINT GRAPH STRUCTURE AND REPRESENTATION LEARNING

We expect the graph structure underlying a set of objects to serve two purposes: on the one hand,
it should respect the semantic relations among the objects, which is enforced by the metric func-
tion (Eq. (Z)) and the smoothness loss (Eq. ()); on the other hand, it should suit the needs of the
downstream prediction task.

Compared to previous works which directly optimize the adjacency matrix based on either some
graph regularization loss (Kalofolias & Perraudin, 2017)), or some task-dependent prediction
loss (Franceschi et al., 2019), we propose to learn an optimal similarity metric function as well as
the GNN parameters by minimizing a joint loss function combining both the prediction loss defined
on the downstream task and the graph regularization loss, namely, £ = Lyred + Lg.

Note that our graph learning framework is agnostic to various GNNs and prediction tasks. In this
paper, we adopt a two-layered GCN (Kipf & Welling, 2016) where the first layer maps the node
features to the intermediate embedding space (Eq. (7)), and the second layer further maps the inter-
mediate node embeddings to the output space (Eq. (8)).

Z = ReLU(AXW,) (7)
¥ = o(AZW,) (8)
Cpred = g(}A’, Y) (9)

where A is the normalized adjacency matrix, o(-) is a task-dependent output function, and £(-)
is a task-dependent loss function. For instance, for node classification problem, o(-) is a softmax
function for predicting a probability distribution over a set of classes, and £(-) is a cross-entropy
function for computing the prediction loss.

We now discuss how to obtain the normalized adjacency matrix A. For some problems when an
initial graph is available, it is beneficial to incorporate the initial adjacency matrix A into the
graph learning mechanism, which might increase the speed and stability of the learning process.
Previous works (Velickovic et al.,|2017; Jiang et al., |2019)) inject the initial graph structure into the
graph learning mechanism by performing masked attention, which largely limits the graph learning
ability. This is because there is no way for their methods to learn weights for those edges that do not
exist in the initial graph, but carry useful topological information.

With the assumption that the optimal graph structure is a small shifting from the initial graph struc-
ture, we combine the learned graph structure with the initial graph structure using a weighted sum,

~ A,
A:>\Lo+(1—)\)Z Ai (10)
j £3ij
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where Ly is the normalized adjacency matrix of the initial graph, defined as, Ly = D, Y 2AOD(; Y 2,

and Dy is its degree matrix. The adjacency matrix learned by Egs. (2)) and (3) is row normalized such
that each row sums to 1. A hyperparameter A is used to balance the trade-off between the learned
graph structure and the initial graph structure. If such an initial graph structure is not available, we
instead use a kNN graph constructed based on cosine similarity.

Algorithm 1: IDGL.: Iterative Deep Graph Learning Framework
Input: X, y[, Ao]

Parameters :m, ¢, o, 3,7, A, 6, T, n[, k]

Output: ©, Ay

[Ao < kKNN(X, k)] // Init. Ap to kNN graph if Ap is unavailable
A© A® (X Ay} using Egs. , and // Learn the adj. matrix
Z©) {A(O)’ X} using Eq. // Compute node embeddings
L',é?e)d — {A(O)7 Z<0)7y} using Eqs. tﬁl and (EI) // Compute prediction loss
£(g()) — {A(O),X} using Eqs. 1@) // Compute graph regularization loss
£O — Ef)?e)d + L’E;O) // Compute joint loss
t<—0
while (t ==0 or [|[A® — A% > 6§]|AD)2) and t < T do
t—t+1
A(t), A® {Z(tfl)7 Ao} using Egs. , and // Refine the adj. matrix
AW pA® 4 (1-— n)A(O)
Z® — {A® X} using Eq. li // Refine node embeddings
y «— {A® Z®} using Eq. @) // Compute task output
llr()fgd «— {y,y} using Eq. (@)
Eéﬂ — {A® X} using Egs. —@)
t t
LY P+ Ly
end
Le—LO 43 £On
if Training then
Back-propagate £ to update model weights ©
end

2.3.2 ITERATIVE METHOD FOR GRAPH LEARNING

One assumption we make so far is that the node features capture a good amount of information about
the graph topology, which unfortunately is not always the case. We observe that learning network
structures entirely from node features can sometimes be challenging, especially for those datasets
where node features are sparse and not very distinguishable. Even though we train the model jointly
using the task-dependent prediction loss, we are limited by the fact that the similarity metric is
computed based on the potentially inadequate raw node features. To put it simply, if the raw node
features are not very helpful, it is challenging to learn good graph structures from them.

To address the above limitation, we propose an Iterative Deep Graph Learning (IDGL) framework. A
sketch of the IDGL framework is presented in Algorithm[I] Inputs and operations in squared brack-
ets are optional. Specifically, besides computing the node similarity based on their raw features,
we further introduce another learnable similarity metric function ( Eq. (2)) that is rather computed
based on the intermediate node embeddings, as demonstrated in Line[I0] Compared to the raw node
features, these intermediate node embeddings usually reside on a low-dimensional manifold of the
raw node feature space, and are optimized towards the downstream prediction task. The aim is that
the metric function defined on this node embedding space is able to learn topological information
supplementary to the one learned solely based on the raw node features. In order to combine the
advantages of both the raw node features and the intermediate node embeddings, we make the final
learned graph structure as a linear combination of the aforementioned two-level graph structures, as
shown in Line [TT]
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Furthermore, as we can see from Line[I0]to Line[T2} the algorithm repeatedly refines the adjacency
matrix A® with the updated node embeddings 7Z(=1) and in the meanwhile, refines the node

embeddings Z(*) with the updated adjacency matrix A® . The iterative procedure stops when the
learned adjacency matrix converges (with certain threshold §) or the maximal number of iterations
is reached ( Line ). At each iteration, a joint loss combining both the task-dependent prediction
loss and the graph regularization loss is computed ( Line [T6). After all iterations, the overall loss
will be back-propagated through all previous iterations to update the model parameters (Line [20).

2.4 FORMAL ANALYSIS
2.4.1 CONVERGENCE OF THE ITERATIVE LEARNING PROCEDURE

While it is challenging to theoretically prove the convergence of the proposed iterative learning pro-
cedure due to the arbitrary complexity of the involved learning model, here we want to conceptually
understand why it works in practice. Fig. 2] shows the information flow of the learned adjacency
matrix A and the intermediate node embedding matrix Z during the iterative procedure. For the

sake of simplicity, we omit some other variables such as A. As we can see, at t- th iteration, A® i
computed based on Z(*~1) (Line|10), and Z*) is computed based on A (*) (Lme which is com-
puted based on A®) (Eq. ( .) We further denote the difference between the adjacency matrices at

the ¢-th iteration and the previous iteration by 5 - Similarly, we denote the difference between the
node embedding matrices at the ¢-th iteration and the previous iteration by 5(Zt).

If we assume that 6(21) < 69, then we can expect that 653) < (51(41) because conceptually more similar
node embedding matrix (i.e., smaller ¢ z) is supposed to produce more similar adjacency matrix (i.e.,
smaller 0 4) given the fact that model parameters keep the same through iterations. Similarly, given

that (51(42) < (51(41), we can expect that (5(;) < (5(Zl). Following this chain of reasoning, we can easily
extend it to later iterations. In order to see why the assumption (5(21) < 6(ZU) makes sense in practice,
we need to recall the fact that 69) measures the difference between Z(°) and X, which is usually

larger than the difference between Z(!) and Z(9), namely 6(21). We will empirically examine the
convergence property of the iterative learning procedure in the experimental section.

61(41) 51(42) 5(3) 5(4)

A(O) A(l) A(Q) A(3) A(4)
NSNS

(1) Z(2) Z(3) (4)
L A A

Figure 2: Information flow of the proposed iterative learning procedure.

2.4.2 MODEL COMPLEXITY

The cost of learning an adjacency matrix is O(n?h) for n nodes and data in R”, while computing
node embeddings costs O(n?d + ndh), computing task output costs O(n?h), and computing the
total loss costs O(n?d). We set the maximal number of iterations to 7', hence the overall complexity
is O(Tn(nh + nd + hd)). If we assume that d ~ h and n > d, the overall complexity is O(T'dn?).

3 EXPERIMENTS

In this section, we conducted a series of experiments to answer three main questions. First, when
the graph topology is available, can IDGL further improve performance on downstream tasks by
learning additional topological information supplementary to the given topology? We also wanted
to examine if IDGL is robust to incomplete graph scenarios where a certain fraction of edges is
missing. Second, can IDGL achieve reasonably good results on semi-supervised learning problems
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for which a graph is not available. Third, what is the performance of IDGL on inductive learning
problems where there are new nodes during the testing?

In addition to answering the above three questions, we also analyzed the proposed model in multiple
dimensions. First, we conducted an ablation study to assess the impact of different model com-
ponents. Second, we empirically examine whether the iterative learning procedure can converge
in practice. Third, we explored and compared different stopping strategies that can be used in the
iterative learning framework. Finally, we empirically compared IDGL with LDS (Franceschi et al.,
2019) in terms of training efficiency. The details on model settings are provided in Appendix [B} The
implementation of our model will be made publicly available upon the acceptance of this paper.

3.1 DATASETS

The benchmarks used in our experiments include two network benchmarks, three data point bench-
marks and two text benchmarks. Cora and Citeseer are two commonly used network benchmarks for
evaluating graph-based learning algorithms (Sen et al., 2008). The input features are bag of words
and the task is node classification. In addition to Cora and Citeseer where the graph topology is
available, we evaluate IDGL on three data point benchmarks (i.e., Wine, Breast Cancer (Cancer)
and Digits) from the UCI machine learning repository (Dua & Graffl 2017). The task is also node
classification. Finally, to demonstrate the effectiveness of IDGL on inductive learning problems, we
conduct document classification and regression tasks on the 20Newsgroups data (20News) (Lang,
1995)) and the movie review data (MRD) (Pang & Lee, [2004), respectively. The statistics of the
datasets are reported in Appendix

3.2 SETUP AND BASELINES

For Cora and Citeseer, we follow the experimental setup of previous works (Kipf & Welling} 2016;
Velickovi¢ et al, 2017} [Franceschi et al.l [2019). For Wine, Cancer and Digits, we follow the ex-
perimental setup of |[Franceschi et al.|(2019). For 20News, we randomly select 30% examples from
the training data as the development set. For MRD, we split the data to train/dev/test sets using a
60%/20%/20% split. The reported results are averaged over 5 runs with different random seeds.

Our main baseline in the transductive setting is LDS. Similar to our work, LDS also jointly learns the
graph structure and the parameters of GNNs. However, unlike our method that formulates the graph
learning problem as a metric learning task, LDS aims at directly optimizing the discrete probability
distribution on the edges of the underlying graph. Note that LDS is incapable of handling induc-
tive learning problems. The experimental results of several semi-supervised (e.g., label propagation
(LP) (Zhu et al.| [2003)), manifold regularization (ManiReg) (Belkin et al.l 2006), semi-supervised
embedding (SemiEmb) (Weston et al.,[2012)) and supervised learning (logistic regression (LogReg),
support vector machines (Linear and RBF SVM), random forests (RF), and feed-forward neural net-
works (FFNN)) baselines are reported in the LDS paper. For the sake of completeness, we directly
copy their results here. For ease of comparison, we also copy the reported results of LDS even
though we rerun the experiments of LDS using the official code released by the authors.

In addition, for Cora and Citeseer, we include GCN (Kipf & Welling, [2016)) and GAT (Velickovi¢
et al.,|2017) as baselines. In order to evaluate the robustness of IDGL to incomplete graphs, we also
compare IDGL with GCN on graphs with missing edges. For UCI benchmarks where the graph
topology is not available, we conceive a KNN-GCN baseline where a KNN affinity graph on the data
set is first constructed as a preprocessing step before applying a GCN. For 20News and MRD in the
inductive setting, we compare IDGL with a BiLSTM (Hochreiter & Schmidhuber; [1997)) baseline
and kNN-GCN.

3.3 EXPERIMENTAL RESULTS

The results of transductive and inductive experiments are shown in Table E] and Table @ First of all,
we can see that IDGL outperforms all baseline methods in 6 out of 7 benchmarks, which demon-
strates the effectiveness of the proposed method. Besides, by comparing the results of GCN, GAT
and IDGL on Cora and Citeseer, and considering the fact that our method is actually based on GCN,
we can conclude that our graph learning method can greatly help the node classification task even
when the graph topology is given. When the graph topology is not given, we observe that kNN-
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Table 1: Test accuracy (+ standard deviation) in percentage on various classification datasets in the

transductive setting. The star symbol means that we run the experiments and report the results.

Methods Cora Citeseer Wine Cancer Digits
LogReg 60.8 (0.0) 62.2(0.0) 92.1(1.3) 93.3(0.5) 855(1.5)
Linear SVM 58.9(0.0) 58.3(0.0)0 939(1.6) 90.6(4.5) 87.1(1.8)
RBF SVM 59.7(0.0) 60.2(0.0) 94.1(29) 91.7(3.1) 86.9(3.2)
RF 58.7(0.4) 60.7(0.7) 93.7(1.6) 92.1(1.7) 83.1(2.6)
FFNN 56.1(1.6) 56.7(1.7) 89.7(1.9) 929 (1.2) 36.3(10.3)
LP 37.8(0.2) 232(6.7) 89.8(3.7) 76.6(0.5) 91.9(3.1)
ManiReg 62.3(09) 67.7(1.6) 90.5(0.1) 8&1.8(0.1) 83.9(0.1)
SemiEmb 63.1(0.1) 68.1(0.1) 91.9(0.1) 89.7(0.1) 90.9(0.1)
LDS 84.1(0.4) 75.0(04) 97.3(04) 944(1.9) 925(0.7)
GCN 81.0(0.2) 70.9(0.3) — — —
GAT 82.5(0.4) 70.9(0.4) — — —
kNN-GCN — — 959(0.9) 94.7(1.2) 89.5(1.3)
LDS* 83.9(0.6) 748(0.3) 969(1.4) 934(24) 90.8(2.5)
IDGL 84.5(0.3) 74.1(0.2) 97.8(0.6) 95.1(1.0) 93.1(0.5)

Table 2: Test scores (£ standard deviation) in percentage on classification (accuracy) and regression
(R?) datasets in the inductive setting.

Methods 20News MRD

BiLSTM 80.0 (0.4) 53.1(1.4)
KNN-GCN 81.3(0.6) 60.1(1.5)
IDGL 83.6 (0.4) 63.7 (1.8)

GCN works well and provides competitive results compared to the supervised baselines that do not
leverage graph structures. This indicates the benefits of learning and exploiting underlying graph
structures. Compared to kKNN-GCN, IDGL consistently achieves much better results on all datasets,
which shows the power of jointly learning graph structures and GNN parameters. Compared to
LDS, IDGL achieves better performance in 4 out of 5 benchmarks. Unlike LDS which can only
handle transductive setting, IDGL can easily handle inductive setting without a modification of the
algorithm. This is because IDGL aims at optimizing a metric function instead of the discrete proba-
bility distribution on the edges. The good performance on 20News and MRD verifies the capability
of IDGL on inductive learning problems.

To evaluate the robustness of IDGL on incomplete graphs, we construct graphs with missing edges
by randomly removing 25%, 50% and 75% of the edges in the original graphs. The results on
the incomplete graphs are shown in Fig. 3| for Cora (left) and Citeseer (right). Compared to GCN,
IDGL achieves better results in all scenarios and is more robust to incomplete graphs. Notably, the
performance drop of IDGL is slower than that of GCN when increasing the percentage of missing
edges. Compared to GCN, the accuracy gain of IDGL changes from 3.5% to 5.6% on Cora, and
from 3.2% to 4.9% on Citeseer when the missing ratio increases.

85

—— GCN 72.5 —— GCN
80 —#— IGL ' —# IGL
> 70.0
e
275 67.5
(v}
< 65.0
70
62.5
0 25 50 75 0 25 50 75
Missing edges (%) Missing edges (%)
(a) Cora (b) Citeseer

Figure 3: Test accuracy (+ standard deviation) in percentage for edge deletion scenarios.
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3.4 ABLATION STUDY

We perform an ablation study to assess the impact of different model components. As shown in Ta-
ble[3] we can see a significant performance drop consistently on all datasets (e.g., 3.1% on Citeseer)
by turning off the iterative learning component, which demonstrates the effectiveness of the pro-
posed iterative learning framework for the graph learning problem. We can also see the benefits of
jointly training the model with the graph regularization loss. For instance, when training the model
without the graph regularization loss, the performance on Citeseer drops from 74.1% to 71.5%.

Table 3: Ablation study on various classification datasets.

Methods Cora Citeseer Wine Cancer Digits

IDGL 84.5(0.3) 74.1(0.2) 97.8(0.6) 95.1(1.0) 93.1(0.5)
w/o graph reg. 84.3(04) 715(0.9) 97.3(0.8) 94.9(1.0) 91.5(0.9)
w/o IL 83.5(0.6) 71.0(0.8) 97.2(0.8) 94.7(0.9) 92.40.4)

3.5 MODEL ANALYSIS

In Fig. 4] we show the evolution of the learned adjacency matrix and accuracy through iterations in
the iterative learning procedure in the testing phase. We compute the difference between adjacency
marices at consecutive iterations as 5 = ||A® — A(t=12 /||A©)[12, which follows the same
way of computing the stopping criterion in Line[8] As we can see, both the adjacency matrix and
accuracy converge quickly through iterations. This empirically verifies the analysis we made on the
convergence property of the iterative learning procedure in Section [2.4.1]

200 74.4
25 —— O, —#— Accuracy 88 —— O, —8— Accuracy
20 150 74.3
86 o
<15 7428
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Figure 4: Evolution of the learned adjacency matrix and test accuracy (in %) through iterations in
the iterative learning procedure.

There are two natural ways of designing the stopping strategy for an iterative learning framework.
We can either use a fixed number of iterations, or compute a stopping criterion at each iteration to
dynamically determine if the learning procedure already converges or not. In Fig.[5] we empirically
compare the effectiveness of the above two strategies. We run IDGL on Cora (left) and Citeseer
(right) using different stopping strategies with 5 runs, and report the average accuracy. Note that in
all experiments, we keep the stopping strategy as the same in both training and testing phase. As we
can see, letting the model to dynamically adjust the number of iterations using the stopping criterion
works better in practice.

3.6 TIMING

Finally, we compare the training efficiency of IDGL and LDS on various benchmarks. All exper-
iments are conducted on the same machine which has an Intel 17-2700K CPU, an Nvidia Titan Xp
GPU and 16GB RAM, and are repeated 5 times with different random seeds. Results are shown in
Table As we can see, IDGL is consistently much faster than LDS on all benchmarks.
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Figure 5: Performance comparison (i.e., test accuracy in %) of two different stopping strategies:
1) using a fixed number of iterations (blue line), and ii) using a stopping criterion to dynamically
determine the convergence (red line).

Table 4: Mean and standard deviation of training time on various benchmarks (in seconds). All
experiments have been repeated with 5 different random seeds.

Benchmarks Cora Citeseer Wine Cancer Digits
LDS 390 (82) 585(181) 33(15) 25(6) 72(35)
IDGL 49 (8) 61 (15) 312 3 2(1)

4 RELATED WORK

In the field of graph signal processing, researchers have explored various ways of learning graphs
from data (Dong et al., 2016; |Kalofolias}, 2016; [Kalofolias & Perraudin, [2017; [Egilmez et al.,|2017)),
with certain assumptions (e.g., smoothness) on the graph signals or structural constraints (e.g., con-
nectivity and sparsity) on the underlying graphs. Notably, these works in general do not consider
any downstream task that will consume the learned graph structures.

Over the past few years, graph neural networks (GNNs) (Kipf & Welling| [2016; |Gilmer et al., 2017}
Hamilton et al.|, 2017b; [Li et al., |2015) have drawn increasing attention, and have many success-
ful applications in computer vision (Norcliffe-Brown et al., 2018)), natural language processing (Xu
et al., 2018ajblic) and recommender systems (Ying et al.l [ 2018a). How to apply GNNs to applica-
tions where the underlying graph structures are unavailable becomes an emergent and challenging
problem. However, manually constructing graphs from data heavily relies on domain knowledge
and is not very scalable. Very recently, researchers have explored methods to automatically con-
struct a graph of objects (Norcliffe-Brown et al.,|2018};|Choi et al.,2019; [Franceschi et al., 2019; [Li
et al., 2018a) or words (Liu et al.l [2018; [Chen et al., 2019ajb) when applying GNNs to non-graph
structured data. However, these methods merely optimize the graphs towards the downstream tasks
without utilizing the many ideas and techniques which have proven to be useful in graph signal
processing.

In this work, we propose to take an advantage of both sides by jointly optimizing the graph regu-
larization loss and the task-dependent loss. Moreover, we propose to repeatedly refine the learned
adjacency matrix and the node embeddings via an iterative deep graph learning framework.

5 CONCLUSION

In this paper, we proposed an Iterative Deep Graph Learning (IDGL) framework for jointly learning
the graph structure and the GNN parameters that are optimized towards the prediction task. The pro-
posed method is able to iteratively search for hidden graph structures that better help the downstream
prediction task. We cast graph structure learning problem as similarity metric learning problem and
leverage an adapted graph regularization for controlling smoothness, connectivity and sparsity of
the generated graph. Our extensive experiments demonstrate that the proposed IDGL model can
consistently outperform or match state-of-the-art baselines in terms of both classification accuracy
and computational time. We leave how to design better metric functions as future work.

10
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A DATA STATISTICS

Table 5: Data statistics.

Benchmarks Train/Dev/Test Task Setting
Cora 140/500/1,000 node classification  transductive
Citeseer 120/500/1,000 node classification  transductive
Wine 10/20/158 node classification  transductive
Cancer 10/20/539 node classification  transductive
Digits 50/100/1,647 node classification  transductive
20News 7,919/3,395/7,532  graph classification inductive
MRD 3,003/1,001/1,002  graph regression inductive

B MODEL SETTINGS

Table 6: Hyperparameter associated to IDGL on all benchmarks.

Benchmarks A n a f ~ k € m T

Cora 09 01 02 00 00 - 0 4  4e5 10
Citeseer 06 05 04 00 02 - 03 1 1e3 10
Wine 08 07 01 01 03 20 075 1 1e3 10
Cancer 025 01 04 02 01 40 09 1 1e3 10
Digits 04 01 04 01 00 24 065 8 led 10
20News 01 02 05 001 02 450 03 10 1e3 10
MRD 05 09 04 005 02 350 03 2 1le3 10

In all our experiments, we apply a dropout ratio of 0.5 after GCN layers except for the output
GCN layer. During the iterative learning procedure, we also apply a dropout ratio of 0.5 after the
intermediate GCN layer, except for Citeseer (no dropout) and Digits (0.3 dropout). For experiments
on text benchmarks, we keep and fix the 300-dim GloVe vectors for words that appear more than 10
times in the dataset. For long documents, for the sake of efficiency, we cut the text length to maximal
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1,000 words. We apply a dropout ratio of 0.5 after word embedding layers and BiLSTM layers. The
batch size is set to 16. And the hidden size is set to 128 and 64 for 20News and MRD, respectively.
For all other benchmarks, the hidden size is set to 16 to follow the original GCN paper. We use Adam
(Kingma & Bal[2014) as the optimizer. For the text benchmarks, we set the learning rate to 1e-3. For
all other benchmarks, we set the learning rate to 0.01 and apply L2 norm regularization with weight
decay set to 5e-4. Below we show the hyperparameter associated to IDGL for all benchmarks. All
hyperparameters are tuned on the development set.
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