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ABSTRACT

Graph neural networks have been proved very effective for a variety of prediction
tasks on graphs such as node classification. Generally, a large number of labeled
data are required to train these networks. However, in reality it could be very
expensive to obtain a large number of labeled data on large-scale graphs. In this
paper, we studied active learning for graph neural networks, i.e., how to effectively
label the nodes on a graph for training graph neural networks. We formulated the
problem as a sequential decision process, which sequentially label informative
nodes, and trained a policy network to maximize the performance of graph neural
networks for a specific task. Moreover, we also studied how to learn a universal
policy for labeling nodes on graphs with multiple training graphs and then transfer
the learned policy to unseen graphs. Experimental results on both settings of
a single graph and multiple training graphs (transfer learning setting) prove the
effectiveness of our proposed approaches over many competitive baselines.

1 INTRODUCTION

Graphs encode the relations between different objects and are ubiquitous in real-world. Learning
effective representations of graphs is critical to a variety of applications. Recently, graph neural net-
works (Kipf & Welling, 2016; Veličković et al., 2017) have been attracting growing attention, which
iteratively update node representations by combining information of the nodes and their neighbors.
They have been proved effective in many applications such as node classification (Kipf & Welling,
2016; Veličković et al., 2017) and link prediction (Zhang & Chen, 2018; Cao et al., 2018).

Despite the appealing performance, the training of graph neural networks typically requires massive
labeled data (Yang et al., 2016). However, in many domains such as healthcare, a large number of
labeled data may not be available, and it could be very expensive to obtain labeled data. Therefore,
in this paper we focus on how to minimize human efforts in obtaining labeled data. Specifically, we
study active learning for graph neural networks. In other words, our goal is to select informative
nodes on graphs and query for their labels to train graph neural networks.

There are already some existing work that studied active learning for graphs (Gadde et al., 2014; Ji
& Han, 2012; Cai et al., 2017), which generally used some optimization theory or proposed different
kinds of heuristics (e.g., using the degree of nodes or the entropy of predicted label distributions) to
select informative nodes for labeling. However, the nodes selected by these heuristics may not be
optimal for a specific task. Moreover, these rules are usually domain specific, which are difficult to
generalize to new graphs.

In this paper, we formulate active learning on graphs as a sequential decision process and aim to learn
a policy network to sequentially pick the informative nodes for optimizing a specific task. Taking
the node classification as an example, we define the state as the graph with the node information
as whether the nodes are selected or not and their label distributions predicted by current graph
neural networks. The action is picking the next node for labeling. After a node is picked, we retrain
the graph neural network by adding the new picked node into the training set. The performance
gain on the validation data set is defined as the reward. A policy network, which encodes the state
with another graph neural network and predicts the next node to label, is trained to optimize the
performance of graph neural network for the specific task.
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The above approach allows us to learn a policy to select informative labeled nodes for training graph
neural networks on a single graph. However, a more important question is whether the learned pol-
icy can be transferred to new unseen graphs. Therefore, we further study transfer active learning
for graph neural network, which aims to learn a universal policy with multiple training graphs to
generalize to new graphs. Given multiple training graphs, a straightforward solution is to learn a
single policy across multiple training graphs. Such an approach works reasonable well in practice.
However, in some cases, the optimal policy on different graphs may be different from each other.
Therefore, we allow each graph to have a graph-specific policy, which is an instantiation of the uni-
versal policy on a different graph. During training, each graph-specific policy is trained to maximize
the performance of its own task and meanwhile regularized by the universal policy, and the knowl-
edge learned by different graph-specific policies is dynamically distilled into the universal policy by
minimizing the KL divergence between the action distributions. With such a strategy, the universal
policy can acquire knowledge from multiple graphs, and is therefore capable of transferring to new
graphs.

We evaluate our proposed methods on the standard semi-supervised node classification task, in
which the policy is trained and evaluated on a single graph, and the transfer active learning set-
ting, in which the universal policy is trained with multiple graphs and evaluated on new graphs.
Experimental results on both settings prove the effectiveness of our proposed approaches over many
competitive baselines.

2 RELATED WORK

There are some existing work on active learning for graphs. Early studies (Guillory & Bilmes,
2009; Ji & Han, 2012; Gadde et al., 2014) typically formalized the task as an optimization problem.
There are also works on semi-supervised classification on graphs with very few labeled data, such
as Gallagher et al. (2008); Lin & Cohen (2010). Nevertheless, these methods are very computa-
tional expensive and cannot scale up to real-world graphs. Some recent studies (Cai et al., 2017)
approached active learning by linearly combining several hand-crafted features including the uncer-
tainty of the predictions, structure features such as centrality, and semantic features. More recently,
Abel & Louzoun (2019) proposed to take the diversity of a node’s neighbors in terms of label into
consideration and choose the node to be labeled in a more regional perspective. However, the la-
beled nodes selected by these heuristics may not be optimal for the specific task while our policy
network is trained to optimize the performance of the specific task. Moreover, these heuristics could
be difficult to generalize to new unseen graphs.

Our work is also related to learning to learn strategies for active learning. Fang et al. (2017) studied
using reinforcement learning for active learning on the task of Named Entity Recognition (NER),
where they need to decide which sentence should be queried to label the Named Entity inside it.
They formalized the sentence selection as a sequential decision process to sequentially select the
sentences to be labeled. Similarly, Liu et al. (2018a) used imitation learning to train an active
learning policy for NER tasks. Liu et al. (2018b) applied reinforcement learning algorithm to learn
the policy for active learning on Neural Machine Translation tasks. Bachman et al. (2017) proposed
to learn the policy network for active learning via meta-Learning. Different from these works, in
this paper we focus on active learning for graphs, in which the data (the nodes) to be labeled are
highly correlated, and hence the problem is more challenging. Moreover, our goal is learn a unified
policy for active learning to transfer across different domains or graphs.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Graph neural networks have been proved effective in a variety of predictive tasks on graphs but
require many labeled data for training. In this paper, we focus on how to minimize humans’ efforts
in obtaining labeled data on graphs (i.e. active learning) for training graph neural networks. Take
the node classification as an example. We formulate the problem as a sequential decision process
and aim to learn a policy to select the most informative nodes and further query for their labels for
training graph neural networks. Formally, for a graph G = (VG, EG, FG, LG), where VG, EG, FG
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Figure 1: Overview of our model. The green box represents the components that forming the state.
After that state is passed in to GCN to obtain a probability distribution πG. Universal policy is
distilled from πG and applied to test graphs.

and LG stand for nodes, edges, node features and node labels respectively, we aim at learning a
policy πG, which selects a sequence of nodes V ′G ⊆ VG from the training set with the size of V ′G
controlled by a given budget. We expect that the graph neural network trained with the labels of V ′G
has the optimal prediction performance on test sets of G.

Although active learning on single graphs is important, in practice we care more about whether the
learned policy can transfer to unseen graphs. Therefore, we further propose to study transfer active
learning for graph neural networks, where a universal policy is learned on multiple training graphs
and evaluated on unseen test graphs. Formally, given a set of training graphs Strain, we seek to learn
a universal policy πu for selecting informative labeled nodes on graphs, which is able to transfer to
new unseen graphs in the test graph set G ∈ Stest.

We first introduce our approach for learning a policy network on a single graph and then introduce
how to learn a universal policy with multiple training graphs.

3.2 ACTIVE LEARNING ON A SINGLE GRAPH

Recall that our goal is to learn a policy for selecting a set of nodes for annotation, such that a graph
neural network trained with the labels of the selected nodes can have the optimal performance on
test nodes. We formalize the problem as a sequential decision process (a.k.a., Markov decision
process. We define the state as the current graph with the node attributes as whether they are picked
or not and their label distributions predicted by the current graph neural network, and the action as
picking a node for which we query the label. Once a node is picked, we will add this node into the
training set and retrain the graph neural network, which will update the state. The performance gain
on validation set is treated as the intermediate reward. The goal is to maximize the total sum of
the reward, i.e., the final performance of the graph neural network. More specifically, for the state
representation, we define the node features as follows:

• Heuristic Features. One effective criterion to active learning is the uncertainty of the prediction
given by the training model, i.e., the entropy of the label distribution computed by the current
graph neural network. Moreover, we also use the degree of a node, which is widely used in
existing graph active learning methods (Cai et al., 2017). The details of heuristic features are
presented in Appendix. Note that all the heuristics we use are transferable to other unseen graphs.

• Structural Features. Another observation is that nodes with similar structural roles should be
similarly informative. Therefore, we also use some structural features. Specifically, we use the
Struc2vec model (Figueiredo et al., 2017) to learn a latent representation for each node, which
captures the local role of nodes. Struc2vec model allows joint training over different graphs, so
once we learn the latent representations for all nodes of the graph that we are interested in, transfer
learning can be done on this unified semantic space.

• Historical Features. Another important information is the historical information, i.e., which
nodes are already annotated and which nodes are not. Motivated by that, we add an extra dimen-
sion in the feature vector of a node, where 1 means the node is already annotated, and 0 otherwise.
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Moreover, we also average the struc2vec features of all previously annotated nodes to capture the
historical information.

After getting the feature vector xsv defined above for each node v at the state s, we pass them to a
2-layer graph convolutional networks to propagate the information of a node to its neighbors, and
the final node representation, i.e., the state representation, is computed as zsv = GCN(xsv).

We solve the problem by training a policy network π, which defines a distribution over actions
conditioned on states, i.e., the probability of selecting a node given the current state π(a|s). We
parameterize the policy network with a linear energy-based model as follows:

π(a = v|s) = 1

Z
exp(wT zsv), (1)

where w is a weight vector, and Z is the normalization term.

Our goal is to maximize the total sum of reward following the policy π, which can be characterized
by the following objective function:

OG(π) = Es∼dπ(s)Ea∼π(a|s)[rG(s, a)], (2)

where dπ(s) =
∑
k=0 γ

kPr(s0 → s, k, π) is the stationary state distribution on graph G induced by
the policy π, with Pr(s0 → s, k, π) being the probability that the agent arrives at state s in the k-th
step starting from state s0, and γ being the decay factor. rG(s, a) is the reward function on that graph,
which is computed as the performance gain on the validation set after taking action a at s. Such an
objective function can be effectively optimized by using the REINFORCE algorithm (Williams,
1992), where we sample some trajectories from the policy, and further update the parameters.

Next, we introduce how we learn a unified policy in the transfer learning setting.

3.3 TRANSFER ACTIVE LEARNING ON MULTIPLE GRAPHS

The above approach focuses on active learning on a single graph. In practice, a more important
problem is to learn a universal policy from multiple training graphs, and further transfer the policy
to unseen graphs. Towards this goal, we propose two effective approaches, i.e., a joint training
approach and a distillation approach.

3.3.1 JOINT TRAINING APPROACH

The joint training approach is quite straightforward. Basically, the universal policy πu is parameter-
ized by using the policy network proposed in Section 3.2. We train the universal policy jointly on
all the training graphs, resulting in the following objective function:

OJoint(πu) =
∑

G∈Strain

OG(πu), (3)

where OG is the objective function on each single graph defined in Eq. 2. Such an approach can
be effectively optimized by stochastic gradient descent, where we combining the gradient computed
from each single graph based on Eq. 3.

The problem of the joint training approach is that different graphs could have different optimal
policies. Next, we introduce a more advanced approach to solve the problem.

3.3.2 DISTILLATION APPROACH

Inspired by Teh et al. (2017), in the distillation approach, besides the universal policy πu we also
introduce a graph-specific policy πG for each training graph G ∈ Strain. Each graph-specific policy
can be viewed as an instantiation of the universal policy on the corresponding graph, which aims at
maximizing the performance (i.e., the total sum of the reward) for the specific task on that graph.

To coordinate the collaboration of different policies, we propose to minimize the following KL
divergence between the action distributions computed by πu and each πG:∑

G∈Strain

Es∼dπg (s) [KL(πG(a|s)||πu(a|s))] . (4)
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Intuitively, with this term, the universal policy serves as a bridge to connect different graph-specific
policies, such that different graph-specific policies can exchange information during training. Mean-
while, by minimizing the KL divergence, the knowledge learned by different graph-specific graph
policies will be effectively distilled into the universal query policy, which can be further applied to
other graphs for active learning.

The overall objective function of the distillation approach is further obtained by combining the
objective function on each single graph and the above regularization term, which can be formally
written as follows:

ODistill(πu, {πG}) =
∑

G∈Strain

OG(πG)− cKL

∑
G∈Strain

[Es∼dπG (s)KL(πG(a|s), πu(a|s))], (5)

where cKL is a hyperparameter to control the weight of the KL term.

For each graph-specific policy πG, it can be optimized by the REINFORCE algorithm. Formally, by
taking a series of actions with πG on graph G, we obtain a trajectory {(sG,t, aG,t, rG,t)}Tt=1. With
the trajectory, the value of each state-action pair (sG,t, aG,t) can be further estimated as follows:

Q̂πG(sG,t, aG,t) =

T∑
t′=t

γt
′−t {rG,t + cKL log πu(aG,t|sG,t)− cKL log πG(aG,t|sG,t)} . (6)

When computing Q̂πG(sG,t, aG,t), besides the reward rG,t received at each step, two other terms
are also incorporated to shape the reward function. For the first term log πu(aG,t|sG,t), it gives an
action larger reward if the action receives large probability from the universal policy πu. In this way,
the universal policy provides extra guidance to regularize each graph-specific policy. For the second
term log πG(aG,t|sG,t), it improves exploration by increasing the entropy of πG(aG,t|sG,t), which
is commonly used in the reinforcement learning literature Schulman et al. (2017).

With the estimated Q value, we can further estimate the gradient for the parameters θG of πG as
follows:

∇θGODistill(πu, {πG}) '
1

T

T∑
t=1

Q̂πG(sG,t, aG,t)∇θG log πG(aG,t|sG,t). (7)

Meanwhile, the universal policy can also be optimized through stochastic gradient descent. Specifi-
cally, we treat the trajectories generated by graph-specific policies as expert trajectories, and estimate
the gradient for the parameters θu of the universal policy as follows:

∇θuODistill(πu, {πG}) '
∑

G∈Strain

1

T

T∑
t=1

∇θu log πu(aG,t|sG,t). (8)

By using the trajectories from graph-specific policies as expert trajectories, we can effectively distill
the knowledge into the universal policy, which can be further applied to unseen graphs.

The detailed optimization algorithm is summarized in Alg. 1.

Algorithm 1 Pseudo code of our distillation-based approach.
1: procedure OPTIMIZEPOLICY ({G})
2: for episode i do
3: for graph G do
4: initialize classification network and train with random initial seeds
5: for step t ≤ Nbudget −Nseed do
6: feed SG,t to GNN and generate πG according to (1)
7: action aG,t← sample action from πG

8: reward rG,t, new state sG,t+1← update classification network using action
9: update πG , πu according to (7), (8), respectively

10: end for
11: end for
12: end for
13: end procedure
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Table 1: Dataset statistics

Graphs Nodes Edges Edge density Features Classes
Cora 1 2708 5278 0.0014 1433 7
Citseer 1 3327 4676 0.0008 3703 6
Pubmed 1 19718 44327 0.0002 500 3
Coauthor-cs 1 18333 81894 0.0005 6805 67
Cora-full 1 18707 62421 0.0004 8710 15
ppi 20 2245.3 61318.4 0.0248 50 121 (multilabel)

4 EXPERIMENT

In this section, we empirically evaluate our proposed active learning approaches on several datasets.
Specifically, we consider active learning on single graphs, transfer active learning on homologous
graphs and transfer active learning on heterogeneous graphs.

4.1 DATASETS

• Active learning on single graphs. We utilize three benchmark datasets for node classification,
i.e., Cora (Sen et al., 2008), Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012).

• Transfer active learning on homologous graphs. For transfer active learning, we consider a set
of homologous graphs from the PPI dataset (20 graphs) (Zitnik & Leskovec, 2017), where each
graph is constructed based on the interactions between proteins. We randomly partition the 20
graphs into 4 groups. Within each group, two graphs are used for training, one graph for validation
and the other two for test. For each training graph, we split all the nodes to train/validation/test
sets with a ratio of 3:1:1. As there are too many node categories (121 categories in total), we
randomly select 10 categories as our prediction target.

• Transfer active learning on heterogeneous graphs. To test whether our learned policy can
transfer across graphs with different structures, we also consider a group of heterogeneous graphs.
Specifically, we incorporate two extra graphs, i.e., Coauthor-CS and Cora-Full from Shchur et al.
(2018), besides Cora, Citeseer and Pubmed. The Cora and Citeseer datasets are used for training,
and we evaluate the learned policy on the Pubmed, Coauthor-CS and Cora-Full datasets.

The statistics of datasets are presented in Table 1, where for the PPI dataset, we report the average
statistics of its 20 graphs.

4.2 COMPARED ALGORITHMS

We compare the following algorithms in experiment.

(1) Random Policy. At each state, the policy randomly selects a node and queries for its label. (2)
Entropy-based Policy. At each state, we predict the label distribution for each node by using the
current graph neural network, and further compute the entropy. The policy selects the node with the
maximum entropy for annotation. (3) Centrality-based policy. This policy selects the node with
the largest degree to query for the node label. (4) AGE (Cai et al., 2017). AGE is an active learning
method for training graph neural networks. At each state, AGE measures the informativeness of
each node by linearly combining several heuristics, including the entropy of the predicted label
distribution, PageRank score and the cluster assignment. Then it selects the most informative node
to annotate. To apply AGE to the transfer learning setting, we learn the optimal weight of different
heuristics on the training graphs, and further transfer the weight to unseen graphs. (5) DAG-Single.
Our proposed approach to active learning on single graphs. (6) DAG-Joint. Our joint training
approach to transfer active learning for graph neural networks. (7) DAG-Distill. Our distillation-
based approach to transfer active learning, where a universal and a set of graph-specific policies are
learned in a collaborative way.

4.3 PARAMETER SETTINGS

All the compared methods aim to select a set of nodes, for which we query the node labels. Then
a prediction graph neural network is trained by using the selected nodes, and the reward function is
defined according to the performance of the graph neural network. In our experiments, we use a two-

6



Under review as a conference paper at ICLR 2020

Table 2: Active learning on single graphs

Method Cora Citeseer Pubmed
Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1

Random 66.5 ± 4.5 58.2 ± 8.0 60.7 ± 5.9 53.0 ± 6.5 68.1 ± 5.6 66.5 ± 7.0
Entropy 68.0 ± 3.6 62.3 ± 5.8 62.4 ± 4.0 56.2 ± 3.7 69.8 ± 4.4 68.5 ± 5.6

Centrality 51.7 ± 9.2 36.8 ± 13.4 47.2 ± 11.7 38.3 ± 12.8 69.0 ± 4.6 67.3 ± 5.9
AGE 71.8 ± 3.8 67.4 ± 5.5 68.9 ± 2.5 61.8 ± 2.5 74.7 ± 4.3 72.8 ± 6.0

DAG-Single 73.2 ± 2.2 66.9 ± 4.0 71.1 ± 2.0 62.4 ± 2.7 79.1 ± 2.3 78.0 ± 2.1
Table 3: Transfer active learning on homologous graphs (PPI dataset)

Method 0-4 5-9 10-14 15-19
Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1

Random 51.2 ± 3.4 31.0 ± 6.0 50.3 ± 5.8 41.6 ± 7.0 43.3 ± 6.4 32.1 ± 7.8 20.6 ± 7.2 15.4 ± 5.5
Entropy 47.5 ± 3.7 22.2 ± 6.5 40.0 ± 9.8 28.8 ± 9.1 34.4 ± 7.7 21.7 ± 7.9 13.6 ± 7.5 10.1 ± 5.3

Centrality 49.5 ± 4.4 26.2 ± 8.2 46.1 ± 10.0 35.8 ± 11.3 39.6 ± 7.2 25.2 ± 11.0 21.1 ± 7.4 13.8 ± 7.2
AGE 53.0 ± 1.3 41.4 ± 2.3 55.6 ± 2.0 51.2 ± 2.5 48.7 ± 2.3 42.6 ± 3.0 32.0 ± 2.5 28.0 ± 3.5

DAG-Joint 53.1 ± 1.0 42.0 ± 1.3 56.6 ± 1.5 52.9 ± 1.8 49.4 ± 1.3 43.5 ± 1.8 34.5 ± 1.6 31.6 ± 2.1
DAG-Distill 53.2 ± 1.0 42.1 ± 1.4 56.7 ± 1.4 53.1 ± 1.6 49.7 ± 1.2 43.6 ± 1.6 34.2 ± 1.7 31.3 ± 2.0

layer graph convolutional network (Kipf & Welling, 2016) as the prediction graph neural network,
which is optimized by the Adam optimizer (Kingma & Ba, 2014) with a weight decay of 0.0005.

Active learning on single graphs. On single graphs, we use SGD to optimize our policy network
with a learning rate as 0.01. The hidden dimension of the policy network is set to 128. The total
budget (i.e., the total number of nodes to select) is set as 5× Nclass by default, with Nclass being the
number of node classes on each dataset.

Transfer active learning. On homologous graphs, the budget for active learning is set to 20. The
weight of the KL term for the distillation approach is set to 0.0001. On heterogeneous graphs, we
set the budget for active learning to 5× Nclass by default, and the weight of the KL term is 0.0001.

We do 50 experiments for each setting and report the mean and standard error of micro-f1 and
macro-f1. Note that because AGE is much slower than our algorithms, for Cora-full dataset, we
only report the mean and standard error of 10 experiments when using AGE as the strategy.

4.4 COMPARISON WITH BASELINE ALGORITHMS

In this section, we compare our approach DAG against the baseline algorithms.

Active learning on single graphs. Table 2 presents the result of active learning on single graphs.
Compared with the random policy and policies using simple heuristics such as entropy and centrality,
our approach significantly outperforms them, since we consider more useful features. The AGE
method also explores several features, but our approach still achieves better results especially on
large graphs (Pubmed). This is because our approach parameterizes the policy network by using
a deep architecture, which has better capacity than AGE, as AGE simply combines features in a
linear way. Moreover, DAG is trained by using a reinforcement learning framework, which can do
exploration more effectively.

Transfer active learning. Table 3 and table 4 present the results of transfer active learning. We
see that both of our proposed approaches (DAG-Joint and DAG-Distill) significantly outperform all
the baseline methods, showing that they can indeed learn an effective universal policy to transfer
to the unseen graphs. Comparing DAG-Joint and DAG-Distill, we see that the simple joint training
approach DAG-Joint achieves close results to DAG-Distill on the PPI dataset. This is because the
graphs in the PPI dataset are homologous, which implies that different graphs have similar optimal
policies, and therefore the policy learned by DAG-Joint is reasonably effective. On heterogeneous
graphs, DAG-Distill achieves relatively better results.

4.5 PERFORMANCE UNDER DIFFERENT BUDGETS

The previous results have proved the effectiveness of our proposed approaches on single graphs and
in the transfer learning settings, where a fixed number of budget (i.e., the total number of nodes to
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Table 4: Transfer active learning on heterogeneous graphs

Method Pubmed Coauthor-cs Cora-full
Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1

Random 68.1 ± 5.6 66.5 ± 7.0 85.0 ± 3.0 71.4 ± 6.2 46.3 ± 1.8 33.8 ± 1.9
Entropy 69.8 ± 4.4 68.5± 5.6 82.2 ± 4.5 77.7 ± 5.9 47.1 ± 1.6 33.1 ± 1.8

Centrality 69.0 ± 4.6 67.3 ± 5.9 68.4 ± 12.9 46.3 ± 17.8 31.4 ± 9.1 18.0 ± 9.0
AGE 74.7 ± 4.3 72.8± 6.0 88.1± 1.7 80.6 ± 5.7 49.1 ± 1.4 37.1 ± 1.7

DAG-Joint 75.6 ± 3.5 71.6 ± 6.7 88.9 ± 1.3 83.9 ± 3.3 51.4 ± 1.2 39.8 ± 1.3
DAG-Distill 76.4 ± 3.1 73.3 ± 5.5 89.3 ± 1.1 85.6 ± 2.6 49.8 ± 1.3 38.1 ± 1.4

query) is considered. Next, we study the performance of the compared algorithms under different
budgets, where two cases are considered. In the first case, we train our policy on Cora and Citeseer
with a budget in {2, 5, 10, 20}, and then we evaluate the learned policy on Pubmed by using the
same budget. In the second case, we train the policy on 4 graphs of the PPI datasets with a budget
in {1, 2, 5, 10}. Afterwards, the learned policy is applied to other graphs under the same budget.

The results are presented in Figure 2. We see that our proposed approach outperforms the strongest
baseline algorithm AGE in most cases. Moreover, when the budget is small, DAG achieves relatively
large improvement over AGE, which demonstrates that the policy trained by our approach can indeed
learn to select the most informative nodes in a graph. In addition, one goal of active learning is to
reduce the annotation efforts by achieving good performance with fewer annotations. In the first
case, we see that the graph neural network trained by our approach achieves a micro-f1 score of
76% with 15 annotations, whereas AGE achieves the same micro-f1 score with 30 annotations.
Therefore, our proposed approach can indeed help reduce the annotation efforts by learning an
effective universal policy on several training graphs.

4.6 CASE STUDY AND ABLATION STUDY

We also conduct some case study to show what are the nodes selected by our trained policy network
and an ablation study to show the importance of different types of node features for representing the
states. The results are available at the appendix (Section A.1 and A.2).

Figure 2: Performance of DAG-Distill under different budgets. Vertical lines represent the standard
error of experiments

5 CONCLUSION

This paper studies active learning for graph neural networks, where two different settings are con-
sidered, i.e., active learning on single graphs and transfer active learning on multiple graphs. We for-
malize the problem as a sequential decision making process, and propose a policy gradient method
on single graphs. For transfer reinforcement learning, a joint training approach and a distillation-
based approach are proposed. Experimental results prove the effectiveness of our approaches. In the
future, we plan to use our approach in larger datasets, where a large number of graphs are available.
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A APPENDIX

A.1 CASE STUDY

To demonstrate the policy learned by our algorithm is indeed reasonable, we show the sequence of
nodes selected by our algorithm. Taking the performance of DAG-Distill policy πu on Cora dataset
as an example, for each step of node selection, we draw the subgraph formed by the selected nodes
and their 2-hop neighbors. The predicted classes are represented in different colors and the probabil-
ities of the predictions are represented by the transparency of the color (the higher the transparency
is, the lower the probability is). Further more, the nodes of the largest size are selected in the cor-
responding step and the medium sized nodes were select previously. At the initial state of the node
selection, the policy tends to choose the nodes in the center of region with less diversity of labels
(e.g. step 1, step 3, step 5). In the middle stage, the policy prefers the nodes that serve as a bridge
of two densely connected components (e.g. step 23, step 25). In the latter stage, the policy tends to
choose the node with great diversity of neighbor (e.g. step 26, step 28).

Figure 3: Case study carried out on Cora dataset
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A.2 ABLATION STUDY

We conduct contrast experiments to study the importance of different features to the model. We
take DAG-Single on Cora dataset as an example. To study the importance of structure feature to the
model (denoted by -structure in Table 5), we substitute the Struc2vec features with random vectors
and report the performance of model trained with the absence of Struc2vec features. Similarly, other
features are replace by zero or random vectors in order to demonstrate the their importance. From the
table, we see that heuristic features and structure features both have significant benefits to the model.
However, the historical features do not have positive influence on the model, possibly because the
selected nodes are actually a very small fraction of selection pool, thus may not providing much
information. Future study will be carried out to better leverage the historical information.

Table 5: The importance of different features in our algorithm

- historical - heuristic - structure DAG-Single
Micro-f1 73.2 ± 2.4 70.7 ± 3.1 70.5 ± 2.1 73.1 ± 2.5
Macro-f1 66.8 ± 5.0 62.9 ± 5.4 65.9 ± 3.5 65.9 ± 5.0
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