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ABSTRACT

Domain adaptation tackles the problem of transferring knowledge from a label-
rich source domain to an unlabeled or label-scarce target domain. Recently
domain-adversarial training (DAT) has shown promising capacity to learn a domain-
invariant feature space by reversing the gradient propagation of a domain classifier.
However, DAT is still vulnerable in several aspects including (1) training instability
due to the overwhelming discriminative ability of the domain classifier in adversar-
ial training, (2) restrictive feature-level alignment, and (3) lack of interpretability
or systematic explanation of the learned feature space. In this paper, we propose a
novel Max-margin Domain-Adversarial Training (MDAT) by designing an Adver-
sarial Reconstruction Network (ARN). The proposed MDAT stabilizes the gradient
reversing in ARN by replacing the domain classifier with a reconstruction network,
and in this manner ARN conducts both feature-level and pixel-level domain align-
ment without involving extra network structures. Furthermore, ARN demonstrates
strong robustness to a wide range of hyper-parameters settings, greatly alleviating
the task of model selection. Extensive empirical results validate that our approach
outperforms other state-of-the-art domain alignment methods. Additionally, the
reconstructed target samples are visualized to interpret the domain-invariant feature
space which conforms with our intuition.

1 INTRODUCTION

Deep neural networks have gained great success on a wide range of tasks such as visual recognition
and machine translation (LeCun et al., 2015). They usually require a large number of labeled data
that can be prohibitively expensive to collect, and even with sufficient supervision their performance
can still be poor when being generalized to a new environment. The problem of discrepancy between
the training and testing data distribution is commonly referred to as domain shift (Shimodaira,
2000). To alleviate the effect of such shift, domain adaptation sets out to obtain a model trained
in a label-rich source domain to generalize well in an unlabeled target domain. Domain adaptation
has benefited various applications in many practical scenarios, including but not limited to object
detection under challenging conditions (Chen et al., 2018), cost-effective learning using only synthetic
data to generalize to real-world imagery (Vazquez et al., 2013), etc.

Prevailing methods for unsupervised domain adaptation (UDA) are mostly based on domain alignment
which aims to learn domain-invariant features by reducing the distribution discrepancy between the
source and target domain using some pre-defined metrics such as maximum mean discrepancy (Tzeng
et al., 2014). Recently, Ganin & Lempitsky (2015) proposed to achieve domain alignment by domain-
adversarial training (DAT) that reverses the gradients of a domain classifier to maximize domain
confusion. Having yielded remarkable performance gain, DAT was employed in many subsequent
UDA methods (Long et al., 2018; Shu et al., 2018). Even so, there still exist three critical issues of
DAT that hinder its performance: (1) as the domain classifier has high-capacity to discriminate two
domains, the unbalanced adversarial training cannot continuously provide effective gradients, which
is usually overcome by manually adjusting the weights of adversarial training according to specific
tasks; (2) DAT-based methods cannot deal with pixel-level domain shift (Hoffman et al., 2018); (3)
the domain-invariant features learned by DAT are only based on intuition but difficult to interpret,
which impedes the investigation of the underlying mechanism of adversarial domain adaptation.
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To overcome the aforementioned difficulties, we propose an innovative DAT approach, namely
Max-margin Domain-Adversarial Training (MDAT), to realize stable and comprehensive domain
alignment. To demonstrate its effectiveness, we develop an Adversarial Reconstruction Network
(ARN) that only utilizes MDAT for UDA. Specifically, ARN consists of a shared feature extractor,
a label predictor, and a reconstruction network (i.e. decoder) that serves as a domain classifier.
Supervised learning is conducted on source domain, and MDAT helps learn domain-invariant features.
In MDAT, the decoder only focuses on reconstructing samples on source domain and pushing the
target domain away from a margin, while the feature extractor aims to fool the decoder by learning to
reconstruct samples on target domain. In this way, three critical issues can be solved by MDAT: (1)
the max-margin loss reduces the discriminative capacity of domain classifier, leading to balanced and
thus stable adversarial training; (2) without involving new network structures, MDAT achieves both
pixel-level and feature-level domain alignment; (3) visualizing the reconstructed samples reveals
how the source and target domains are aligned. We evaluate ARN with MDAT on five visual and
non-visual UDA benchmarks. It achieves significant improvement to DAT on all tasks with pixel-level
or higher-level domain shift. We also observe that it is insensitive to the choices of hyperparameters
and as such is favorable for replication in practice. In principle, our approach is generic and can be
used to enhance any UDA methods that leverage domain alignment as an ingredient.

2 RELATED WORK

Domain adaptation aims to transfer knowledge from one domain to another. Ben-David et al. (2010)
provide an upper bound of the test error on the target domain in terms of the source error and the
H4H-distance. As the source error is stationary for a fixed model, the goal of most UDA methods
is to minimize theH4H-distance by reducing some metrics such as Maximum Mean Discrepancy
(MMD) (Tzeng et al., 2014; Long et al., 2015) and CORAL (Sun & Saenko, 2016). Inspired by
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), Ganin & Lempitsky (2015)
proposed to learn domain-invariant features by adversarial training, which has inspired many UDA
methods thereafter. Adversarial Discriminative Domain Adaptation (ADDA) tried to fool the label
classifier by adversarial training but not in an end-to-end manner. CyCADA (Hoffman et al., 2018)
and PixelDA (Bousmalis et al., 2017) leveraged GAN to conduct both feature-level and pixel-level
domain adaptation, which yields significant improvement yet the network complexity is high.

Another line of approaches that are relevant to our method is the reconstruction network (i.e. the
decoder network). The success of image-to-image translation corroborates that it helps learn pixel-
level features in an unsupervised manner. In UDA, Ghifary et al. (2016) employed a decoder network
for pixel-level adaptation, and Domain Separate Network (DSN) (Bousmalis et al., 2016) further
leveraged multiple reconstruction networks to learn domain-specific features. These approaches
treat the decoder network as an independent component that is irrelevant to domain alignment
(Glorot et al., 2011). In this paper, our approach proposes to utilize the decoder network as domain
classifier in MDAT which enables both feature-level and pixel-level domain alignment in a stable and
straightforward fashion.

3 PROBLEM FORMULATION

3.1 PROBLEM DEFINITION AND NOTATIONS

In unsupervised domain adaptation, we assume that the model works with a labeled dataset XS
and an unlabeled dataset XT . Let XS = {(xsi , ysi )}i∈[Ns] denote the labeled dataset of Ns samples
from the source domain, and the certain label ysi belongs to the label space Y that is a finite set
(Y = 1, 2, ...,K). The other dataset XT = {xti}i∈[Nt] has Nt samples from the target domain but
has no labels. We further assume that two domains have different distributions, i.e. xsi ∼ DS and
xti ∼ DT . In other words, there exist some domain shift (Ben-David et al., 2010) between DS and
DT . The ultimate goal is to learn a model that can predict the label yti given the target input xti.

3.2 IMBALANCED MINIMAX GAME IN DOMAIN-ADVERSARIAL TRAINING

To achieve domain alignment, Domain-Adversarial Training (DAT) is a minimax game between
a shared feature extractor F for two domains and a domain classifier D. The domain classifier is
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Figure 1: The proposed architecture is composed of a shared feature extractor Ge for two domains,
a label predictor Gy and a reconstruction network Gr. In addition to the basic supervised learning
in the source domain, our adversarial reconstruction training enables the extractor Ge to learn
domain-invariant features. Specifically, the network Gr aims to reconstruct the source samples xs
and to impede the reconstruction of the target samples xt, while the extractor Ge tries to fool the
reconstruction network in order to reconstruct the target samples xt.

trained to determine whether the input sample belongs to the source or the target domain while the
feature extractor learns to deceive the domain classifier, which is formulated as:

min
F

max
D
LDAT (Ds, Dt) = Ex∼Ds [lnF (x)] + Ex∼Dt [ln (1−D(F (x)))]. (1)

In DAT, we usually utilize CNN as the feature extractor and fully connected layers (FC) as the
domain classifier. DAT reduces the cross-domain discrepancy, achieving significant performance
improvement for UDA. Nevertheless, the training of DAT is rather unstable. Without sophisticated
tuning of the hyper-parameters, DAT cannot reach the convergence. Through empirical experiments,
we observe that such instability is due to the imbalanced minimax game. The binary domain classifier
D can easily achieve convergence with very high accuracy at an early training epoch, while it is much
harder for the feature extractor F to fool the domain classifier and to simultaneously perform well on
the source domain. In this sense, the domain classifier dominates DAT, and the only solution is to
palliate the training of D by tuning the hyper-parameters according to different tasks. In our method,
we restrict the capacity of the domain classifier so as to form a minimax game in a harmonious
manner. Inspired by the max-margin loss in Support Vector Machine (SVM) (Cristianini et al., 2000)
(i.e. hinge loss), if we push the source domain and the target domain away from a margin rather than
as far as possible, then the training task of F to fool D becomes easier. For a binary domain classifier,
we define the margin loss as

Lmargin(y) = [0,m− t · y]+, (2)

where y is the predicted domain label, [·]+ := max(0, ·), m is a positive margin and t is the ground
truth label for two domains (t = −1 for the source domain and t = 1 for the target domain). Then
we introduce our MDAT scheme based on an innovative network architecture.

3.3 MAX-MARGIN DOMAIN-ADVERSARIAL TRAINING

Besides the training instability issue, DAT also suffers from restrictive feature-level alignment – lack
of pixel-level alignment. To realize stable and comprehensive domain alignment together, we first
propose an Adversarial Reconstruction Network (ARN) and then elaborate MDAT.

As depicted in Figure 1, our model consists of three parts including a shared feature extractor Ge
for both domains, a label predictor Gy and a reconstruction network Gr. Let the feature extractor
Ge(x; θe) be a function parameterized by θe which maps an input sample x to a deep embedding
z. Let the label predictor Gy(z; θy) be a task-specific function parameterized by θy which maps an
embedding z to a task-specific prediction ŷ. The reconstruction network Gr(z; θr) is a decoding
function parameterized by θr that maps an embedding z to its corresponding reconstruction x̂.

The first learning objective for the feature extractorGe and label predictorGy is to perform well in the
source domain. For a supervised K-way classification problem, it is simply achieved by minimizing
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the negative log-likelihood of the ground truth class for each sample:

Ltask =

Ns∑
i=1

Ly(xsi , ysi ) = −
Ns∑
i=1

ysi · logGy(Ge(xsi ; θe); θy), (3)

where ysi is the one-hot encoding of the class label ysi and the logarithm operation is conducted on
the softmax predictions of the model.

The second objective is to render the feature learning to be domain-invariant. This is motivated
by the covariate shift assumption (Shimodaira, 2000) that indicates if the feature distributions
S(z) = {Ge(x; θe)|x ∼ DS} and T (z) = {Ge(x; θe)|x ∼ DT } are similar, the source label predictor
Gy can achieve a similar high accuracy in the target domain. To this end, we design a decoder network
Gr that serves as a domain classifier, and then MDAT could be applied for stable training. Different
from the normal binary domain classifier, MDAT lets the decoder network Gr only reconstruct the
features in the source domain and push the features in the target domain away from a margin m.
In this way, the decoder has the functionality of distinguishing the source domain from the target
domain. The objective of training Gr is formulated as

min
θr

Ns+Nt∑
i=1

Lmargin(Lr(xi)) = min
θr

Ns∑
i=1

Lr(xsi ) +
Nt∑
j=1

[m− Lr(xtj)]+, (4)

where m is a positive margin and Lr(·) is the mean squared error (MSE) term for the reconstruction
loss that is defined as

Lr(x) = ||Gr(Ge(x; θe); θr)− x||22, (5)
where || · ||22 denotes the squared L2-norm.

Oppositely, to form a minimax game, the feature extractor Ge learns to deceive Gr such that the
learned target features are indistinguishable to the source ones, which is formulated by:

min
θe

Nt∑
j=1

Lr(xtj). (6)

Then the whole learning procedure of ARN with MDAT can be formulated by:

min
θe,θc

Ns∑
i=1

Ly(xsi , ysi ) + α

Nt∑
j=1

Lr(xtj), (7)

min
θr

Ns∑
i=1

Lr(xsi ) +
Nt∑
j=1

[m− Lr(xtj)]+, (8)

where Ly denotes the negative log-likelihood of the ground truth class for labeled sample (xsi , ysi )
and α controls the interaction of the loss terms. In the following section, we provide theoretical
justifications on how MDAT reduces the distribution discrepancy, and discuss why it is superior to
the classic DAT.

3.4 THEORETICAL JUSTIFICATIONS

In this section, we provide the theoretical justifications on how the proposed method reduces the
distribution discrepancy for UDA. The rationale behind domain alignment is motivated from the
learning theory of non-conservative domain adaptation problem by Ben-David et al. (Ben-David
et al., 2010):

Theorem 3.1 Let H be the hypothesis space where h ∈ H. Let (DS , εs) and (DT , εt) be the two
domains and their corresponding generalization error functions. The expected error for the target
domain is upper bounded by

εt(h) ≤ εs(h) +
1

2
dH4H(DS ,DT ) + λ, ∀h ∈ H, (9)

where dH4H(DS ,DT ) = 2 suph1,h2∈H |Prx∼DS
[h1(x) 6= h2(x)]− Prx∼DT

[h1(x) 6= h2(x)]| and
λ = minh[εs(h) + εt(h)].
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Theoretically, when we minimize theH4H-distance, the upper bound of the expected error for the
target domain is reduced accordingly. As derived in DAT (Ganin & Lempitsky, 2015), assuming a
family of domain classifiers Hd to be rich enough to contain the symmetric difference hypothesis
set of Hp, such that Hp4Hp = {h|h = h1 ⊕ h2, h1, h2 ∈ Hp} where ⊕ is XOR-function, the
empiricalHp4Hp-distance has an upper bound with regard to the optimal domain classifier h:

dHp4Hp(D̂S , D̂T ) ≤ 2 sup
h∈Hd

| Pr
z∼D̂S

[h(z) = 0] + Pr
z∼D̂T

[h(z) = 1]− 1|, (10)

where D̂S and D̂T denote the distributions of the source and target feature space ZS and ZT ,
respectively. Note that the MSE of Gr plus a ceiling function is a form of domain classifier h(z),
i.e. d[m− Lr(·)]+ − 0.5e for m = 1. It maps source samples to 0 and target samples to 1 which is
exactly the upper bound in Eq.10. Therefore, our reconstruction network Gr maximizes the domain
discrepancy with a margin and the feature extractor learns to minimize it oppositely.

3.5 DISCUSSIONS

Compared with the conventional DAT-based methods that are usually based on a binary logistic net-
work (Ganin & Lempitsky, 2015), the proposed ARN with MDAT is more attractive and incorporates
new merits conceptually and theoretically:

(1) Stable training and insensitivity to hyper-parameters. Using the decoder as domain classifier
with a margin loss to restrain its overwhelming capacity in adversarial training, the minimax game
can continuously provide effective gradients for training the feature extractor. Moreover, through
the experiments in Section 4, we discover that our method shows strong robustness to the hyper-
parameters, i.e. α and m, greatly alleviating the parameters tuning for model selection.

(2) Richer information for comprehensive domain alignment. Rather than DAT that uses a bit
of domain information, MDAT utilizes the reconstruction network as the domain classifier that
could capture more domain-specific and pixel-level features during the unsupervised reconstruction
(Bousmalis et al., 2016). Therefore, MDAT further helps address pixel-level domain shift apart from
the feature-level shift, leading to comprehensive domain alignment in a straightforward manner.

(3) Feature visualization for method validation. Another key merit of MDAT is that MDAT allows
us to visualize the features directly by the reconstruction network. It is crucial to understand to what
extent the features are aligned since this helps to reveal the underlying mechanism of adversarial
domain adaptation. We will detail the interpretability of these adapted features in Section 4.3.

4 EXPERIMENT

In this section, we evaluate the proposed ARN with MDAT on a number of visual and non-visual UDA
tasks with varying degrees of domain shift. We conduct ablation study to corroborate the effectiveness
of MDAT and unsupervised reconstruction for UDA. Then the sensitivity of the hyperparameters is
investigated, and the adapted features are interpreted via the reconstruction network in ARN.

Setup. We evaluate our method on four classic visual UDA datasets and a WiFi-based Gesture
Recognition (WGR) dataset (Zou et al., 2019). The classic datasets have middle level of domain shift
including MNIST (LeCun et al., 1998), USPS (Hull, 1994), Street View House Numbers (SVHN)
(Netzer et al., 2011) and Synthetic Digits (SYN). For a fair comparison, we follow the same CNN
architecture as DANN (Ganin & Lempitsky, 2015) while using the inverse of Ge as Gr with pooling
operation replaced by upsampling. For the penalty term α, we choose 0.02 by searching over the
grid {10−2, 1}. We also obtain the optimal margin m = 5 by a search over {10−1, 10}. Then we use
the same hyperparameter settings for all tasks to show the robustness. For the optimization, we
simply use Adam Optimizer (lr = 2× 10−4, β1 = 0.5, β2 = 0.999) and train all experiments for 50
epochs with batch size 128. We implemented our model and conducted all the experiments using the
PyTorch framework. More implementation details are illustrated in the appendix.

Baselines. We evaluate the efficacy of our approach by comparing it with existing UDA methods that
perform three ways of domain alignment. Specifically, MMD regularization (Long et al., 2015) and
Correlation Alignment (Sun & Saenko, 2016) employ the statistical distribution matching. DRCN
(Ghifary et al., 2016) and DSN (Bousmalis et al., 2016) use the reconstruction error for UDA,
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Source MNIST USPS SVHN SYN
Target USPS MNIST MNIST SVHN

Source-Only model 78.2 63.4 54.9 86.7
Train on target 96.5 99.4 99.4 91.3

[S] MMD (Long et al., 2015) 81.1 - 71.1 88.0
[S] CORAL (Sun & Saenko, 2016) 80.7 - 63.1 85.2

[R] DRCN∗ (Ghifary et al., 2016) 91.8 73.7 82.0 87.5
[R] DSN (Bousmalis et al., 2016) 91.3 - 82.7 91.2

[A] DANN (Ganin et al., 2016) 85.1 73.0 74.7 90.3
[A] ADDA (Tzeng et al., 2017) 89.4 90.1 76.0 -
[A] CyCADA (Hoffman et al., 2018) 95.6 96.5 90.4 -
[A] CADA (Zou et al., 2019) 96.4 97.0 90.9 -
[A] MECA (Morerio et al., 2018) - - 95.2 90.3

ARN w.o. MDAT 93.1±0.3 76.5±1.2 67.4±0.9 86.8±0.5
ARN with MDAT (proposed) 98.6±0.3 98.4±0.1 97.4±0.3 92.0±0.2

Table 1: We compare with general, statistics-based (S), reconstruction-based (R) and adversarial-
based (A) state-of-the-art approaches. We repeated each experiment for 3 times and report the average
and standard deviation (std) of the test accuracy in the target domain.

while many prevailing UDA methods adopt domain-adversarial training including DANN (Ganin &
Lempitsky, 2015), ADDA (Tzeng et al., 2017), MECA (Morerio et al., 2018), CyCADA (Hoffman
et al., 2018) and CADA (Zou et al., 2019). For all transfer tasks, we follow the same protocol as
DANN (Ganin & Lempitsky, 2015) that uses official training data split in both domains for training
and evaluates the testing data split in the target domain.

4.1 OVERALL RESULTS

MNIST↔USPS. Both datasets are composed of grey-scale handwritten images with diverse
stroke weights, leading to low-level domain shift. Since USPS has only 7291 training images,
USPS→MNIST is more difficult. As shown in Table 1, our method achieves state-of-the-art accu-
racy of 98.6% on MNIST→USPS and 98.4% on USPS→MNIST, which demonstrates that ARN
can tackle low-level domain shift by only using ART (rather than many adversarial UDA methods
that adopt other loss terms to adjust classifier boundaries or conduct style transfer).

Table 2: Comparisons on WGR.
Source Room A
Target Room B

Method Accuracy (%)

Source-only 58.4±0.7
[S] MMD 61.2±0.5
[R] DRCN 69.3±0.3
[A] DANN 68.2±0.2
[A] ADDA 71.5±0.3
[A] CADA 88.8±0.1
ARN+MDAT 91.3±0.2

SVHN→MNIST and SYN→SVHN. The SVHN dataset
contains RGB digit images that introduce significant vari-
ations such as scale, background, embossing, rotation,
slanting and even multiple digits. The SYN data consists
of 50k RGB images of varying color, background, blur and
orientation. These two tasks have tremendous pixel-level
domain shfit. The proposed method achieves a state-of-
the-art performance of 97.4% for SVHN→MNIST, far
ahead of other DAT-based methods, significantly improv-
ing the classic DANN by 22.7%. Similarly, ARN with
MDAT also achieves a noticeable improvement of 5.3%
compared with the source-only model, even outperforming
the supervised SVHN accuracy 91.3%.

WiFi Gesture Recognition with Distant Domains. To
evaluate the proposed method on a non-visual UDA task, we applied our method to the WiFi gesture
recognition dataset (Zou et al., 2019). The WiFi data of six gestures was collected in two rooms
regarded as two domains. The results in Table 2 demonstrate that our approach significantly improves
classification accuracy against Source-Only and DANN by 32.9% and 23.1%, respectively.
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α 0.01 0.03 0.07 0.1 0.2 0.3 0.5 1.0
DANN 71.1 74.1 72.7 74.1 74.7 9.6 9.7 10.3

ARN (m = 1) 95.7 95.9 93.3 93.2 80.1 75.3 73.1 67.5

m 0.1 0.3 0.5 0.7 1.0 2.0 5.0 10.0
ARN (α = 2e−2) 64.5 75.2 90.0 92.6 96.0 97.4 97.7 96.7

Table 3: The accuracy (%) with different hyperparameters on SVHN→MNIST.

4.2 ABLATION STUDY AND SENSITIVITY ANALYSIS

The contribution of MDAT and image reconstruction in ARN. We design an ablation study to
verify the contribution of MDAT and unsupervised reconstruction in ARN. To this end, we discard the
term Lr(xt) in Eq.4, and evaluate the method, denoted as ARN w.o. MDAT in Table 1. (1) Comparing
ARN w.o. MDAT with source-only model, we can infer the effect of unsupervised reconstruction
for UDA. It is observed that ARN w.o. MDAT improves tasks with low-level domain shift such
as MNIST↔USPS, which conforms with our discussion that the unsupervised reconstruction is
instrumental in learning low-level features. (2) Comparing ARN w.o. MDAT with the original ARN,
we can infer the contribution of MDAT. Table 1 shows that the MDAT achieves an impressive margin-
of-improvement. For USPS→MNIST and SVHN→MNIST, the MDAT improves ARN w.o. MDAT
by around 30%. It demonstrates that MDAT which helps learn domain-invariant representations is
the main reason for the tremendous improvement.

Parameter sensitivity. We investigate the effect of α and m on SVHN→MNIST. The results in
Table 3 show that ARN achieves good performance as α ∈ [0.01, 0.1] and even with larger α ARN is
able to achieve convergence. In comparison, denoting α as the weight of adversarial loss, the DANN
cannot converge when α > 0.2. For the sensitivity of m, the accuracy of ARN exceeds 96.0% as
m ≥ 1. These analyses validate that the training of ARN is not sensitive to the parameters and even
in the worst cases ARN can achieve convergence.

Gradients and training procedure. We draw the training procedure with regard to loss and target
accuracy in Figure 2(b) and Figure 2(a), respectively. In Figure 2(b), ARN has smoother and more
effective gradients (Lr) for all α, while the loss of DAT domain classifier (Ld) gets extremely
small at the beginning. This observation conforms with our intuition, which demonstrates that by
restricting the capacity of domain classifier MDAT provides more effective gradients for training
feature extractor, leading to a more stable training procedure. This could be further validated in
Figure 2(b) where the ARN accuracy is more stable than that of DAT across training epochs.
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Figure 2: The training procedure with regard to loss and test accuracy. (Le := Eq. 6; Lr := Eq. 4; Ld
is the domain loss of DAT (Ganin & Lempitsky, 2015); α is the penalty term of Le and Ld.)
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Source Images Target Images R-Target Images

MNIST→USPS

USPS→MNIST

SVHN→MNIST

SYN→SVHN

Table 4: Visualizing the source image, target images and reconstructed target images (R-Target
Images) for four digit adaptation tasks.

4.3 VISUALIZATION AND ANALYSIS

Interpreting MDAT features via reconstructed images. One of the key advantages of ARN is that
by visualizing the reconstructed target images we can infer how the features are domain-invariant.
We reconstruct the MDAT features of the test data and visualize them in Table 4. It is observed that
the target features are reconstructed to source-like images by the decoder Gr. As discussed before,
intuitively, MDAT forces the target features to mimic the source features, which conforms with our
visualization. Similar to image-to-image translation, this indicates that our method conducts implicit
feature-to-feature translation that transfers the target features to source-like features, and hence the
features become domain-invariant.

T-SNE embeddings. We analyze the performance of domain alignment for DANN (DAT) (Ganin
& Lempitsky, 2015) and ARN (MDAT) by plotting T-SNE embeddings of the features z on the
task SVHN→MNIST. In Figure 3(a), the source-only model obtains diverse embeddings for each
category but the domains are not aligned. In Figure 3(b), the DANN aligns two domains but the
decision boundaries of the classifier are vague. In Figure 3(c), the proposed ARN effectively aligns
two domains for all categories and the classifier boundaries are much clearer.

(a) Source-only Model (b) DANN (c) ARN

Figure 3: T-SNE visualization on SVHN→MNIST with their corresponding domain labels (red: tar-
get; blue: source) and category labels (10 classes) shown in the left and right subfigures, respectively.

5 CONCLUSION

We proposed a new domain alignment approach namely max-margin domain-adversarial training
(MDAT) and a MDAT-based network for unsupervised domain adaptation. The proposed method
offers effective and stable gradients for the feature learning via an adversarial game between the
feature extractor and the reconstruction network. The theoretical analysis provides justifications on
how it minimizes the distribution discrepancy. Extensive experiments demonstrate the effectiveness
of our method and we further interpret the features by visualization that conforms with our insight.
Potential evaluation on semi-supervised learning constitutes our future work.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features with
deep adaptation networks. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pp. 97–105, 2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In Advances in Neural Information Processing Systems, 2018.

Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. Minimal-entropy correlation alignment for
unsupervised deep domain adaptation. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJWechg0Z.

9

https://openreview.net/forum?id=rJWechg0Z


Under review as a conference paper at ICLR 2020

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, volume 2011, pp. 5, 2011.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain
adaptation. In Proc. 6th International Conference on Learning Representations, 2018.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European Conference on Computer Vision, pp. 443–450. Springer, 2016.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. CoRR, abs/1412.3474, 2014. URL http://arxiv.org/
abs/1412.3474.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Computer Vision and Pattern Recognition (CVPR), volume 1, pp. 4, 2017.

David Vazquez, Antonio M Lopez, Javier Marin, Daniel Ponsa, and David Geronimo. Virtual and real
world adaptation for pedestrian detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(4):797–809, 2013.

Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and Costas J Spanos. Consensus
adversarial domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 5997–6004, 2019.

10

http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1412.3474


Under review as a conference paper at ICLR 2020

APPENDIX

IMPLEMENTATION DETAILS

Hyperparameter For all tasks, we simply use the same hyperparameters that are chosen from the
sensitivity analysis. We use α = 0.02 and m = 5.0, and we reckon that better results can be obtained
by tuning the hyperparameters for specific tasks.

Network Architecture For a fair comparison, we follow the network in DANN (Ganin & Lempitsky,
2015) for digit adaptation and simply build the reconstruction network by the inverse network of the
extractor. Here we draw the network architectures in Table 5. For WiFi gesture recognition, we adopt
the same architecture as CADA (Zou et al., 2019) that is a modified version of LeNet-5.

Layer Index Feature Extractor Decoder Network Label Predictor

0 32 × 32 × 3 Image

1 5× 5 conv. 64 ReLU 2048 dense, ReLU 10 dense, softmax

2 3× 3 max-pool, stride 2 3072 dense, ReLU

3 5× 5 conv. 64 ReLU 5× 5 conv. 128 ReLU

4 3× 3 max-pool, stride 2 upsample 2

5 5× 5 conv. 128 ReLU 5× 5 conv. 64 ReLU

6 3072 dense, dropout, ReLU upsample 2

7 2048 dense, dropout ReLU 5× 5 conv. 64 ReLU

Table 5: The network architecture used in the experiments.

SENSITIVITY

We have presented all the results of the sensitivity study in Section 4.2, and now we show their
detailed training procedures in Figure 4(a) and 4(b). It is observed that the accuracy increases when
α drops or the margin m increases. The reason is very simple: (1) when α is too large, it affects
the effect of supervised training on source domain; (2) when the margin m is small, the divergence
between source and target domain (i.e. H4H-distance) cannot be measured well.
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Figure 4: The training procedure of ARN with different hyper-parameters.
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VISUALIZATION

Here we provide more visualization of the reconstructed images of target samples. In Figure 5,
the target samples are shown in the left column while their corresponding reconstructed samples
are shown in the right. We can see that for low-level domain shift such as MNIST↔USPS, the
reconstructed target samples are very source-like while preserving their original shapes and skeletons.
However, for larger domain shift in Figure 5(c) and 5(d), they are reconstructed to source-like same
digits but simultaneously some noises are removed. Specifically, in Figure 5(d), we can see that
one target sample (SVHN) may contain more than one digits that are noises for recognition. After
reconstruction, only the right digits are reconstructed. Some target samples may suffer from terrible
illumination conditions but their reconstructed digits are very clear, which is amazing.

(a) MNIST→USPS

(b) USPS→MNIST

(c) SVHN→MNIST

(d) SYN→SVHN

Figure 5: Visualization of the target samples and their corresponding reconstructed target samples.

12


	Introduction
	Related Work
	Problem Formulation
	Problem Definition and Notations
	Imbalanced Minimax Game in Domain-Adversarial Training
	Max-margin Domain-Adversarial Training
	Theoretical Justifications
	Discussions

	Experiment
	Overall Results
	Ablation Study and Sensitivity Analysis
	Visualization and Analysis

	Conclusion

