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ABSTRACT

We study the problem of Reinforcement learning from demonstrations (RLfD),
where the learner is provided with both some expert demonstrations and rein-
forcement signals from the environment. One approach leverages demonstration
data in a supervised manner, which is simple and direct, but can only provide
supervision signal over those states seen in the demonstrations. Another approach
uses demonstration data for reward shaping. By contrast, the latter approach can
provide guidance on how to take actions, even for those states are not seen in the
demonstrations. But existing algorithms in the latter one adopt shaping reward
which is not directly dependent on current policy, limiting the algorithms to treat
demonstrated states the same as other states, failing to directly exploit supervision
signal in demonstration data. In this paper, we propose a novel objective func-
tion with policy-dependent shaping reward, so as to get the best of both worlds.
We present a convergence proof for policy iteration of the proposed objective,
under the tabular setting. Then we develop a new practical algorithm, termed as
Demonstration Actor Critic (DAC). Experiments on a range of popular benchmark
sparse-reward tasks shows that our DAC method obtains a significant performance
gain over five strong and off-the-shelf baselines.

1 INTRODUCTION

Reinforcement Learning (RL) aims at solving sequential decision-making problems by learning
through interacting with environments in a trail-and-error way. In many real scenarios, the existence
of expert demonstrations has been well perceived as a critical value to enhance the capability of
reinforcement learning algorithms. Recent years have witnessed many studies exploring the paradigm
of learning from demonstration (LfD), which provides the learner with some demonstration data
generated by expert policies. However, LfD yields a strong dependency on the assumption of
demonstration optimality, which is usually inconsistent with the reality. To better integrate LfD with
reinforcement learning, increasing efforts turn to reinforcement learning from demonstrations (RLfD),
with a relaxation to the demonstration optimality assumption, which can lead to significantly boost
sample efficiency of the RL process.

One major branch of RLfD proposes to leverage demonstration data in a supervised manner, by either
using them to directly pretrain the policy (Silver et al., 2016) or supplement the learning target of the
policy with a supervised objective when encountering the states in demonstration data (Rajeswaran
et al., 2017a). Although appealingly simple and direct, such branch of RLfD unfortunately fails to
fully exploit demonstration data as it cannot generalize supervision signal over those states unseen in
the demonstrations, as discussed in (Rajeswaran et al., 2017a; Reddy et al., 2019).

To deal with such problem, another major branch of RLfD takes advantage of the demonstrations
in reward shaping, by either designing the demonstration-oriented potential-based reward shaping
function (Brys et al., 2015; Sun et al., 2018), or inducing implicit dynamic reward shaping through
learning a discriminator from demonstrations, which can distinguish between demonstrations and self-
generated data (Zhu et al., 2018; Kang et al., 2018). These methods succeed in providing guidance
for the agent to take actions, even when it confronts states unexposed among demonstrations, since
the new shaped reward function evaluates the quality of trajectories rather than that of individual
actions1 (Ho & Ermon, 2016; Wang et al., 2019). However, since the new adopted shaping reward

1Although the current state-action pair (st, at) encountered by the agent may trigger low immediate reward
r(st, at) due to its un-exposure in the demonstrations, the long-term reward Q(st, at) is still likely to be high,
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yields no direct dependence on the current policy, this branch of methods, treating demonstrated
states 2 in the same way as others, overlook the validity of such direct supervision for demonstrated
states when learning the policy.

In order to provide both generalized supervision for all states as well as direct supervision for
demonstrated states, we propose a new objective function with policy-dependent shaping reward. To
demonstrate the theoretic soundness of this approach, we first present a convergence proof for policy
iteration of the proposed objective, under the tabular setting given the assumption of the existence of
an expert policy πE(a|s). Furthermore, to cope with the problem of missing explicit expression of
πE(a|s) in reality, we develop a new practical algorithm, called Demonstration Actor Critic (DAC),
by making several approximations that can be implemented using deep neural networks. Intuitively,
if the current state is not included in the demonstration, the agent will learn to update the policy
merely relying on the reshaped Q-value function. Otherwise, the agent will take advantage of both
expert information and the reshaped Q-value function to update the policy.

To demonstrate the effectiveness of our algorithm, we conduct experiments on the continuous
physical locomotion tasks based on Mujoco (Todorov et al., 2012) in sparse-reward environments. In
comparison with five strong and off-the-shelf baselines, the empirical results clearly show that our new
DAC approach can attain consistent and significant improvements. Considering the recent concerns
on reproducibility (Henderson et al., 2017), all of our reported results are based on experiments run
across a large number of seeds.

The main contributions of this paper are summarized as:

• We introduce a novel RLfD objective with policy-dependent shaping reward, which can
provide both generalized supervision for all states as well as direct supervision signal over
these demonstrated states.

• We derive a Demonstration Policy Iteration method with guaranteed convergence, under the
tabular setting, by assuming the existence of the expert policy πE ..

• We develop Demonstration Actor Critic (DAC), a new practical algorithm to learn the policy
for the continuous setting, given the missing expert policy in reality.

• We conduct empirical experiments in a couple of popular continuous tasks in sparse-reward
environments to demonstrate the advantage of DAC as it consistently outperforms state-of-
the-art baselines.

2 RELATED WORK

There is a growing interest in combining learning from demonstration (LfD) with reinforcement
learning (RL). Recently there are three popular approaches under this problem setting: treating
demonstration data as self-generated data, leveraging demonstration data in a supervised manner, and
using the demonstrations to reshape the original reward function.

For the first approach, they treat demonstration data as self-generated experience in off-policy value-
based RL algorithms. As a typical example, DQfD (Todd et al., 2018) introduces LfD into DQN
(Mnih et al., 2015) by adding demonstration data into the replay buffer. It employs a refined priority
replay mechanism (Schaul et al., 2016) and assigns additional priority to the demonstration data.
DDPGfD (Vecerik et al., 2017; Nair et al., 2017), which is built upon DDPG (Lillicrap et al., 2015),
extends DQfD to continuous action domain. Moreover, NAC (Gao et al., 2018) uses a unified loss
function to process both off-line demonstrations and on-line experience based on the maximum
entropy reinforcement learning framework. Nonetheless, treating demonstration data in the same way
as self-generated experience usually requires a tremendous number of high-quality demonstration,
which are difficult to collect at scale, as discussed in (Kang et al., 2018).

For the second approach, they attempt to leverage the demonstration data in a supervised manner.
For instance, Silver et al. (2016) proposes to pre-train the policy with the demonstration data as a
policy initialization step for further reinforcement learning, and Rajeswaran et al. (2017b) augments

especially if the agent can confront the demonstrated state-action pairs in later steps, so as to provides more
reasonable guidance over state st.

2For simplicity, we use demonstrated states to represent the states seen in the demonstration data.
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the original policy loss with a behavior cloning loss during the policy training. Although appealingly
simple and direct, such methods can only provide supervision signal over those states that have been
seen in the demonstrations.

For the third approach, they pursue to reshape the original reward function in order to align with the
experience from the demonstrations. Specifically, Brys et al. (2015) introduces a reward reshaping
mechanism by defining a heuristic potential function based on non-normalized multi-variate Gaussian.
Besides, Sun et al. (2018) uses expert’s value function as reward shaping, under the assumption of
access to a reward-to-go oracle that provides an estimate of expert reward-to-go during training. Fur-
thermore, Kang et al. (2018) introduces an implicit reward shaping via a parameterized discriminator,
which aims to distinguish the demonstrated state-action pairs from self-generated pairs, and learn the
policy with policy gradient methods. These methods can provide guidance for the agent on how to
take actions, even when it encounters states unseen in the demonstrations. However, since the new
adopted shaping reward yields no direct dependence on the current policy, this branch of methods
pay rare attention to the validity of such direct supervision with respect to demonstrated states. To
address this problem in the following of this paper, we develop an algorithm that can both provide
guidance on all states and directly exploit the supervision signal on demonstrated states.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

We consider the standard Markov Decision Process (MDP) (Sutton & Barto, 1998), defined by the
tuple 〈S,A, P, r, γ〉, where S and A are the state space and the action space respectively, P (s′|s, a)
is the transition distribution, r(s, a) is the reward function, and γ ∈ (0, 1) is the discount factor.

Given a stochastic policy π(a|s) that maps states to action probabilities, the performance of π is
usually evaluated by its expected discounted return η(π):

η(π) = Eτ∼p0,π,p[
∞∑
t=0

γtr(st, at)], (1)

where τ = (s0, a0, s1, ...) denotes a trajectory generated by policy π. Reinforcement Learning (RL)
(Sutton & Barto, 1998) reflects the learning paradigm trying to infer a policy maximizing η(π).

Definition 1. (Occupancy measure). Let ρπ(s): S → R denote the unnormalized distribution of
state visitation by following policy π in the environment:

ρπ(s) =

∞∑
t=0

γtPr(st = s|π). (2)

The unnormalized distribution of state-action pairs ρπ(s, a) = ρπ(s)π(a|s) is called occupancy
measure of policy π. Intuitively, the occupancy measure can be interpreted as the distribution of
state-action pairs that an agent encounters when navigating the environment with policy π. An
important property of the occupancy measure is the one-to-one correspondence with the policy, as
described in the theorem 2 of (Syed et al., 2008).

3.2 DEMONSTRATION DATA SETTING

We formalize the demonstration data setting considered in this paper. The agent is provided with a
few (and possibly imperfect) demonstrations as follows:

DE , {(si, ai)}Ni=1
i.i.d.∼ ρπE (s, a).

DE are sampled from executing an unknown expert policy πE in the environment. For the follow-up
convergence guarantee, we have the following necessary assumption on the expert policy πE :

Assumption 1. The expert policy πE is a stochastic policy, and there exists a positive value δ
satisfying that mina∈A πE(a|s) ≥ δ, ∀s ∈ S.

3



Under review as a conference paper at ICLR 2020

The point of this assumption is to ensure that DKL(π, πE) is bounded by a constant M for any
π ∈ Π, under the tabular setting with |A| <∞.3 Based on this, the augmented reward of our method
(as shown later in Eq. 3) is also bounded, which can further lead to the convergence of demonstration
policy evaluation (i.e. Lemma 1).

4 METHODOLOGY

In order to provide both guidance over all states and the supervision more directly on demonstrated
states, we propose an objective function with policy dependent shaping reward:

J (π) = E(s,a)∼ρπ [ r(s, a)︸ ︷︷ ︸
extrinsic reward

+1s∈supp ρE(s) · D̄KL(π(·|s), πE(·|s))︸ ︷︷ ︸
policy-dependent KL augmented reward

], (3)

where 1s∈supp ρE(s) stands for the indicator function of supp ρπE (s)4, and D̄KL(π(·|s), πE(·|s)) ,
M −DKL(π(·|s), πE(·|s)) 5. More concretely, if state s is unseen in the demonstrated states, the
augmented reward equals zero; Otherwise, the augmented reward is a positive number, indicating
that a current policy π closer to the expert policy πE will give rise to larger augmented reward. As a
result, such reward will encourage the agent to explore the demonstrated region. Besides, we can
prove that the optimal policy of our proposed objective is equal to that of the original RL objective,
under the assumption that the expert policy πE is the optimal policy. The detailed proof can be found
in Appendix B.

Since our shaping reward depends on the current policy π, optimizing the objective (Eq. 3) w.r.t the
policy π enables us to directly optimize the policy-dependent shaping reward itself. Later in this
paper, We will show that this objective function leads to direct minimization of the KL divergence
between π and πE over those demonstrated states, as illustrated in the policy improvement part in
Eq. 8.

Inspired by soft value function in SAC (Haarnoja et al., 2018), we further introduce demonstration
value function V π(s), by including the shaping reward at every time horizon:

V π(s) = Eτ [

∞∑
t=0

γt(r(st, at) + 1s∈supp ρE(s) · D̄KL(π(·|st), πE(·|st))|s0 = s]. (4)

In a similar way, we also define demonstration Q-value function Qπ(s, a) by including shaping
reward at every time horizon, except the initial time horizon:

Qπ(s, a) = Eτ [

∞∑
t=0

γtr(st, at) +

∞∑
t=1

γt1s∈supp ρE(s) · D̄KL(π(·|st), πE(·|st))))|s0 = s, a0 = a].

(5)
In the remainder of this section, we will first derive the Demonstration Policy Iteration method in
Section 4.1, with the convergence guarantee under the tabular setting given the assumption of known
πE(a|s). However, the explicit expression of πE is usually missing in reality. To tackle this challenge,
we further develop the DAC algorithm in Section 4.2, which is more practical in real scenarios.
Finally, we summarize the whole DAC algorithm in Algorithm 1.

4.1 DEMONSTRATION POLICY ITERATION

Given the assumption that πE(a|s) is known, we derive the demonstration policy iteration method,
which alternates between policy evaluation and policy improvement. Our derivation is based on a
tabular setting, for the purpose of theoretical analysis and convergence guarantee.

The policy evaluation step aims at computing the demonstration Q-value function of a policy π,
which includes both the extrinsic reward and the shaping reward from demonstrations. Specifically,

3We refer readers to Appendix C.1 for a formal definition of the constant M .
4supp ρπE (s) denotes the support of state distribution of expert policy πE . Intuitively, it represents the states

seen in the demonstration data.
5This specific form of D̄KL is to ensure that our augmented reward is always non-negative, where M is the

upper bound of DKL(π, πE) as defined in Section 3.3. In this way, we can encourage the agent to both reach
the demonstrated states and take action in a way similar to expert.

4



Under review as a conference paper at ICLR 2020

the demonstration Q-value function Qπ(s, a) can be computed iteratively, starting from any function
Q : S ×A→ R and repeatedly applying a Bellman backup operator T π given by:

T πQ(st, at) , r(st, at) + γEst+1∼p(·|st,at)[V (st+1)], (6)

where

V (st) = Eat∼π(·|st)[Q(st, at)] + 1st∈supp ρE(s) · (M −DKL(π(·|st), πE(·|st))). (7)

The detailed evaluation process is formalized below.
Lemma 1. (Demonstration Policy Evaluation). Consider the demonstration Bellman backup operator
T π in Eq. 6 and a initial Q function Q0 : S × A → R with |A| < ∞, and define Qk+1 = T πQk.
Then the sequence Qk will converge to the demonstration Q-value of π as k →∞.

In the policy improvement step, for each state, we update the policy according to:

π′(·|s) = arg max
π′∈Π

Ea∼π′(·|s)[Qπold(s, a)]− 1s∈supp ρE(s) ·DKL(π′(·|s), πE(·|s)). (8)

This particular choice of update can be guaranteed to result in an improved policy in terms of its
demonstration Q-value function. This update rule consists of two different parts: the first one refers
to the expectation of Qπold(s, a), which encourages the agent to obtain more cumulative rewards and
explore the demonstrated regions, and the other part signifies the direct supervision signals over these
demonstrated states. The indicator function of supp ρE(s) determines whether the current state s
belongs to the demonstrated states, and if it is true, the KL divergence term will enforce the matching
between the learned policy π and the expert policy πE .

We formalize the detailed improvement result in Lemma 2.
Lemma 2. (Demonstration Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of
the maximization problem defined in Eq. 8. Then Qnew(s, a) ≥ Qold(s, a), ∀(s, a) ∈ S × A with
|A| <∞.

Overall, the complete demonstration policy iteration algorithm alternates between the policy eval-
uation and the policy improvement steps, and it will provably converge to the optimal policy, as
demonstrated in Theorem 1. We refer readers to Appendix C for the detailed proof.
Theorem 1. (Demonstration Policy Iteration). Repeated application of demonstration policy eval-
uation and demonstration policy improvement from any π ∈ Π converges to a policy π∗ such that
Qπ
∗
(s, a) ≥ Qπ(s, a),∀π ∈ Π,∀(s, a) ∈ S ×A, assuming |A| <∞.

4.2 DEMONSTRATION ACTOR CRITIC

The derived demonstration policy iteration above is presumed to be under the tabular setting with
known explicit expression of the expert policy πE(a|s), which is, however, usually missing in reality.
Thus, a critical challenge remains as how to develop a practical DAC algorithm under the common
real scenarios where only demonstration data DE exists.

First, we use function approximators (e.g. deep neural network), including value network Vϕ(s),
Q-value network Qφ(s, a) and policy network πθ(a|s). Computing the ratio between the current
policy π(a|s) and the expert policy πE(a|s) is a necessary part of our derived theory, as shown in
Eq. 7 and Eq. 86, especially when πE(a|s) is unknown. To tackle this challenge, we borrow the
idea of the discriminative modeling in Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), which is used to differentiate the real data from those created by the generator. In our case, we
construct a discriminator network Dw(s, a) that can distinguish whether an action is from π(a|s) or
πE(a|s) given state s. More formally,

Theorem 2. Given the policy π and expert policy πE , we define that D∗(s, a) ,
arg maxD∈(0,1) Ea∼π[logD(s, a)] + Ea∼πE [log(1−D(s, a))], then we have π(a|s)

πE(a|s) = D∗(s,a)
1−D∗(s,a) .

Based on this theorem, the ratio of π(a|s) to πE(a|s) can be equivalently written as D∗(s,a)
1−D∗(s,a) . Then,

we parameterize D∗(s, a) to the discriminator network Dw(s, a), and train the discriminator with the

6The ratio is inside the KL divergence.
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demonstration data. We continue deriving update rules for the value functions and policy. The value
function Vϕ(s) is trained to minimize the squared residual error:

JV (ϕ) = Es∼D[
1

2
(Vϕ(s)− Ea∼πθ [Qφ(s, a) + 1s∈supp ρE(s) · (M − log

Dw(s, a)

1−Dw(s, a)
)])2]. (9)

The Q-value function is trained to minimize the bellman residual:

JQ(φ) = Es,a∼D[
1

2
(Qφ(s, a)− Q̂(s, a))2], (10)

where Q̂(s, a) = r(s, a) + γEs′∼p(·|s,a)[Vϕ(s′)]. Finally, the policy parameter can be learned by
applying the policy update rule from Eq. 8:

Jπ(θ) = Es∼D,a∼πθ(·|s)

[
1s∈supp ρE(s) · log

Dw(s, a)

1−Dw(s, a)
−Qφ(s, a)

]
. (11)

We can find that the above objective includes both the Q-function Qφ(s, a) and discriminator
Dw(s, a), which are represented by neural networks and can be differentiated. Hence, it is very
convenient to apply the reparameterization trick, which can lead to a low-variance estimator. To this
end, we reparameterize the policy using a neural network transformation:

a = fθ(ε; s), (12)

where ε is an input noise vector sampled from some fixed distribution, such as multivariate Gaussian.
Then we can rewrite the objective in Eq. 11 as below:

Jπ(θ) = Es∼D,ε∼N
[
1s∈supp ρE(s) · log

Dw(s, fθ(ε; s))

1−Dw(s, fθ(ε; s))
−Qφ(s, fθ(ε; s))

]
. (13)

Similarly, the above learning objective w.r.t the policy network πθ also consists of two different
parts as Eq. 8. In particular, the gradient from the discriminator Dw(s, a), which aims to distinguish
whether an action is from the expert πE or the learned policy πθ given the current state, will guide the
agent to take actions in accordance with the expert when it encounters the demonstrated states. On the
other hand, the gradient from the Q-value function Qφ(s, a) will encourage the agent to obtain more
cumulative rewards and explore the demonstrated region. Overall, our practical algorithm alternates
between collecting experience from the environment, and updating the function approximators. We
use off-policy data from a replay buffer to train the value and policy networks, and use demonstration
data to train the discriminator network.

Practical Expert Policy Support Estimation The indicator function of supp ρE is a key compo-
nent in our DAC algorithm, which indicates whether current state s belongs to demonstrated states.
However, in practice, the expert policy is unknown and only a finite number of trajectories sampled
according to πE are available. Consequently, we consider taking advantage of support estimation
techniques to estimate this indicator function.

Recently, Wang et al. (2019) have established a connection between support estimation ideas and
Random Network Distillation (RND) (Burda et al., 2018) - a method to design intrinsic reward for
RL exploration based on the ”novelty” of states visited. Their design of intrinsic reward is based on
the observation that neural networks tend to have significantly lower prediction errors on examples
similar to those on which they have been trained, which also inspires us to use prediction errors of
networks trained on the demonstration states to approximate the indicator function of supp ρE .

In particular, we introduce two neural networks: a label network representing the prediction task
and a predictor network trained on demonstration states. Note that, the label network is randomly
initialized but fixed then, and it takes a state as input with a scalar output, i.e., f : S → R, and the
predictor network f̂ : S → R is trained to minimize the expected MSE w.r.t its parameter ψ, as
shown below:

ψ∗ = min
ψ∈Ψ

1

N

N∑
i=1

||f̂(si;ψ)− f(si)||2. (14)
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This process distills a randomly initialized neural network into a trained one. The prediction error
is expected to be higher for the states that are outside demonstrated states. Based on that, the
approximate indicator function can be eventually defined as follows:

1s∈supp ρE(s) ≈ exp (−µ||f̂(s;ψ∗)− f(s)||2), (15)

where µ stands for the temperature parameter. As the L2 norm is non-negative, the approximate
indicator function ranges from 0 to 1. We choose µ to make that from demonstrated states are mostly
close to 1.

Overall, the complete DAC algorithm can be summarized in Algorithm 1.

Algorithm 1 Demonstration Actor Critic (DAC)
1: Input: Demonstration dataset DE , replay buffer D, policy parameter θ, demonstration value

function parameter ϕ, demonstration Q-function parameter φ, discriminator parameter w, label
and predictor parameters ψf , ψf̂ .

2: Initialize the label parameter ψf , and train the predictor parameter ψf̂ with datasetDE via Eq. 14.
3: for each iteration do
4: Sample trajectories by using the policy network πθ and store transitions into D.
5: for k = 1, ..,K do
6: Sample batch from DE and update the discriminator parameter w via Theorem 2.
7: Sample batch from D, update the policy parameter θ via Eq. 13, the demonstration
8: value function parameter ϕ via Eq. 9, the demonstration Q-value function parameter φ
9: via Eq. 10.

10: end for
11: end for

5 EXPERIMENTS

For the experiments below, we provide empirical results to answer the following questions:

1. Can our DAC algorithm achieve better performance than other counterparts, from the same
RLfD setting or other settings?

2. What is the key ingredient in our algorithm that introduces better empirical results?

To answer the first question, we evaluate our method against several baselines on five sparse physics-
based based control benchmarks. Regarding the second question, we explore ablation analysis of the
two major components in our algorithm (namely the KL shaped reward and direct KL policy loss).
Due to the space limit, we defer more detailed specifications into the appendix.

5.1 COMPARATIVE EVALUATION

Experiment Settings We conduct experiments on the sparse version of five popular continuous
control tasks (Hopper-v1, HalfCheetah-v1, Walker2d-v1, Ant-v1, Humanoid-v1) from OpenAI Gym
(Duan et al., 2016) . Specifically, we use the delayed version of the Mujoco domains7 as (Zheng et al.,
2018; Oh et al., 2018) did, where the reward is made sparse by accumulating the reward for N = 10
timesteps before it to the agent. Expert’s trajectories were collected from the expert policy released
by the authors of the original GAIL8. In particular, the maximum number of expert trajectories was
chosen as (Ho & Ermon, 2016; Jeon et al., 2018), i.e. 240 for Humanoid-v1 and 25 for all other
tasks. For all tasks, feedforward neural networks with two hidden layers are used to represent the
policy and value functions, where 256 hidden units for each hidden layer and relu activations are
used. For the policy, Gaussian policy is used with both mean and variance dependent on the state.
During training, we use the Adam optimizer (Kingma & Ba, 2015), with a learning rate of 3× 10−4

for all networks and set K = 1 to make the algorithm faster in terms of wall clock time. We refer
readers to Appendix D for more implementation details.

7Publicly available in https://github.com/Hwhitetooth/lirpg
8https://github.com/openai/imitation
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(a) (b) (c)

(d) (e)

Figure 1: Learning curves of DAC and five baselines on sparse continuous control benchmarks. Solid
curves depict the mean of ten trials and shaded regions correspond to standard deviation among trials.
DAC (blue) performs consistently across all tasks and outperforms all strong baselines.

For comparative evaluation, We compare our DAC algorithm against five strong and off-the-shelf
baselines including:

1. Policy Optimization with Demonstration (POfD): the algorithm of (Kang et al., 2018)
leveraging demonstration to reshape the reward function.

2. Policy Optimization with Demonstration with Behavior Cloning (POfDBC): the simple
combination of POfD algorithm and an augmented behavior cloning loss.

3. Deep Deterministic Policy Gradient from Demonstration (DDPGfD): the algorithm of
Vecerik et al. (2017) putting demonstrations into the replay buffer as self-generated data.

4. Generative Adversarial Imitation Learning (GAIL): the algorithm of (Ho & Ermon, 2016),
a popular imitation learning method, mimicking the expert behaviour by matching the
occupancy measure between the expert policy and the learned policy.

5. Soft Actor Critic (SAC): the algorithm of (Haarnoja et al., 2018), a state-of-the-art off-policy
reinforcement learning method, building upon the maximum entropy reinforcement learning
framework.

We report the average of the score of the agent over 10 episodes for every 10k steps performed in
the environment, as shown in Fig. 1. The results show that DAC performs consistently across all
tasks, and outperforms all strong baselines in terms of both sample efficiency and final performance.
Besides, on most benchmarks, DAC displays smaller shaded region than other baselines, which
implies that DAC can be more stable and robust across different random seeds. Observing the learning
curves of different methods, it is clear that SAC cannot learn very fast without the help of expert
demonstrations, especially when the feedback is sparse. On the other hand, GAIL can improve quickly
in the early stage of training process of several tasks, e.g. Walker2d-v1, but it tends to be limited by
the quality of demonstration later. Under the same RLfD setting, DAC also significantly outperforms
other counterparts, such as POfD, DDPGfD, and POfDBC, which is a simple combination of POfD
algorithm and an augmented behavior cloning loss, across all the benchmarks. Furthermore, we can
see that the more complex benchmarks, e.g. Ant-v1 and Humanoid-v1, are exceptionally difficult to
be solved by other baselines. In stark contrast, DAC can learn the policy fast and steadily.
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5.2 ABLATION STUDY

The previous results suggest that our proposed method can outperform other strong baselines on
several challenging tasks. Now we will further perform ablation study to investigate the influence of
two major components inside our algorithm, i.e., the KL reward shaping and direct KL policy loss,
on the overall performance of our DAC.

Figure 2: Ablation curves.

We conduct two ablation experiments on HalfCheetah-v1 by re-
moving the KL augmented reward when computing Q-function,
and the direct KL policy loss during policy improvement, re-
spectively9. The comparative results are shown in Fig. 2. We
can observe that removing either of the two components will
lead to the obvious degradation in learning performance. This
suggests that both the KL reward shaping and the direct KL
policy loss effectively contribute to the overall performance
of our DAC algorithm. Furthermore, we find the degradation
of removing the direct KL policy loss is even larger than that
of removing the KL reward shaping in this HalfCheetah-v1
task, which well demonstrates that the exploitation of direct
supervision signal present in demonstration data may play an
important role for better learning performance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we studied reinforcement learning from demonstration (RLfD) and focused on develop-
ing a novel method that can not only provide guidance on all states, but also pass supervision signal
more directly on demonstrated states. We propose a novel objective function with policy-dependent
shaping reward, and derive both theoretical guarantee (Demonstration Policy Interation) and practical
algorithm (Demonstration Actor Critic) for our objective function. Experiments on a range of popular
benchmark sparse-reward tasks show that our method consistently achieves much higher performance
than several strong and off-the-shelf baselines. For future work, we will explore the direction for
improving the robustness of DAC in terms of the demonstration quality, which is not particularly
modeled in current algorithm.
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A DEFINITIONS

The definition of our proposed new objective is that:

J (π) = E(s,a)∼ρπ [r(s, a) + 1s∈supp ρE(s) · (M −DKL(π(·|s), πE(·|s)))]. (16)

And it also has another equivalent form as follows:

J (π) = Eτ [

∞∑
t=0

γt(r(st, at) + 1st∈supp ρE(s) · (M −DKL(π(·|st), πE(·|st))))]. (17)

Based on the above objective, we further introduce demonstration value function V π(s), by including
the shaping reward at every time horizon:

V π(s) = Eτ [

∞∑
t=0

γt(r(st, at) + 1st∈supp ρE(s) · (M −DKL(π(·|st), πE(·|st))))|s0 = s]. (18)

Similarly, we also define demonstration Q-value function Qπ(s, a) by including the shaping reward
at every time horizon, except the first time horizon:

Qπ(s, a) = Eτ [

∞∑
t=0

γtr(st, at)+

∞∑
t=1

γt1st∈supp ρE(s)·(M−DKL(π(·|st), πE(·|st)))|s0 = s, a0 = a].

(19)
With these definitions, V π(s) and Qπ(s, a) are connected by:

V π(s) = Ea∼π(·|s)[Q
π(s, a)] + 1s∈supp ρE(s) · (M −DKL(π(·|s), πE(·|s))). (20)

Qπ(s, a) = r(s, a) + γ · Es′∼p(·|s,a)[V
π(s′)]. (21)
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B ON THE OPTIMAL POLICY INVARIANCE OF OUR OBJECTIVE FUNCTION

Recall that our proposed objective is defined as:

J (π) = E(s,a)∼ρπ [r(s, a) + 1s∈supp ρE(s) · (M −DKL(π(·|s), πE(·|s)))]. (22)

Proof. Assume that π∗ = arg maxπ∈Π E(s,a)∼ρπ [r(s, a)] (in other words, π∗ represents the optimal
policy of original RL objective), and the expert policy is perfect: πE = π∗. We prove that π∗ is also
the optimal policy of our proposed objective J (π) as follows:

J (π∗) = E(s,a)∼ρπ∗ [r(s, a) + 1s∈supp ρπ∗ (s) · (M −DKL(π∗(·|s), π∗(·|s)))]
= E(s,a)∼ρπ∗ [r(s, a) + 1s∈supp ρπ∗ (s) ·M ]

= E(s,a)∼ρπ∗ [r(s, a)] + E(s,a)∼ρπ∗ [1s∈supp ρπ∗ (s) ·M ]

= E(s,a)∼ρπ∗ [r(s, a)] +M

≥ E(s,a)∼ρπ [r(s, a)] + E(s,a)∼ρπ [1s∈supp ρπ∗ (s) · (M −DKL(π(·|s), π∗(·|s)))],∀π ∈ Π

= J (π),∀π ∈ Π.
(23)

Therefore, we have that π∗ is also the optimal policy of our proposed objective. This implies that
if a policy π is the optimal policy of original RL objective, then it is also the optimal policy of our
proposed objective.

Next, we will continue to prove the inverse proposition: if a policy π is the optimal policy of our
proposed objective function, then it is also the optimal policy of original RL objective. Assume that
π# is the optimal policy of our proposed policy, and π∗ still denotes the optimal policy of original RL
objective. Due to the optimality of π# in terms of J , we have J (π#) ≥ J (π),∀π ∈ Π. In particular,
π∗ is a specific policy π ∈ Π. Therefore, we have J (π#) ≥ J (π∗). From the above Eq. 23, we
get that J (π∗) = E(s,a)∼ρπ∗ [r(s, a)] + M , so J (π#) ≥ E(s,a)∼ρπ∗ [r(s, a)] + M . However, we
can easily find that the upper bound of J (π) is also E(s,a)∼ρπ∗ [r(s, a)] +M,∀π ∈ Π, according to
Eq. 22. Here we come:

E(s,a)∼ρπ∗ [r(s, a)] +M ≤ J (π#) ≤ E(s,a)∼ρπ∗ [r(s, a)] +M. (24)

So we have J (π#) = E(s,a)∼ρπ∗ [r(s, a)] + M . It is worth noticing that the necessary condition
for J (π#) to reach the upper bound, is that E(s,a)∼ρ

π#
[r(s, a)] = E(s,a)∼ρπ∗ [r(s, a)]. Therefore,

E(s,a)∼ρ
π#

[r(s, a)] ≥ E(s,a)∼ρπ [r(s, a)],∀π ∈ Π. That is, π# is the optimal policy of original RL
objective.

Based on the above two proofs, we prove the optimal policy invariance of our proposed objective.

C PROOFS

C.1 LEMMA 1

Lemma 1. (Demonstration Policy Evaluation). Consider the demonstration Bellman backup operator
T π in Eq. 6, and a initial Q function Q0 : S × A → R with |A| <∞, and define Qk+1 = T πQk.
Then the sequence Qk will converge to the demonstration Q-value of π as k →∞.

Proof. Given Assumption 1, we first prove that DKL(π, πE) is bounded for any π ∈ Π:

||DKL(π, πE)||

= ||
∑
a

π(a|s) log
π(a|s)
πE(a|s)

||

= ||
∑
a

π(a|s) log π(a|s)−
∑
a

π(a|s) log πE(a|s)||

≤ ||
∑
a

π(a|s) log π(a|s)||+ ||
∑
a

π(a|s) log πE(a|s)||.

(25)
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Given |A| <∞, we can get the first term ||
∑
a π(a|s) log π(a|s)|| is bounded by log |A|, according

to the principle of maximum entropy.

Given the existence of δ ∈ (0, 1) satisfying that mina∈A πE(a|s) ≥ δ, ∀s ∈ S, so we can get the
second term ||

∑
a π(a|s) log πE(a|s)|| is bounded by log 1

δ .

Therefore, we have that ||DKL(π, πE)|| ≤ log |A|+ log 1
δ . We introduce M , log |A|+ log 1

δ to
represent the upper bound of DKL(π, πE).

We use the notion r̄π(s, a) to denote the reshaped reward: r̄π(s, a) , r(s, a) + 1s∈supp ρE(s) · (M −
DKL(π(·|s), πE(·|s))). Then we prove that r̄π(s, a) is also bounded:

||r̄π(s, a)|| = ||r(s, a) + 1s∈supp ρE(s) · (M −DKL(π(·|s), πE(·|s)))||
≤ ||r(s, a)||+ ||M −DKL(π(·|s), πE(·|s))||
≤ ||r(s, a)||+M.

(26)

Supposing the extrinsic reward from the environment is bounded, the shaped reward will be also
bounded from the above inequality. We continue rewriting the update rule as

Q(s, a)← r̄π(s, a) + γEs′,a′∼p(·|s,a),π(·|s′)[Q(s′, a′)]. (27)

Then, we can find that this bellman backup operator over Q can be viewed as a special case of the
standard bellman backup operator overQ, by instantiating the reward function r(s, a) by the reshaped
reward r̄π(s, a). After applying the standard convergence results for policy evaluation (Sutton &
Barto, 1998), the convergence of demonstration Q-value is eventually proved.

C.2 LEMMA 2

Lemma 2. (Demonstration Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of
the maximization problem defined in Eq. 8. Then Qnew(s, a) ≥ Qold(s, a), ∀(s, a) ∈ S × A with
|A| <∞.

Proof. Let πold ∈ Π and let Qπold and V πold be the corresponding demonstration Q-value function
and demonstration value function, and let πnew be defined as

πnew(·|s) = arg max
π′∈Π

Ea∼π′(·|s)[Qπold(s, a)]− 1s∈supp ρE(s) ·DKL(π′(·|s), πE(·|s))

= arg max
π′∈Π

Fπold(π′(·|s)).
(28)

Given the maximum of πnew, we can derive that Fπold(πnew) ≥ Fπold(πold). Hence10,

Ea∼πnew(·|s)[Q
πold(s, a)] + 1s∈supp ρE(s) · (M −DKL(πnew(·|s), πE(·|s)))

≥ Ea∼πold(·|s)[Q
πold(s, a)] + 1s∈supp ρE(s) · (M −DKL(πold(·|s), πE(·|s))) = V πold(s).

(29)

Next, we consider the demonstration bellman equation (i.e. Eq. 21):

Qπold(s, a) = r(s, a) + γEs′∼p(·|s,a)[V
πold(s′)]

≤ r(s, a) + γEs′∼p(·|s,a)[Ea′∼πnew(·|s′)[Q
πold(s′, a′)] + 1s′∈supp ρE(s) · (M −DKL(πnew(·|s′), πE(·|s′)))]

...
≤ Qπnew(s, a),

(30)
where we have repeatedly expanded Qπold on the RHS by applying the demonstration bellman
equation (i.e. Eq. 21) and the inequality in Eq. 29.

10The sense of inequality is not changed when the same number (namely, 1s∈supp ρE(s) ·M ) is added to both
sides of inequality,
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C.3 THEOREM 1

Theorem 1. (Demonstration Policy Iteration). Repeated application of demonstration policy eval-
uation and demonstration policy improvement from any π ∈ Π converges to a policy π∗ such that
Qπ
∗
(s, a) ≥ Qπ(s, a) for all π ∈ Π and (s, a) ∈ S ×A, assuming |A| <∞.

Proof. Let πi be the policy at iteration i. By Lemma 2, the sequence Qπi is monotonically increasing.
Since Qπ is bounded above for π ∈ Π (the shaped reward r̄π(s, a) is bounded), the sequence
converges to some π∗. We will still need to show that π∗ is indeed optimal. At convergence, it must
be case that Fπ∗(·|s)(π∗(·|s)) ≥ Fπ∗(·|s)(π(·|s)), for all π ∈ Π, π 6= π∗. Using the same iterative
argument as in the proof of Lemma 2, we get Qπ

∗
(s, a) ≥ Qπ(s, a), ∀(s, a) ∈ S ×A. That is, the

demonstration Q-value of any other policy is lower than that of the converged policy. Hence π∗ is
optimal in Π.

C.4 THEOREM 2

Theorem 2. Given any policy π and expert policy πE , the optimal discriminator D∗(s, a) =

arg maxD(s,a) [Ea∼π(·|s)[logD(s, a)] + Ea∼πE(·|s)[log(1−D(s, a))]], so π(a|s)
πE(a|s) = D∗(s,a)

1−D∗(s,a) .

Proof. The criterion for training the discriminator D is to maximize the quantity V (D):

V (D) =

∫
a

π(a|s) log(D(s, a))da+

∫
a

πE(a|s) log(1−D(s, a))da

=

∫
a

π(a|s) log(D(s, a)) + πE(a|s) log(1−D(s, a))da.

(31)

For any (a, b) ∈ R2 − {0, 0}, the function y → a log(y) + b log(1 − y) achieves its maximum in
[0, 1] at a

a+b . Therefore, we can infer that D∗(s, a) = π(a|s)
π(a|s)+πE(a|s) . We further rewrite it in an

equivalent form π(a|s)
πE(a|s) = D∗(s,a)

1−D∗(s,a) .

D IMPLEMENTATION DETAILS

The hyperparameter setting in the experiment is provided in Table 1. We use the GAIL code11

(implemented by Theano) released by the authors of the original GAIL paper as our GAIL baseline.
We also use the SAC code12 (implemented by Tensorflow) released by the authors of the original
SAC paper as our SAC baseline. The authors of POfD and DDPGfD have not publicly released their
code by now. Following the similar setting in (Kang et al., 2018; Vecerik et al., 2017), we implement
POfD and DDPGfD based on OpenAI Baseline13 as our baselines. For the seeds in the evaluation, we
uniformly choose the values of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and share them in all tasks we evaluated.

Environment α µ M batch size demonstration quality

Hopper-v1 2 100 1.5 256 2648
HalfCheetah-v1 1 10 1.5 256 4478

Walker2d-v1 0.5 10 1.5 256 2431
Ant-v1 0.5 100 1.5 256 1923

Humanoid-v1 0.5 1 1.5 256 4647

Table 1: Hyper-parameters in our DAC implementation, where α denotes the extrinsic reward
scale coefficient, µ stands for the temperature coefficient, M denotes the practical upper bound of
augmented reward, batch size denotes the sample number of each policy update, and demonstration
quality denotes the mean value of demonstration trajectories returns.

11https://github.com/openai/imitation
12https://github.com/haarnoja/sac
13https://github.com/openai/baselines
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The original hyper setting in the GAIL code is not that sample efficient. Following the practical
suggestions from (Jeon et al., 2018), we reduce the batch size of state-action pairs sampled in each
iteration from 50000 to 1000 for Hopper-v1, Walker2d-v1, HalfCheetah-v1, and from 50000 to 5000
for Ant-v1 and Humanoid-v1, to improve the sample efficiency of GAIL algorithm.

Besides, in our detailed implementation, we adopt the simple clip technique to ensure that the
augmented reward is bounded in (0, M ), which keeps up with our derived theory and makes the
training process more stable and effective.
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