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ABSTRACT

Recently, many stochastic gradient descent algorithms with variance reduction
have been proposed. Moreover, their proximal variants such as Prox-SVRG can
effectively solve non-smooth problems, which makes that they are widely applied
in many machine learning problems. However, the introduction of proximal oper-
ator will result in the error of the optimal value. In order to address this issue, we
introduce the idea of extragradient and propose a novel accelerated variance re-
duced stochastic extragradient descent (AVR-SExtraGD) algorithm, which inher-
its the advantages of Prox-SVRG and momentum acceleration techniques. More-
over, our theoretical analysis shows that AVR-SExtraGD enjoys the best-known
convergence rates and oracle complexities of stochastic first-order algorithms such
as Katyusha for both strongly convex and non-strongly convex problems. Finally,
our experimental results show that for ERM problems and robust face recogni-
tion via sparse representation, our AVR-SExtraGD can yield the improved per-
formance compared with Prox-SVRG and Katyusha. The asynchronous variant
of AVR-SExtraGD outperforms KroMagnon and ASAGA, which are the asyn-
chronous variants of SVRG and SAGA, respectively.

1 INTRODUCTION

In this paper, we mainly consider the following composite convex optimization problem:

min
x∈Rd

{
P (x)

def
= F (x) +R(x) =

1

n

n∑
i=1

fi(x) +R(x)

}
(1)

where F (x) : Rd→R is the average of smooth convex component functions fi(x), and R(x) is a
relatively simple convex function (but may not be differentiable). In this paper, we use ‖·‖ to denote
the standard Euclidean norm, and ‖·‖1 to denote the `1-norm.

This form of optimization problems often appears in machine learning, signal processing, data sci-
ence, statistics and operations research, and has a wide range of applications such as regularized
empirical risk minimization (ERM), sparse coding for image and video recovery, and represen-
tation learning for object recognition. Specifically, for a collection of given training examples
{(a1, b1), ..., (an, bn)}, where ai ∈ Rd, bi ∈ R (i = 1, 2, ..., n) and ai is a feature vector, while
bi is the desired response. When fi(x) = 1

2 (aTi x−bi)2, we can obtain the ridge regression problem
by setting R(x) = λ

2 ‖x‖
2. We also get the Lasso or Elastic-Net problems by setting R(x) =λ‖x‖1

or R(x) = λ2

2 ‖x‖
2+λ1‖x‖1, respectively. Moreover, if we set fi(x) = log(1+exp(−bixTai)), we

will get the regularized logistic regression problem.

1.1 RECENT RESEARCH PROGRESS

The proximal gradient descent (PGD) method is a standard and effective method for Problem (1),
and can achieve linear convergence for strongly convex problems. Its accelerated algorithms, e.g.,
accelerated proximal gradient (APG) (Tseng (2008); Beck & Teboulle (2009)), attain the conver-
gence rate ofO(1/T 2) for non-strongly convex problems, where T denotes the number of iterations.
In recent years, stochastic gradient descent (SGD) has been successfully applied to many large-scale
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learning problems, such as training for deep networks and linear prediction (Tong (2004)), because
of its significantly lower per-iteration complexity than deterministic methods, i.e., O(d) vs. O(nd).
And, many tricks for SGD have also been proposed, such as Loshchilov & Hutter (2016). How-
ever, the variance of the stochastic gradient may be large due to random sampling (Johnson & Tong
(2013)), which leads that the algorithm requires a gradually reduced step size, thus it will converge
slow. Even under the strongly convex condition, SGD only achieves a sub-linear convergence rate
O(1/T ). Recently, many SGD methods with variance reduction have been proposed. For the case
of R(x) = 0, Roux et al. (2012) developed a stochastic average gradient descent (SAG) method,
which is a randomized variant of the incremental aggregated gradient method proposed by Blatt
et al. (2007). Then stochastic variance reduced gradient (SVRG) (Johnson & Tong (2013)) was
proposed, and has been widely introduced into various subsequent optimization algorithms, due to
its lower storage space (i.e., O(d)) than that of SAG (i.e., O(nd)). SVRG reduced the variance
effectively by changing the estimation of stochastic gradients. The introduction of a snapshot point
x̃ mainly has the effect of correcting the direction of gradient descent, and reduces the variance.
Later, Konečný & Richtárik (2013) proposed the semi-stochastic gradient descent methods as well
as their mini-batch version (Konečný et al. (2014)). And their asynchronous distributed variant
(Ruiliang et al. (2016)) is also been proposed later. More recently, Lin & Tong (2014) proposed the
Prox-SVRG method, which introduced the proximal operator, and then applied the idea of SVRG to
solve the non-smooth optimization problems. However, Prox-SVRG can only be used to solve the
strongly convex optimization problems. In order to solve the non-strongly convex problems, Zeyuan
& Yuan (2016) proposed the SVRG++ algorithm. Besides, for accelerating the algorithm and reduc-
ing the complexity, by combining the main ideas of APG and Prox-SVRG, Nitanda (2014) proposed
an accelerated variance reduction proximal stochastic gradient descent (Acc-Prox-SVRG) method,
which can effectively reduce the complexity of the algorithm compared to the two basic algorithms.
Very recently, Zeyuan (2017) developed a novel Katyusha algorithm which introduced the Katyusha
momentum to accelerate the algorithm. With the development of parallel and distributed computing
which can effectively reduce computing time and improve performance, Ryu & Wotao (2017) came
up with an algorithm called Proximal Proximal Gradient, which combined the proximal gradient
method and ADMM (Gabay & Mercier (1976)). Furthermore, it is easy to implement in parallel and
distributed environments because of its innovative algorithm structure.

1.2 OUR MAIN CONTRIBUTIONS

We find that due to the introduction of proximal operator, there is a gap between the final optimal
value and actual optimal value. To address this issue, Nguyen et al. (2017) proposed the idea of
extragradient which can be seen as a guide during the process, and introduced it into the optimization
problems. Intuitively, this additional iteration allows us to examine the geometry of the problem and
consider its curvature information, which is one of the most important bottlenecks for first order
methods. Therefore, the idea of extragradient is also our main motivation. In this paper, we propose
a novel algorithm for solving non-smooth optimization problems. The main contributions of this
paper are summarized as follows.

• In order to reduce the gap between the optimal value we get and the real optimal value, and
achieve fast convergence, a novel algorithm which combines the idea of extragradient, Prox-SVRG
and the trick of momentum acceleration is proposed, called accelerated variance reduced stochastic
extragradient descent (AVR-SExtraGD).

•We provide the convergence analysis of our algorithm which shows that AVR-SExtraGD achieves
linear convergence for strongly convex problems, and the convergence condition in the non-strongly
convex case is also given. According to the convergence rate, we can know that AVR-SExtraGD has
the same excellent result as the best-known algorithms, such as Katyusha.

• Finally, we show by experiments that the performance of our algorithm is obviously better than
the popular algorithm, Prox-SVRG. For the widely used accelerated algorithm, Katyusha, the per-
formance of our algorithm is still improved.

2 RELATED WORK

2.1 BASIC ASSUMPTIONS

We first make the following assumptions to solve the problem (1):
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Assumption 1 (Smoothness). Each convex function fi(·) is Li-smooth, which means the gradient
of each fi(·) is Lipschitz continuous, i.e., there exists a constant Li>0 such that for any x, y∈Rd,
‖∇fi(x)−∇fi(y)‖≤Li‖x−y‖. Then, we can easily get that the average function F (·) is also L-
smooth, i.e., there exists a constant L>0 such that for any x, y∈Rd, ‖∇F (x)−∇F (y)‖≤L‖x−y‖,
where L≤(1/n)

∑n
i=1 Li.

Assumption 2. The regularization function R(·) is a lower semi-continuous function, but it is not
necessarily differentiable or continuous.
Assumption 3 (Strong Convexity). In Problem (1), the functionR(·) is µ-strongly convex, i.e., there
exists a constant µ>0 such that for all x, y∈Rd, it holds that

R(x) ≥ R(y) + 〈G, x− y〉+
µ

2
‖x− y‖2, (2)

where G∈∂R(y) which is the set of sub-gradient of R(·) at y.

2.2 PROX-SVRG AND EXTRAGRADIENT DESCENT METHODS

An effective method for solving Problem (1) is Prox-SVRG which improved Prox-FG (Lions &
Mercier (1979)) and Prox-SG (Langford et al. (2009)) by introducing the stochastic gradient and
combining the idea of SVRG, respectively. For strongly convex problems, Prox-SVRG can reach
linear convergence with a constant step size, and its main update rules are

∇̃fik(xk−1) = ∇fik(xk−1)−∇fik(x̃) +∇F (x̃); xk = ProxRη (xk−1 − η∇̃fik(xk−1)), (3)

where x̃ is the snapshot point used in SVRG, ∇̃fik(xk−1) is the variance reduced stochastic gradient
estimator, and ProxRη (·) is the proximal operator. Although Prox-SVRG can converge fast, because
of proximal operator, the final solution has the deviation, which makes the solution inaccurate, thus
Prox-SVRG still needs to be further improved, which is our important motivation.

The extragradient method was first proposed by Korpelevič (1976). It is a classical method for
solving variational inequality problems, and it generates an estimation sequence by using two pro-
jection gradients in each iteration. By combining this idea with some first-order descent methods,
Nguyen et al. (2017) proposed an extended extragradient method (EEG) which can effectively solve
the problem (1), and can also solve relatively more general problems as follows:

min
x∈Rd

{
P (x)

def
= F (x) +R(x)

}
where F (x) is not necessarily composed by multiple functions fi(x). Unlike the classical extragra-
dient method, EEG uses proximal gradient instead of orthogonal projection in each iteration. The
main update rules of EEG are

yk = ProxRsk(xk − sk∇F (xk)); xk+1 = ProxRαk
(xk − αk∇F (yk)),

where sk and αk are two step sizes. From the update rules of EEG, we can see that in each iteration,
EEG needs to calculate two gradients, which will definitely slow down the algorithm. Therefore,
the algorithm needs to be further accelerated by an efficient technique.

2.3 MOMENTUM ACCELERATION AND MIG

Firstly, we introduce the momentum acceleration technique whose main update rules are

vdwt
= βvdwt−1

+ (1− β)dwt; wt = wt−1 − αvdwt
,

where dw is the gradient of the function at w, β is a parameter, and α is a step size. The update
rules take not only the gradient of the current position, but also the gradient of the past position into
account, which makes the final descent direction of wt after using momentum reduce the oscillation
of descent, thus this method can effectively accelerate the convergence of the algorithm.

According to the Nesterov’s momentum, lots of accelerated algorithms were proposed, such as APG
and Acc-Prox-SVRG. Later, Zeyuan (2017) proposed Katyusha to further accelerate the algorithm,
and MiG (Kaiwen et al. (2018)) was proposed to simply the structure of Katyusha, and the momen-
tum acceleration of MiG is embodied in each iteration as follows:

ysk−1 = βsx
s
k−1 + (1− βs)x̃s−1.

3



Under review as a conference paper at ICLR 2020

Algorithm 1 AVR-SExtraGD
Input: Initial vector x0, the number of epochs S, the number of iterations m per epoch, the step

sizes η1, η2, momentum parameter β, and the set K.
Initialize: x̃0 = x10 = x0, ρ = 1+ηµ.

1: for s = 1, 2, . . . , S do
2: Compute∇F (x̃s−1);
3: βs = β (SC) or βs = 2

s+4 (non-SC);
4: for k = 1, 2, . . . ,m do
5: Pick ik uniformly at random from {1, ..., n};
6: if k ∈ K then
7: xsk−1/2 = ProxRη1

(
xsk−1 − η1∇̃fik(βsxsk−1 + (1−βs)x̃s−1)

)
;

8: xsk = ProxRη2
(
xsk−1/2 − η2∇̃fik(βsx

s
k−1/2 + (1−βs)x̃s−1)

)
;

9: else
10: xsk = ProxRη1(xsk−1 − η1∇̃fik(βsxsk−1 + (1−βs)x̃s−1));
11: end if
12: end for
13: x̃s = βs(

∑m
k=1 ρ

k−1)−1
∑m
k=1 ρ

k−1 x
s
k−1/2+x

s
k

2 +(1−βs)x̃s−1 (SC)

or x̃s = βs

m

∑m
k=1

xs
k−1/2+x

s
k

2 +(1−βs)x̃s−1 (non-SC);
14: xs+1

0 = xsm;
15: end for
Output: x̃S .

Moreover, it is easy to get that the oracle complexity of MiG is less than that of Prox-SVRG and
APG, which means that MiG can effectively accelerate the original Prox-SVRG algorithm. There-
fore, we can also use this acceleration technique to accelerate our algorithm and address the issue of
slow convergence due to the calculations of two different gradients.

3 OUR AVR-SEXTRAGD METHOD

3.1 THE PROPOSAL OF AVR-SEXTRAGD

We note that EEG requires computing two full gradients in each iteration, which will take a lot
of time for large-scale machine learning problems. Therefore, we first consider and propose the
stochastic variant of the algorithm, namely stochastic extragradient descent (SExtraGD), to re-
duce the per-iteration computational complexity, and further propose an efficient variance reduced
stochastic extragradient descent (VR-SExtraGD) algorithm. Their main update rules and the de-
tailed algorithm of VR-SExtraGD can be found in Appendix B.

On the basis of VR-SExtraGD, we refer to the momentum acceleration technique proposed in MiG,
and propose an innovative accelerated variance reduced stochastic extragradient descent algorithm,
called AVR-SExtraGD. It is used to solve non-smooth (both SC and non-SC) optimization prob-
lems. To further accelerate the algorithm and address the issue of slow convergence speed caused by
two gradients in each inner iteration, only part of the iterations are updated by extragradient descent.
Our AVR-SExtraGD algorithm is outlined in Algorithm 1.

For our AVR-SExtraGD algorithm, we have the following remarks.

• Following the requirement of step sizes in EEG, the step sizes in our algorithms also need to satisfy
similar conditions. After combining all the conditions, we get the conditions: η1≤ 1

2L , η2≤
1
L−η1.

• In AVR-SExtraGD, we use one more trick to speed up the algorithm, that is, only part of the
iterations (i.e., when k ∈K) are updated by extragradient descent, and the rest of the iterations are
still updated with the update rules of MiG. In our algorithm, we take an extragradient every 25 inner
iterations.

• For the momentum parameter β, when P (·) is a strongly convex function, we can set β as a
constant which is generally set as 0.9. And β is also set as 1−√µη2

1+
√
µη2

in Acc-Prox-SVRG, while we
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set β = 0.9 in our AVR-SExtraGD. However, when P (·) is non-strongly convex, the value of β in
each iteration is no longer fixed. We set βs as a decreasing sequence, which satisfies 1

β2
s−1
≥ 1−βs

β2
s

.

Particularly, in AVR-SExtraGD, we set βs= 2
s+4 , which satisfies the inequality defined above.

3.2 THE REDUCTION OF THE ERROR OF OPTIMAL VALUE

In this part, we prove that Prox-FG will cause the deviation of the optimal value. Based on its update
rules, we can explain why Problem (1) can be solved by proximal operators and find out the reason
for the introduction of the error. According to Prox-FG, we have

xk = ProxRηk(xk−1 − ηk∇F (xk−1))

= arg min
u∈Rd

{R(u) +
1

2ηk
‖u− (xk−1 − ηk∇F (xk−1))‖2}

= arg min
u∈Rd

{R(u) +
ηk
2
‖∇F (xk−1)‖2 +∇F (xk−1)T (u− xk−1) +

1

2ηk
‖u− xk−1‖2}

= arg min
u∈Rd

{R(u) + F (xk−1) +∇F (xk−1)T (u− xk−1) +
1

2ηk
‖u− xk−1‖2}

≈ arg min
u∈Rd

{F (u) +R(u)}.

The final approximation is obtained by the second-order Taylor expansion of F (u) at xk−1. From
the above analysis, we can see that when using proximal operators to solve the problems with the
`1-norm regularization, the iterate xk in each iteration is an estimation of the optimal point, not the
real optimal point. Therefore, in the last iteration, the final output point is also an estimation of the
real optimal point, which results in the deviation of the optimal value.

As we all know, for the general GD method, the iterate xk in each iteration eventually converges
to the real optimal point of the function, so there is no error in the final optimal value. For our
AVR-SExtraGD method, we introduce the idea of extragradient, which takes one more proximal
operator than Prox-SVRG. This will reduce the deviation of the optimal value generated by proxi-
mal operators, and thus improves the accuracy of our algorithm. In summary, our AVR-SExtraGD
method combines the advantage of Prox-SG for solving non-smooth optimization problems, the ad-
vantage of EEG to reduce the error of optimal value, and the trick of SVRG to reduce the variance
of stochastic gradient. And it is further accelerated by introducing the momentum acceleration used
in MiG. Therefore, our algorithm has more advantages than the basic algorithms mentioned above.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of AVR-SExtraGD under strongly convex
and non-strongly convex conditions. For convenience analysis, we use ∇̃ikF (·) to denote ∇̃fik(·),
that defined in (3) in the analysis of AVR-SExtraGD. We first give some key lemmas, which are
important to prove the convergence of AVR-SExtraGD. All the proofs of our lemmas and theorems
in this section are given in Appendix A.

Lemma 1. If two vectors xk, xk−1∈Rd satisfy the following equality,

xk = arg min
x
{ 1

2η
‖x−xk−1‖2+〈∇̃ikF (xk−1), x〉+R(x)}

with a constant vector ∇̃ikF (xk−1) and a convex function R(·), then for ∀u∈Rd, we have

〈∇̃ikF (xk−1), xk−u〉 ≤ −
1

2η
‖xk−1−xk‖2+

1

2η
‖xk−1−u‖2−

1

2η
‖xk−u‖2+R(u)−R(xk).

Moreover, if R(·) is µ-strongly convex, the above inequality becomes

〈∇̃ikF (xk−1), xk−u〉≤−
1

2η
‖xk−1−xk‖2+

1

2η
‖xk−1−u‖2−

1+ηµ

2η
‖xk−u‖2+R(u)−R(xk).
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Lemma 2 (Variance Bound). Suppose each function fi(·) is Li-smooth, let ∇̃ikF (xk−1) =
∇ikF (xk−1)−∇ikF (x̃s−1)+∇F (x̃s−1), which is the gradient estimation operator used in Algo-
rithm 1. Then the following inequality holds

E‖∇F (xk−1)−∇̃ikF (xk−1)‖2 ≤ 2L(F (x̃s−1)−F (xk−1)−〈∇F (xk−1), x̃s−1−xk−1〉).

4.1 FOR SC PROBLEMS

For strongly convex problems, the linear convergence of AVR-SExtraGD can be guaranteed by the
following theorem.

Theorem 1 (Strongly Convex). Suppose that Assumptions 1, 2 and 3 hold, and let x∗ =
arg minx P (x). In addition, assume η1 = η2 = η > 0 and Lβ+ Lβ

1−β ≤
1
η , we have

1

β

m∑
k=1

ρk−1[P (x̃s)−P (x∗)]+
ρm

4η
‖xsm−x∗‖2≤

1−β
β

m∑
k=1

ρk−1[P (x̃s−1)−P (x∗)]+
1

4η
‖xs0−x∗‖2.

Then by choosing η, β and m = Θ(n), Algorithm 1 achieves an ε-additive error with following
oracle complexities in expectation:{

O(
√
κn log P (x0)−P (x∗)

ε ), if m
κ ≤

3
4 ,

O(n log P (x0)−P (x∗)
ε ), if m

κ > 3
4 ,

which also means that for SC problems, the oracle complexity of Algorithm 1 is O((n +√
κn) log P (x0)−P (x∗)

ε ).

This result means that for strongly convex problems, AVR-SExtraGD achieves linear convergence
and enjoys the best-known oracle complexity of stochastic first-order algorithms, such as Katyusha.

4.2 FOR NON-SC PROBLEMS

The convergence of AVR-SExtraGD for solving non-SC problems can be guaranteed by the follow-
ing theorem.

Theorem 2 (Non-Strongly Convex). Suppose that Assumptions 1 and 2 hold, and let x∗ =
arg minx P (x). In addition, assume η1 = η2 = η = 1

Lα > 0 and 1−βs− 1
α−1 ≥ 0, where α is a

constant. Then by setting βs= 2
s+4 , we have

E[P (x̃S)−P (x∗)]≤
4(1−β1)

(S+4)2β2
1

(P (x0)−P (x∗))+
Lα

(S+4)2m
‖x0−x∗‖2,

which also means that when we choose m= Θ(n), Algorithm 1 achieves the following oracle com-
plexity in expectation:

O(n

√
P (x0)−P (x∗)

ε
+

√
nL‖x0−x∗‖2

ε
).

The result shows that AVR-SExtraGD enjoys the same oracle complexity as Katyusha and MiG,

which is close to the best-known complexity in this case (i.e., O(n log 1
ε +
√

nL
ε )). In addition, we

also analyze the convergence of VR-SExtraGD and give and prove the related lemmas and theorems
to guarantee its convergence, which can be found in Appendix C.

5 EXPERIMENTS

In this section, we evaluate the performance of AVR-SExtraGD and compare it with its counterparts
including Prox-SVRG and Katyusha on real-world data sets whose information can be found in
Table 1. Besides, for these real-world data sets, we consider the two common problem models:
Lasso and Elastic-Net. We also apply our algorithm to face recognition tasks and compare it with
the compared algorithms. Next, we give the setup of the related parameters as follows:
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Table 1: Summary of Data Sets and Regularization Coefficient

Data sets Sizes n Dimensions d Sparsity λ1 λ2
a9a 32,562 123 Sparse 10−6 10−4

Covtype 581,012 54 Dense 10−5 10−8

rcv1 20,242 47,236 Sparse 10−8 10−10

real-sim 72,309 20,598 Sparse 10−6 10−8

• Regularization Parameters: The regularization parameters for real-world datasets are shown in
Table 1.

• The Number of Inner Iteration: The number of inner iterations of Katyusha and Prox-SVRG is
usually set as m=2n. Our algorithm adds one more gradient calculation in each inner iteration than
Prox-SVRG, and for an equal complexity of each epoch, we set m=n in AVR-SExtraGD, so that
in each epoch, all the three algorithms require calculating 3n stochastic gradients. What’s more, the
reasonableness of such a setting can be found in Sebbouh et al. (2019).

• Step Sizes: We set our step sizes as: η1 = 2
5L , η2 = 3

5L . We note that the selected step sizes
do not satisfy the conditions requested in the remark of Section 3.1. Nevertheless, we can see
from the experimental results that our algorithm still converges well, which means that in practice
experiments, we can choose larger step sizes to improve the convergence speed.

For fair comparison, we implemented all the methods in C++ with a Matlab interface, and performed
all the experiments on a PC with an Intel i7-7700 CPU and 32GB RAM.

5.1 RESULTS OF LASSO AND ELASTIC-NET PROBLEMS

In this part, we consider the following common problem model,

min
x∈Rd

1

2n

n∑
i=1

(aTi x−bi)2+λ1‖x‖1+
λ2
2
‖x‖2.

When λ1 ≥ 0, λ2 ≡ 0, we can obtain the Lasso problem, and when λ1, λ2 ≥ 0, we can obtain the
Elastic-Net problem, which are all non-smooth optimization problems.
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Figure 1: Comparison of experimental results of different algorithms for Lasso (top) and Elastic-Net
(bottom) problems on different data sets. The y-axis represents the gap between the objective value
and the minimum, and the x-axis corresponds to running time.
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Figure 1 shows the performance of all the algorithms for Lasso and Elastic-Net problems on all
the data sets. As seen in Figure 1, for running time, our AVR-SExtraGD obviously outperforms
Prox-SVRG and Kayusha in all the settings, which shows the faster convergence speed of AVR-
SExtraGD than Katyusha, and justifies that the extragradient method and the momentum acceler-
ated trick are able to improve Prox-SVRG efficiently. Moreover, for the two problems, we pro-
pose the asynchronous sparse variant of AVR-SExtraGD by bringing our algorithm into a sparse
asynchronous framework and compare its performance with KroMagnon (Mania et al. (2015)) and
ASAGA (Leblond et al. (2016)) on the rcv1 and real-sim data sets, as shown in Table 1. The results
are shown in Figure 2 in Appendix D, which verify that the asynchronous variant of AVR-SExtraGD
significantly outperforms the variants of SVRG (i.e., KroMagnon) and SAGA (Defazio et al. (2014))
(i.e., ASAGA) in terms of the number of effective passes and running time.

5.2 RESULTS ON FACE RECOGNITION

We also apply our AVR-SExtraGD as well as Prox-SVRG and Katyusha to robust face recognition
via sparse representation (John et al. (2009)) on the AR and Yale data sets. Similarly, we set the loss
function in the training process as the same function as the Lasso and Elastic-Net problems. For
approximately equal time, the number of outer loops is 200 for Prox-SVRG and AVR-SExtraGD,
and 50 for Katyusha. In order to compare the results reasonably, we implement all the algorithms
for 20 times and get the average and standard deviation of recognition rates, as shown in Table 2.

The results in Table 2 show that the recognition rate of AVR-SExtraGD is significantly higher than
other algorithms on both the AR and Yale data sets. This means that our AVR-SExtraGD can learn
a more efficient representation for face recognition.

Table 2: Comparison of Recognition Rates on the AR and Yale Datasets.
Problems Algorithms AR Yale

Lasso
Prox-SVRG 0.6000± 0.0648 0.6200± 0.0447

Katyusha 0.5880± 0.0832 0.7480± 0.0415
AVR-SExtraGD 0.6200± 0.0756 0.8100± 0.0265

Elastic-Net
Prox-SVRG 0.5630± 0.0580 0.6400± 0.0394

Katyusha 0.5560± 0.0738 0.6870± 0.0433
AVR-SExtraGD 0.5800± 0.0634 0.7140± 0.0297

6 CONCLUSIONS AND FUTURE WORK

In this paper, we mainly considered the non-smooth optimization problem in large-scale and high-
dimensional settings. By introducing the idea of extragradient and momentum acceleration, we
improved the classical Prox-SVRG and then proposed a novel algorithm, called AVR-SExtraGD.
From our theoretical analysis, we can know that AVR-SExtraGD attains linear convergence for
SC problems, and achieves the same oracle complexity as Katyusha, which is the best-known one
of stochastic first-order algorithms in both SC and non-SC cases. Finally, the experimental results
showed that AVR-SExtraGD reduced the gap of the optimal value introduced by proximal operators,
and thus improved the accuracy of solutions and convergence speed, which confirmed the efficiency
of extragradient and momentum acceleration. For future work, we can extend the ideas introduced
in this paper to many existing proximal algorithms, including Prox-AFG (Beck & Teboulle (2009)),
Prox-SAG (Schmidt et al. (2017)) and Prox-SDCA (Shalev-Shwartz & Tong (2012); Shalev-shwartz
& Tong (2014)) which is a proximal variant of SDCA (Shalev-Shwartz & Tong (2013)), and it will
certainly improve the performance of these algorithms. Moreover, we can also rewrite our algorithm
into the form of mini-batch, whose computation of gradient evaluations can be parallelized (Agarwal
& Duchi (2011); Dekel et al. (2012)).
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APPENDIX

A PROOFS OF AVR-SEXTRAGD

The detailed proof of Lemma 1 can be found in Kaiwen et al. (2018), and the proof of Lemma 2 can
be seen in Zeyuan (2017), and thus we omit the proofs here. Next, we give the proofs of Theorems
1 and 2.

A.1 PROOF OF THEOREM 1

Proof. In this part, we consider one particular epoch and omit the number of outer iteration s (except

x̃s−1 and x̃s). We assume the parameters η and β satisfy the following inequality,

Lβ +
Lβ

1−β
≤ 1

η
. (4)

Let x̂k−1 =βxk−1+(1−β)x̃s−1, x̂k−1/2 =βxk−1/2+(1−β)x̃s−1. Thus, we can obtain x̂k−1/2−x̂k−1 =

β(xk−1/2−xk−1). Thus, according to the L-smoothness of F (·), we can obtain

P (x̂k−1/2)≤βR(xk−1/2)+(1−β)R(x̃s−1)+F (x̂k−1)+〈∇̃ikF (x̂k−1), β(xk−1/2−xk−1)〉

+
Lβ2

2
‖xk−1/2−xk−1‖2+〈∇F (x̂k−1)−∇̃ikF (x̂k−1), β(xk−1/2−xk−1)〉.

Then by using (4), we have

1

β
P (x̂k−1/2)≤R(xk−1/2)+

1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)+〈∇̃ikF (x̂k−1), xk−1/2−xk−1〉

+
1

2η
‖xk−1/2−xk−1‖2−

Lβ

2(1−β)
‖xk−1/2−xk−1‖2

+〈∇F (x̂k−1)−∇̃ikF (x̂k−1), xk−1/2−xk−1〉.

According to Lemma 1 with xk−1, xk=xk−1/2, u=x∗ and using the Young’s inequality to expand

〈∇F (x̂k−1)−∇̃ikF (x̂k−1), xk−1/2−xk−1〉 with the parameter θ > 0 and taking expectation with

respect to the sample ik, we have

1

β
EP (x̂k−1/2)≤R(x∗)+

1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)+E〈∇̃ikF (x̂k−1), x∗−xk−1〉

+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2−

Lβ

2(1−β)
E‖xk−1/2−xk−1‖2

+
θ

2
E‖xk−1/2−xk−1‖2+

1

2θ
E‖∇F (x̂k−1)−∇̃ikF (x̂k−1)‖2.
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We set θ= Lβ
1−β >0 and apply Lemma 2, then

1

β
EP (x̂k−1/2)≤R(x∗)+

1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)

+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2+

1−β
β

[F (x̃s−1)−F (x̂k−1)]

+E〈∇̃ikF (x̂k−1), x∗+
1−β
β

x̃s−1− 1

β
x̂k−1+

1−β
β

(x̂k−1−x̃s−1)〉

≤R(x∗)+
1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)

+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2+

1−β
β

[F (x̃s−1)−F (x̂k−1)]

+
1

β
E〈∇̃ikF (x̂k−1), βx∗+(1−β)x̂k−1−x̂k−1〉

≤R(x∗)+
1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)

+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2+

1−β
β

[F (x̃s−1)−F (x̂k−1)]

+
1

β
F (βx∗+(1−β)x̂k−1)− 1

β
F (x̂k−1)

≤R(x∗)+
1−β
β

R(x̃s−1)+
1

β
F (x̂k−1)+

1−β
β

[F (x̃s−1)−F (x̂k−1)]+F (x∗)

+
1−β
β

F (x̂k−1)− 1

β
F (x̂k−1)+

1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2

=
1−β
β

P (x̃s−1)+P (x∗)+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2.

The third inequality holds due to E[∇̃ikF (x̂k−1)] =∇F (x̂k−1) and the convexity of F (·), then we

get

1

β
E[P (x̂k−1/2)−P (x∗)]≤

1−β
β

[P (x̃s−1)−P (x∗)]+
1

2η
‖x∗−xk−1‖2−

1+ηµ

2η
E‖x∗−xk−1/2‖2.

Moreover, because x̂k−1 =βxk−1+(1−β)x̃s−1, we can obtain x̂k=βxk+(1−β)x̃s−1. Thus, it is

not hard to know

1

β
E[P (x̂k)−P (x∗)]≤

1−β
β

[P (x̃s−1)−P (x∗)]+
1

2η
‖x∗−xk−1/2‖2−

1+ηµ

2η
E‖x∗−xk‖2.

We set yk=β
xk−1/2+xk

2 +(1−β)x̃s−1 and it is obvious that 1
2η−

1+ηµ
2η ≤0, then we have

1

β
E[P (yk)−P (x∗)]≤

1−β
β

[P (x̃s−1)−P (x∗)]+
1

4η
‖x∗−xk−1‖2−

1+ηµ

4η
E‖x∗−xk‖2. (5)
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By setting ρ=1+ηµ and summing (5) over k=1, ...,m with increasing weight ρk−1, we have

1

β

m∑
k=1

ρk−1E[P (yk)−P (x∗)]+
ρm

4η
‖xm−x∗‖2≤

1−β
β

m∑
k=1

ρk−1[P (x̃s−1)−P (x∗)]+
1

4η
‖x0−x∗‖2.

Because, for SC problems, we set x̃s=(
∑m
k=1 ρk−1)−1

∑m
k=1 ρ

k−1yk in Algorithm 1 , we have

1

β

m∑
k=1

ρk−1E[P (x̃s)−P (x∗)]+
ρm

4η
‖xsm−x∗‖2≤

1−β
β

m∑
k=1

ρk−1[P (x̃s−1)−P (x∗)]+
1

4η
‖xs0−x∗‖2.

Then, according to the convergence analysis for SC problems in (Kaiwen et al. (2018)), we can get

a similar result. That is, for the case with m
κ ≤

3
4 , we set η=

√
1

3µmL , β=
√

m
3κ ≤

1
2 , and m=Θ(n),

then we can obtain

E[P (x̃S)−P (x∗)]≤

(
O(1+

√
1

3nκ
)

)−Sm
·O(P (x̃0)−P (x∗)).

We note that x̃0 =x0, so we get

E[P (x̃S)−P (x∗)]≤

(
O(1+

√
1

3nκ
)

)−Sm
·O(P (x0)−P (x∗)),

which implies that the oracle complexity in this case to achieve an ε-additive error is

O(
√
κn log P (x0)−P (x∗)

ε ). However, for the case with m
κ >

3
4 , we set η= 2

3L , β= 1
2 and m= Θ(n),

then we can obtain

E[P (x̃S)−P (x∗)]≤
(

2

3

)S
·O(P (x̃0)−P (x∗)).

We know that x̃0 =x0, so we have

E[P (x̃S)−P (x∗)]≤
(

2

3

)S
·O(P (x0)−P (x∗)),

which implies that the oracle complexity of AVR-SExtraGD in this case is O
(
n log P (x0)−P (x∗)

ε

)
.

A.2 PROOF OF THEOREM 2

Proof. In this part, we also omit the number of outer iteration s (except x̃s−1 and x̃s). Due to

x̂k−1/2 =βxk−1/2+(1−β)x̃s−1, we can get

P (x̂k−1/2)=P (βxk−1/2+(1−β)x̃s−1)=R(βxk−1/2+(1−β)x̃s−1)+F (x̂k−1/2).
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From the convexity of R(·) and L-smoothness of F (·), we obtain

P (x̂k−1/2)≤βR(xk−1/2)+(1−β)R(x̃s−1)+F (x̂k−1)+〈∇̃ikF (x̂k−1), β(xk−1/2−xk−1)〉

+
Lβ2

2
‖xk−1/2−xk−1‖2+〈∇F (x̂k−1)−∇̃ikF (x̂k−1), β(xk−1/2−xk−1)〉

≤βR(xk−1/2)+(1−β)R(x̃s−1)+F (x̂k−1)+〈∇̃ikF (x̂k−1), β(xk−1/2−xk−1)〉

+
Lαβ2

2
‖xk−1/2−xk−1‖2+

1

2L(α−1)
‖∇F (x̂k−1)−∇̃ikF (x̂k−1)‖2,

where the second inequality holds by using the Young’s inequality with the parameter L(α−1),

where α is a small constant. After applying Lemma 1 and taking expectation with respect to the

14
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sample ik, we have

EP (x̂k−1/2)≤βR(x∗)+(1−β)R(x̃s−1)+F (x̂k−1)+E〈∇̃ikF (x̂k−1), β(x∗−xk−1)〉

+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2)

+
1

2L(α−1)
E‖∇F (x̂k−1)−∇̃ikF (x̂k−1)‖2

≤βR(x∗)+(1−β)R(x̃s−1)+F (x̂k−1)+E〈∇̃ikF (x̂k−1), β(x∗−xk−1)〉

+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2)

+
1

α−1
[F (x̃s−1)−F (x̂k−1)+E〈∇̃ikF (x̂k−1), x̂k−1−x̃s−1〉]

≤βR(x∗)+(1−β)R(x̃s−1)+F (x̂k−1)+
1

α−1
[F (x̃s−1)−F (x̂k−1)]

+E〈∇̃ikF (x̂k−1), βx∗+(1−β)x̃s−1−x̂k−1+
1

α−1
(x̂k−1−x̃s−1)〉

+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2)

≤βR(x∗)+(1−β)R(x̃s−1)+F (x̂k−1)+
1

α−1
[F (x̃s−1)−F (x̂k−1)]

+F (βx∗+(1−β− 1

α−1
)x̃s−1+

1

α−1
x̂k−1)−F (x̂k−1)

+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2)

≤βR(x∗)+(1−β)R(x̃s−1)+F (x̂k−1)+
1

α−1
[F (x̃s−1)−F (x̂k−1)]

+βF (x∗)+(1−β− 1

α−1
)F (x̃s−1)+

1

α−1
F (x̂k−1)−F (x̂k−1)

+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2)

=(1−β)P (x̃s−1)−βP (x∗)+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2).

The second inequality holds due to Lemma 2. The reasons why the fourth inequality holds are

E[∇̃ikF (x̂k−1)]=∇F (x̂k−1) and the convexity of F (·). Besides, we need to assume 1−β− 1
α−1≥0

in this step. Then, we get

E[P (x̂k−1/2)−P (x∗)]≤(1−β)[P (x̃s−1)−P (x∗)]+
Lαβ2

2
(‖x∗−xk−1‖2−E‖x∗−xk−1/2‖2).
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Moreover, because x̂k−1 =βxk−1+(1−β)x̃s−1, we can obtain x̂k=βxk+(1−β)x̃s−1. Thus, it is

not hard to know

E[P (x̂k)−P (x∗)]≤(1−β)[P (x̃s−1)−P (x∗)]+
Lαβ2

2
(‖x∗−xk−1/2‖2−E‖x∗−xk‖2).

Let yk=β
xk−1/2+xk

2 +(1−β)x̃s−1, we have

E[P (yk)−P (x∗)]≤(1−β)[P (x̃s−1)−P (x∗)]+
Lαβ2

4
(‖x∗−xk−1‖2−E‖x∗−xk‖2).

That is,

1

β2
E[P (yk)− P (x∗)]≤

(1−β)

β2
[P (x̃s−1)−P (x∗)]+

Lα

4
(‖x∗−xk−1‖2−E‖x∗−xk‖2).

Since we have x̃s = β
m

∑m
k=1

xk−1/2+xk

2 +(1−β)x̃s−1 = 1
m

∑m
k=1 yk in Algorithm 1, and then by

summing the previous inequality over k=1, ...,m and according to xs+1
0 =xsm, we obtain

1

β2
s

E[P (x̃s)−P (x∗)]≤
(1−βs)
β2
s

[P (x̃s−1)−P (x∗)]+
Lα

4m
(‖x∗−xs0‖2−‖x∗−xs+1

0 ‖2).

We set βs= 2
s+4 and can easily obtain 1

β2
s−1
≥ 1−βs

β2
s

. Then by summing the previous inequality over

s=1, ..., S, we can get

1

β2
S

E[P (x̃S)−P (x∗)]≤
(1−β1)

β2
1

[P (x̃s−1)−P (x∗)]+
Lα

4m
(‖x∗−x10‖2−‖x∗−xSm‖2).

Then we have

E[P (x̃S)−P (x∗)]≤
4(1−β1)

(S+4)2β2
1

(P (x̃0)−P (x∗))+
Lα

(S+4)2m
‖x̃0−x∗‖2,

which holds because ‖x∗−xSm‖2≥0. We note that x̃0 =x10 =x0, so we get

E[P (x̃S)−P (x∗)]≤
4(1−β1)

(S+4)2β2
1

(P (x0)−P (x∗))+
Lα

(S+4)2m
‖x0−x∗‖2.

In other words, by choosing m=Θ(n), the total oracle complexity is

O

(
n

√
P (x0)−P (x∗)

ε
+

√
nL‖x0−x∗‖2

ε

)
.

Finally, we finished the convergence analysis of AVR-SExtraGD. In our Algorithm 1, only part of
the iterations are updated by extragradient descent, and the other iterations are updated with the
update rules of MiG. And we know both MiG and AVR-SExtraGD can make the objective function
converge to the optimal value. Therefore, the method in Algorithm 1 will not affect the results and
can accelerate the algorithm.
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Algorithm 2 VR-SExtraGD
Input: Initial vector x0, the number of epochs S, the number of iterations m per epoch, and the

step sizes η1, η2.
Initialize: x̃0 = x0.

1: for s=1, 2, . . . , S do
2: µ̃s−1 =∇F (x̃s−1);
3: xs0 = x̃s−1 (SC) or xs0 =xs−1m (non-SC);
4: for k=1, 2, . . . ,m do
5: Pick ik uniformly at random from {1, ..., n};
6: ∇̃fik(xsk−1)=∇fik(xsk−1)−∇fik(x̃s−1)+µ̃s−1;
7: xsk−1/2 =ProxRη1(xsk−1 − η1∇̃fik(xsk−1));
8: ∇̃fik(xsk−1/2)=∇fik(xsk−1/2)−∇fik(x̃s−1)+µ̃s−1;
9: xsk=ProxRη2(xsk−1/2−η2∇̃fik(xsk−1/2));

10: end for
11: x̃s= 1

m

∑m
k=1 x

s
k;

12: end for
Output: x̃S .

B SEXTRAGD AND VR-SEXTRAGD

Based on the update rules of EEG, we first consider and propose the stochastic variant of the algo-
rithm, namely the stochastic extragradient descent (SExtraGD) algorithm, and its variance reduced
variant called variance reduced stochastic extragradient descent (VR-SExtraGD), whose update
rules can be formulated as follows:

• The update rules of SExtraGD:

xk−1/2 = ProxRη1(xk−1 − η1∇fik(xk−1)) ; xk = ProxRη2
(
xk−1/2 − η2∇fik(xk−1/2)

)
.

• The update rules of VR-SExtraGD:

xk−1/2 = ProxRη1
(
xk−1 − η1∇̃fik(xk−1)

)
; xk = ProxRη2

(
xk−1/2 − η2∇̃fik(xk−1/2)

)
,

where ∇̃fik(·) is the gradient estimation defined in (3).

We note that one difference between these two algorithms and EEG is that we change xk−1 in
Step two to xk−1/2, which will be beneficial to our theoretical analysis, but will not cause any
major change to the results of the algorithms. Thus, we propose the stochastic extragradient descent
algorithms, called SExtraGD and VR-SExtraGD, for solving non-smooth (both SC and non-SC)
problems. In addition, the detailed process of VR-SExtraGD is shown as outlined in Algorithm 2.

C CONVERGENCE ANALYSIS OF VR-SEXTRAGD

Firstly, we give some key lemmas which are helpful for the convergence analysis of VR-SExtraGD.
Lemmas 3, 4 and 5 are used to prove Lemma 6 which is an important lemma to prove the conver-
gence of VR-SExtraGD.

Lemma 3. Let R(·) be a convex function from Rd to R, and ηk>0. Then, for all x, y ∈ Rd,

‖ProxRηk(x)− ProxRηk(y)‖ ≤ ‖x− y‖.
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Lemma 4. Let P (x)=F (x)+R(x), and∇F (x) is Lipschitz continuous with parameter L. For any

x ∈ Rd and arbitrary v ∈ Rd, we define

x′ = ProxRη (x− ηv), g =
1

η
(x− x′), 4 = v −∇F (x),

where η is a step size that satisfies 0 < η ≤ 1
L . Thus, we can know that for any y ∈ Rd,

P (y) ≥ P (x′) + gT (y − x) +
η

2
‖g‖2 +4T (x′ − y).

Lemma 5. Considering P (x) as defined in Problem (1) and ∇̃fik(v) as defined in (3), where v is

an arbitrary stochastic sample, and let x∗ = arg minx P (x). We have E[∇̃fik(v)]=∇F (v) and

E‖∇̃fik(v)−∇F (v)‖2 ≤ 4L[P (v)− P (x∗) + P (x̃)− P (x∗)].

Because Lemma 3 is well known and often used (e.g., see Section 3 in Rockafellar (1970)), we omit
the proof of this lemma here. For Lemma 4, it is very similar to Lemma 3.7 of Lin & Tong (2014),
and thus can be easily proved, so we also omit the proof here. Similarly, according to Lemma 3.4 in
Lin & Tong (2014), Lemma 5 can be also easily proved, and thus we will not give the detail about
it. Then we can prove the following lemma by these three lemmas.

Lemma 6. For all randomly selected sample v and h, if

v = ProxRη
(
h− η∇̃fik(h)

)
, (6)

we have

E‖v − x∗‖2 ≤ ‖h− x∗‖2 − 2η[EP (v)− P (x∗)] + 8Lη2[P (h)− P (x∗) + P (x̃)− P (x∗)],

where x∗ = arg minx P (x).

Proof. First, we define a stochastic gradient mapping as follows:

g =
1

η
(h− v) =

1

η
(h− ProxRη

(
h− η∇̃fik(h)

)
.

According to this definition, (6) can be expressed more succinctly as follows:

v = h− ηg.

Then we consider the distance between v and x∗.

‖v − x∗‖2 = ‖h− ηg − x∗‖2 = ‖h− x∗‖2 − 2ηgT (h− x∗) + η2‖g‖2.
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Applying Lemma 4 with x = h, v = ∇̃fik(h), x+ = v and y = x∗, we have

−gT (h− x∗) +
η

2
‖g‖2 ≤ P (x∗)− P (v)−4Tk (v − x∗)

where4k = ∇̃fik(h)−∇F (h). Thus we have

‖v− x∗‖2 ≤ ‖h− x∗‖2 − 2η[P (v)− P (x∗)]− 2η4Tk (v − x∗).

Then we can give an upper bound of −2η4Tk (v − x∗). First of all, we can define the update of

Prox-FG as shown below (although it is not used in our algorithm):

h̄ = ProxRη (h− η∇F (h)).

So, we can obtain

−2η4Tk (v − x∗) = −2η4Tk (v − h̄)− 2η4Tk (h̄− x∗)

≤ 2η‖4k‖‖v − h̄‖ − 2η4Tk (h̄− x∗)

≤ 2η‖4k‖‖(h− η∇̃fik(h))− (h− η∇F (h))‖ − 2η4Tk (h̄− x∗)

= 2η2‖4k‖2 − 2η4Tk (h̄− x∗).

The first inequality follows from the Cauchy-Schwarz inequality, and the second inequality holds

due to Lemma 3. So, we have

‖h− x∗‖2 ≤ ‖v − x∗‖2 − 2η[P (h)− P (x∗)] + 2η2‖4k‖2 − 2η4Tk (h̄− x∗).

Then, we take expectation on both sides of the above inequality with respect to ik to obtain

E‖h− x∗‖ ≤ ‖v − x∗‖2 − 2η[EP (h)− P (x∗)] + 2η2E‖4k‖2 − 2ηE[4Tk (h̄− x∗)]. (7)

It can be noted that both h̄ and x∗ are independent of the random variable ik, and we can easily

know that E4k = 0. So

E[4Tk (h̄− x∗)] = (E4k)T (h̄− x∗) = 0. (8)

Substituting Lemma 5 and (8) into (7), we obtain

E‖h− x∗‖2 ≤ ‖v − x∗‖2 − 2η[EP (h)− P (x∗)] + 8Lη2[P (v)− P (x∗) + P (x̃)− P (x∗)]. (9)
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C.1 FOR SC PROBLEMS

Firstly, we can prove the convergence of VR-SExtraGD for strongly convex (SC) problems, which
is showed by the following theorem.

Theorem 3 (Strongly Convex). Suppose that Assumptions 1, 2 and 3 hold, and let x∗ =

arg minx P (x). In addition, assume η1 > 0, η2 > 0, η1 ≥ 4Lη22 and η2 ≥ 4Lη21 and m is suf-

ficiently large so that

θ =
1

µm(η2 − 4Lη21)
+

4L[(m+ 1)η21 +mη22 ]

m(η2 − 4Lη21)
≤ 1.

Then VR-SExtraGD outlined in Algorithm 2 achieves linear convergence in the expected form, which

can be formulated as follows:

E[P (x̃S)− P (x∗)] ≤ θS [P (x0)− P (x∗)]. (10)

Proof. According to Lemma 6 and the update rules of VR-SExtraGD, we can easily get:

E‖xk−1/2 − x∗‖2 ≤ ‖xk−1 − x∗‖2 − 2η1[EP (xk−1/2)− P (x∗)]

+ 8Lη21 [P (xk−1)− P (x∗) + P (x̃)− P (x∗)]

(11)

and

E‖xk − x∗‖2 ≤ ‖xk−1/2 − x∗‖2 − 2η2[EP (xk)− P (x∗)]

+ 8Lη22 [P (xk−1/2)− P (x∗) + P (x̃)− P (x∗)].

(12)

Then, we substitute (11) into (12) to obtain

E‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − 2η1[EP (xk−1/2)− P (x∗)]

+ 8Lη21 [P (xk−1)− P (x∗) + P (x̃)− P (x∗)]− 2η2[EP (xk)− P (x∗)]

+ 8Lη22 [P (xk−1/2)− P (x∗) + P (x̃)− P (x∗)].

Suppose η1 ≥ 4Lη22 , i.e., −2η1 ≤ −8Lη22 , we can get

E‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − 8Lη22 [EP (xk− 1
2
)− P (x∗)]

+ 8Lη21 [P (xk−1)− P (x∗) + P (x̃)− P (x∗)]− 2η2[EP (xk)− P (x∗)]

+ 8Lη22 [P (xk− 1
2
)− P (x∗)] + 8Lη22 [P (x̃)− P (x∗)]

= ‖xk−1 − x∗‖2 + 8Lη21 [P (xk−1)− P (x∗) + P (x̃)− P (x∗)]

− 2η2[EP (xk)− P (x∗)] + 8Lη22 [P (x̃)− P (x∗)].
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By summing the previous inequality over k = 1, ...,m, we obtain

‖xm − x∗‖2 + 2η2[EP (xm)− P (x∗)] + 2(η2 − 4Lη21)

m−1∑
k=1

[EP (xk)− P (x∗)]

≤ ‖x0 − x∗‖2 + 8Lη21 [P (x0)− P (x∗)] +m8L(η21 + η22)[P (x̃)− P (x∗)].

Since η2 − 4Lη21 < η2, and from the algorithm of VR-SExtraGD, we know x0 = x̃. Therefore,

2(η2 − 4Lη21)

m∑
k=1

[EP (xk)− P (x∗)] ≤ ‖x̃− x∗‖2 + 8L[(m+ 1)η21 +mη22 ][P (x̃)− P (x∗)].

Because in a fixed epoch, such as the s-th epoch, there are x̃s = 1
m

∑m
k=1 xk and x̃s−1 = x0, and

according to the convexity of P (·), P (x̃s) ≤ 1
m

∑m
k=1 P (xk) can be obtained. Therefore,

2(η2−4Lη21)m[EP (x̃s)−P (x∗)] ≤ 8L[(m+1)η21+mη22 ][P (x̃s−1)−P (x∗)]+‖x̃s−1−x∗‖2. (13)

Because of the convexity of F (·) and the strong convexity of R(·), we know P (·) is also strongly

convex, then we have ‖x̃s−1 − x∗‖2 ≤ 2
µ [P (x̃s−1)− P (x∗)]. Thus,

2(η2 − 4Lη21)m[EP (x̃s)− P (x∗)] ≤ (
2

µ
+ 8L((m+ 1)η21 +mη22))[P (x̃s−1)− P (x∗)],

which is equivalent to

E[P (x̃s)− P (x∗)] ≤ θ[P (x̃s−1)− P (x∗)],

where

θ =
1

µm(η2 − 4Lη21)
+

4L[(m+ 1)η21 +mη22 ]

m(η2 − 4Lη21)
.

At last, we have

E[P (x̃S)− P (x∗)] ≤ θE[P (x̃S−1)− P (x∗)]

≤ θ2E[P (x̃S−2)− P (x∗)]

≤ ... ≤ θS [P (x̃0)− P (x∗)].

We note that x̃0 = x0, so we can obtain

E[P (x̃S)− P (x∗)] ≤ θS [P (x0)− P (x∗)]
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C.2 FOR NON-SC PROBLEMS

We can also use a theorem to give the convergence of VR-SExtraGD for solving non-SC problems,
as shown below.

Theorem 4 (Non-Strongly Convex). Suppose that Assumptions 1 and 2 hold, and let x∗ =

arg minx P (x). In addition, assume η1 > 0, η2 > 0, and η1 = η2 = η = 1
Lα . Then, the conver-

gence property of VR-SExtraGD, as outlined in Algorithm 2, is given as follows:

E[P (xout)− P (x∗)] ≤
4m+ 2

m(α− 7)S
[P (x0)− P (x∗)] +

Lα(α− 1)

2m(α− 7)S
‖x0 − x∗‖2. (14)

where xout = 1
S

∑S
s=1 x̃

s.

Proof. Because we know F (·) is L-smooth, then we have

P (xk−1/2) ≤ R(xk−1/2) + F (xk−1) + 〈∇̃fik(xk−1), xk−1/2 − xk−1〉

+
L

2
‖xk−1/2 − xk−1‖2 + 〈∇f(xk−1)− ∇̃fik(xk−1), xk−1/2 − xk−1〉

≤ R(xk−1/2) + F (xk−1) + 〈∇̃fik(xk−1), xk−1/2 − xk−1〉+
L

2
‖xk−1/2 − xk−1‖2

+
1

2L(α− 1)
‖∇F (xk−1)− ∇̃fik(xk−1)‖2 +

L(α− 1)

2
‖xk−1/2 − xk−1‖2.

The second inequality holds due to Young’s inequality with parameter L(α− 1), where α is a small

constant. Then after taking expectation with respect to the sample ik and using Lemma 5, we obtain

E[P (xk−1/2)] ≤ R(xk−1/2) + F (xk−1) + E〈∇̃fik(xk−1), xk−1/2 − xk−1〉

+
Lα

2
E‖xk−1/2 − xk−1‖2 +

2

α− 1
[P (xk−1)− P (x∗) + P (x̃)− P (x∗)].

Next, we apply Lemma 1 with xk−1, xk = xk−1/2, u = x∗, and have

E[P (xk−1/2)] ≤ R(x∗) + F (xk−1) + E〈∇̃fik(xk−1), x∗ − xk−1〉

+
Lα

2
(‖x∗ − xk−1‖2 − E‖x∗ − xk−1/2‖2)

+
2

α− 1
[P (xk−1)− P (x∗) + P (x̃)− P (x∗)]

≤ R(x∗) + F (x∗) +
Lα

2
(‖x∗ − xk−1‖2 − E‖x∗ − xk−1/2‖2)

+
2

α− 1
[P (xk−1)− P (x∗) + P (x̃)− P (x∗)].
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The second inequality holds because E[∇̃fik(xk−1)] = ∇F (xk−1) and F (·) is convex. Then we

know

E[P (xk−1/2)− P (x∗)] ≤
2

α− 1
[P (xk−1)− P (x∗) + P (x̃)− P (x∗)]

+
Lα

2
(‖x∗ − xk−1‖2 − E‖x∗ − xk−1/2‖2).

(15)

And for P (xk), we can deduce by the same way, and obtain the similar result:

E[P (xk)− P (x∗)] ≤
2

α− 1
[P (xk−1/2)− P (x∗) + P (x̃)− P (x∗)]

+
Lα

2
(‖x∗ − xk−1/2‖2 − E‖x∗ − xk‖2).

(16)

We assume that α is sufficiently large to make 2
α−1 ≤ 1, and sum (15) and (16) together, then we

obtain

E[P (xk)− P (x∗)] ≤
2

α− 1
[P (xk−1)− P (x∗)] +

4

α− 1
[P (x̃)− P (x∗)]

+
Lα

2
(‖x∗ − xk−1‖2 − E‖x∗ − xk‖2).

which is equivalent to

(1− 2

α− 1
)E[P (xk)− P (x∗)] ≤

2

α− 1
{[P (xk−1)− P (x∗)]− E[P (xk)− P (x∗)]}

+
4

α− 1
[P (x̃)− P (x∗)] +

Lα

2
(‖x∗ − xk−1‖2 − E‖x∗ − xk‖2).

By summing the previous inequality over k = 1, ...,m, we obtain

(1− 2

α− 1
)

m∑
k=1

E[P (xk)− P (x∗)] ≤
2

α− 1
{[P (x0)− P (x∗)]− [P (xm)− P (x∗)]}

+
4m

α− 1
[P (x̃)− P (x∗)] +

Lα

2
(‖x∗ − x0‖2 − ‖x∗ − xm‖2).

Since we set x̃s = 1
m

∑m
k=1 xk and xs+1

0 = xm, and we know F (·) is a convex function. Thus, we

have

(1− 2

α− 1
)E[P (x̃s)− P (x∗)] ≤

2

m(α− 1)
{[P (xs0)− P (x∗)]− [P (xs+1

0 )− P (x∗)]}

+
4

α− 1
[P (x̃s−1)− P (x∗)] +

Lα

2m
(‖x∗ − xs0‖2 − ‖x∗ − xs+1

0 ‖2).

By summing the previous inequality over s = 1, ..., S, we obtain

(1− 2

α− 1
)

S∑
s=1

E[P (x̃s)− P (x∗)] ≤
4

α− 1

S−1∑
s=0

[P (x̃s)− P (x∗)] +
Lα

2m
(‖x∗ − x10‖2 − ‖x∗ − xSm‖2)

+
2

m(α− 1)
{[P (x10)− P (x∗)]− [P (xSm)− P (x∗)]}.
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That is,

(1− 2

α− 1
− 4

α− 1
)

S∑
s=1

E[P (x̃s)− P (x∗)]

≤ 4

α− 1
[P (x̃0)− P (x∗)] +

2

m(α− 1)
([P (x10)− P (x∗)]− [P (xSm)− P (x∗)])

+
Lα

2m
(‖x∗ − x10‖2 − ‖x∗ − xSm‖2)

≤ 2

m(α− 1)
[P (x10)− P (x∗)] +

4

α− 1
[P (x̃0)− P (x∗)] +

Lα

2m
‖x∗ − x10‖2.

The first inequality holds due to 1− 2
α−1 ≥ 1− 2

α−1 −
4

α−1 and the second inequality holds because

P (xSm)− P (x∗) ≥ 0 and ‖x∗ − xSm‖2 ≥ 0. Because x10 = x̃0, we have

(1− 6

α− 1
)

S∑
s=1

E[P (x̃s)− P (x∗)] ≤ (
2

m(α− 1)
+

4

α− 1
)[P (x̃0)− P (x∗)] +

Lα

2m
‖x̃0 − x∗‖2

Due to the convexity of F (·), we have

EP (

S∑
s=1

x̃s)− P (x∗) ≤
1

S

S∑
s=1

E[P (x̃s)− P (x∗)]

≤ 4m+ 2

m(α− 7)S
[P (x̃0)− P (x∗)] +

Lα(α− 1)

2m(α− 7)S
‖x̃0 − x∗‖2

We note that x̃0 = x0, so we have

EP (

S∑
s=1

x̃s)− P (x∗) ≤
4m+ 2

m(α− 7)S
[P (x0)− P (x∗)] +

Lα(α− 1)

2m(α− 7)S
‖x0 − x∗‖2
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D EXPERIMENTAL RESULTS IN ASYNCHRONOUS SPARSE CASE

In this part, we provide the performance comparison of the asynchronous sparse variants of different
algorithms. We compare the asynchronous sparse variants of our AVR-SExtraGD with KroMagnon
and ASAGA on rcv1 and real-sim these two large-scale high-dimension sparse data sets. And the
results are shown as follows:
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(a.1) Lasso, rcv1
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(a.2) Lasso, real-sim
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(b.1) Elastic-Net, rcv1
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(b.2) Elastic-Net, real-sim

Figure 2: Comparison of experimental results of different algorithms for Lasso (the first two
columns) and Elastic-Net (the latter two columns) problems on different data sets. The y-axis rep-
resents the gap between the objective value and the minimum, and the x-axis corresponds to the
number of effective passes (top) or running time (bottom).
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