

Supervised Meta-Learning

- Assume task $\mathcal{T}_i \sim p(\mathcal{T})$; Each task consists of task training data $\mathcal{D}_i = (\boldsymbol{x}_i, \boldsymbol{y}_i)$ and validation data $\mathcal{D}_i^* = (\boldsymbol{x}_i^*, \boldsymbol{y}_i^*).$
- $\boldsymbol{x}_i = (x_{i1}, \dots, x_{iK}), \boldsymbol{y}_i = (y_{i1}, \dots, y_{iK}) \sim p(x, y | \mathcal{T}_i)$ and similarly for \mathcal{D}_i^* .
- Entire meta-training set is $\mathcal{M} = \{\mathcal{D}_i, \mathcal{D}_i^*\}_{i=1}^N$
- The objective is

$$-\frac{1}{N}\sum_{i} \mathbb{E}_{q(\theta|\mathcal{M})q(\phi|\mathcal{D}_{i},\theta)} \left[\frac{1}{K}\sum_{(x^{*},y^{*})\in\mathcal{D}_{i}^{*}} \log q(\hat{y}^{*}=y^{*}|x^{*},\phi,\theta) \right]$$

where $q(\theta|\mathcal{M})$ summarizes meta-training data, $q(\phi|\mathcal{D},\theta)$ summarizes the per-task training set and $q(\hat{y}^*|x^*, \phi, \theta)$ is the predictive distribution.

The Memorization Problem

Definition 1 (Complete Meta-Learning Memorization). *Complete memorization in* meta-learning is when the learned model ignores the task training data such that $I(\hat{y}^*; \mathcal{D}|x^*, \theta) = 0 \text{ (i.e., } q(\hat{y}^*|x^*, \theta, \mathcal{D}) = q(\hat{y}^*|x^*, \theta) = \mathbb{E}_{\mathcal{D}'|x^*}[q(\hat{y}^*|x^*, \theta, \mathcal{D}')]).$

Without either one of the dashed arrows, \hat{Y}^* is conditionally independent of $\mathcal D$ given heta and X^* , which we refer to as complete memorization.

Properties

- Memorization means one model can solve all training tasks.
- Memorized model generalizes to unseen points in training tasks, but cannot generalize to unseen tasks (task-level overfitting).
- Memorization occurs in many meta-learning algorithms: MAML: Loss $\mathcal{L}(x, y, \theta) \approx 0$ for $(x, y) \in \mathcal{D}$ and \mathcal{D}^* can result in minimal task adaptation i.e. $\phi \approx \theta$; Conditional Neural Process (CNP): $q(\hat{y}^*|x^*, \phi, \theta)$ can achieve low training error without using the task training summary statistics ϕ .

Examples

- Pose Regression. Predict pose of object from 2D image; can overfit to training objects.
- -Automated precision medicine system. Each patient represents a separate task. \mathcal{D} is the patient's medical history, input x is the symptom and patient's identity infomation; output \hat{y} is the recommended medication.

Meta-Learning without Memorization

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, Chelsea Finn

Why does it happen in Meta-Learning?

Mutually-exclusive Task Distribution

Random label permutation for few-shot classification.

Non-mutually-exclusive Task Distribution

Pose regression example: the training tasks are non-mutually-exclusive because the test data label (right) can be inferred accurately without using task training data (left) in the training tasks, by memorizing the canonical orientation of the meta-training objects.

Meta Regularization Using Information Theory

- -Sources of information in the predictive distribution $q(\hat{y}^*|x^*, \theta, \mathcal{D})$ come from input, meta-parameters, and data.
- Encourage using task training data \mathcal{D} by restricting the information flow from other sources (x^* and θ) to \hat{y}^* .

Meta Regularization on Activations

- Introduce an intermediate stochastic bottleneck variable z^* such that $q(\hat{y}^*|x^*, \phi, \theta) = 1$ $\int q(\hat{y}^*|z^*,\phi,\theta)q(z^*|x^*,\theta) \ dz^*.$
- Optimize with the regularized training objective

$$\frac{1}{N} \sum_{i} \mathbb{E}_{q(\theta|\mathcal{M})q(\phi|\mathcal{D}_{i},\theta)}$$

$$\frac{1}{K} \sum_{(x^*, y^*) \in \mathcal{D}_i^*} \log q(\hat{y}^* = y^* | x^*, \phi, \theta) + \beta D_{\mathsf{KL}}(q(z^* | x^*, \theta) | | r(z^*))$$

- In some cases, it can be sensitive to the initialization and learning rate. Meta Regularization on Weights
- Limit the information about the training tasks stored in the meta-parameters θ by penalizing $I(y_{1\cdot N}^*, \mathcal{D}_{1:N}; \theta | x_{1\cdot N}^*)$.

- The objective is

Sinusoid Regression

 $x = (u, \mathsf{one-hot}(A)).$

CNP

	Methods	MAML	MR-MAML ((ours)	
-	5 shot	0.46 (0.04)	0.17 (0.03	
	10 shot	0.13 (0.01)	0.07 (0.02	

Pose Regression

The performance of MAML and CNP with meta-regularization on the weights, as a function of the regularization strength β .

Method	MAML	MR-MAML (W) (ours)	CNP	MR-CNP (W) (ours)	FT	FT + Weight Decay
MSE	5.39 (1.31)	2.26 (0.09)	8.48 (0.12)	2.89 (0.18)	7.33 (0.35)	6.16 (0.12)

Non-mutually-exclusive Classification

Meta-test accuracy on non-mutually-exclusive (NME) classification.

NME Omniglot	20-way 1-shot	20-way 5-shot
MAML	7.8 (0.2)%	50.7 (22.9)%
TAML	9.6 (2.3)%	67.9 (2.3)%
MR-MAML (W)	83.3 (0.8)%	94.1 (0.1) %

• Related to a novel PAC Bayes bound for meta-learning (see paper for details).

 $\frac{1}{N} \sum_{i} \mathbb{E}_{q(\theta)q(\phi|\mathcal{D}_{i},\tilde{\theta})} \left| -\frac{1}{K} \sum_{(x^{*},y^{*})\in\mathcal{D}_{i}^{*}} \log q(\hat{y}^{*} = y^{*}|x^{*},\phi,\theta,\tilde{\theta}) + \beta D_{\mathsf{KL}}(q(\theta;\theta_{\mu},\theta_{\sigma})||r(\theta)) \right|$

Experiments

NME Minilmagenet	5-way 1-shot	5-way 5-shot
Fine-tuning	28.9 (0.5))%	49.8 (0.8))%
Nearest-neighbor	41.1 (0.7)%	51.0 (0.7) %
MAML	26.3 (0.7)%	41.6 (2.6)%
TAML	26.1 (0.6)%	44.2 (1.7)%
MR-MAML (W)	43.6 (0.6) %	53.8 (0.9) %

