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ABSTRACT

Learning to cooperate is crucial for many practical large-scale multi-agent applica-
tions. In this work, we consider an important collaborative task, in which agents
learn to efficiently communicate with each other under a multi-agent reinforce-
ment learning (MARL) setting. Despite the fact that there has been a number of
existing works along this line, achieving global cooperation at scale is still chal-
lenging. In particular, most of the existing algorithms suffer from issues such as
scalability and high communication complexity, in the sense that when the agent
population is large, it can be difficult to extract effective information for high-
performance MARL. In contrast, the proposed algorithmic framework, termed
Learning Structured Communication (LSC), is not only scalable but also commu-
nication high-qualitative (learning efficient). The key idea is to allow the agents
to dynamically learn a hierarchical communication structure, while under such a
structure the graph neural network (GNN) is used to efficiently extract useful in-
formation to be exchanged between the neighboring agents. A number of new
techniques are proposed to tightly integrate the communication structure learn-
ing, GNN optimization and MARL tasks. Extensive experiments are performed
to demonstrate that, the proposed LSC framework enjoys high communication
efficiency, scalability and global cooperation capability.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success in solving single-agent sequential de-
cision problems under interactive and complicated environments, such as games (Mnih et al., 2015;
Silver et al., 2016) and robotics (Lillicrap et al., 2016). In many real world applications such as
intelligent transportation systems (Adler & Blue, 2002) and unmanned systems(Semsar-Kazerooni
& Khorasani, 2009), not only one, but usually a large number of agents are involved in the learn-
ing tasks. Such a setting naturally leads to the popular multi-agent reinforcement learning (MARL)
problems, where the key research challenges include how to design scalable and efficient learning
schemes under an unstationary environment (caused by partial observation and/or the dynamics of
other agents’ policies), with large and/or dynamic problem dimension, and complicated and uncer-
tain relationship between agents.

Learning to communicate among agents has been regarded as an effective manner to strengthen the
inter-agent collaboration and ultimately improve the quality of policies learned by MARL. Various
communication-based MARL algorithms have been devised recently, e.g., DIAL (Foerster et al.,
2016), CommNet (Sukhbaatar et al., 2016), ATOC (Jiang & Lu, 2018), IC3Net (Singh et al., 2019)
and TarMAC (Das et al., 2019). These schemes aim to improve the inter-agent collaboration by
learning communication strategy to exchange information between agents. However, there are still
two bottlenecks unresolved, especially in face of a large number of agents.

One bottleneck lies in that achieving effective communication and global collaboration is difficult
with limited resources, such as narrow communication bandwidth and energy. In particular, DIAL
and TarMAC require each agent to communicate with all the other agents, i.e., a fully-connected
communication network (Figure 1(a)), which is not feasible for large scale scenarios with geograph-
ically apart agents. CommNet and IC3 assume a star network (Figure 1(b)) with a central node
coordinating the global collaboration of agents, which again does not allow large scale scenarios
with long range communications. ATOC introduces an interesting attention scheme to build a tree
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Figure 1: Topology of different communication structures and LSC falls into the hierarchical one.

communication network (Figure 1(c)). While the tree network can be scaled, global collaboration
has to be realized through inefficient multi-hop and sequential communications. In a word, improper
communication topologies will limit the cooperation ability in large scale scenarios.

Another bottleneck is the difficulty of extracting essential information to exchange between agents
for achieving high-performance MARL, especially when the number of agents grows. Most of the
existing works simply concatenate, take the mean or employing the LSTM to extract information
to be exchanged. First two lack in considering the inter-relationship between agents, and LSTM
assumes that there is a fixed sequence of message passing between agents, that is, the relationship
between agents is predefined. Recently, TarMAC utilized an attention scheme to aggregate messages
by considering the relationship from each agent to all others. However, the improper communica-
tion topology still hinder the information extraction. The communication structure need be jointly
designed with the information extraction scheme to achieve further improved learning performance.
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Figure 2: Procedure for dynamically establishing structured communication network. Left: Each
agent determines its communication importance weight based on partial local observation.For in-
stance, the agent “G” finds the target (red square), then it will be possible to get a higher weight “4”
and become the central. Right: The importance weight generation step and network construction
step will be repeated iteratively. After communication and action procedures, agents will generate
their new communication importance weights, and determine to keep or change their roles respec-
tively. Further the structured communication network will be re-established.

To address the above two issues, we propose a novel structured communication-based algorithm,
called learning structured communication (LSC). Our LSC combines a structured communication
network module and a communication-based policy module, which aims to establish a scalable hier-
archically structured network and information exchange scheme for large scale MARL. In particular,
a hierarchically structured communication network (Figure 1(d)) is dynamically learned based on
local partial observations of agents. In the hierarchically structured network, all agents are grouped
into clusters, where global collaboration can be achieved via intra-group and inter-group commu-
nications. In contrast to other three types in Figure 1, the proposed hierarchical communication
network is more flexible and scalable, with less resource needed to achieve long range and global
collaboration. The procedure to establish such a hierarchically structured communication network
is shown in Figure 2. To better utilize the relationship between agents given the hierarchically struc-
tured communication network and guarantee more effective information extraction, graph neural
network (GNN) (Scarselli et al., 2008) is employed. In GNN, each communication step involves
information embedding and aggregation. Benefiting from the unordered aggregation power and the
dynamic graph adaptability of GNN, the proposed LSC algorithm can extract valuable information
effectively. The GNN-based information extraction procedure is depicted in Figure 3.
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Figure 3: GNN-based communication extraction procedure. Each node denotes an agent. The edge
embedding can be considered as the communication message. The network learning procedure prop-
erly fits the communication procedure, and effectively learn valuable messages involving the global
network structure and agents relationship. Left: Low-level normal agent transfers its local valuable
embedding information to the associated central agents. Middle: High-level central agents com-
municate with each other to gain a sense of global perception. Right: All central agents broadcast
embedding information to their normal agents to form global cooperation.

This paper is devoted to the learning of communication structure among agents. To our knowledge,
this is the first work of hierarchical structured learning to communication for MARL. It allows to
learn communication structure adaptively instead of using predefined forms. Specifically:
i) To improve scalability for large number of agents, a hierarchical structure is devised that divides
the agents into higher-level central agents and sub-level normal ones. As such, the communication
network is sparsified. While it still allows for more effective global cooperation via message passing
among the central agents, compared with the star/tree structures.
ii) For effective communication and global cooperation, the message representation learning is
deeply integrated in the information aggregating and permeating through network, via graph neural
network (GNN), which is a natural combination with the hierarchical communication structure.
iii) Extensive experiments on both MAgent and StarCraft2 show our approach achieves state-of-the-
art scalability and effectiveness on large-scale MARL problems.

2 RELATED WORK AND PRELIMINARIES

Communication-free MARL algorithms (i.e., without active communication procedure) have expe-
rienced fast development. Recent works like MADDPG (Lowe et al., 2017), QMIX (Rashid et al.,
2018), COMA (Foerster et al., 2018) and MAAC (Iqbal & Sha, 2019) adopt a centralized training
and decentralized implementing framework. All agents’ local observations and actions are con-
sidered to improve the learning stability. These communication-free algorithms are generally not
suitable for large-scale case due to explosive growing number of agents.

Communication-based MARL algorithms have been proven effective for large-scale agent cooper-
ation. Earlier works assume that all agents need to communicate with each other. DIAL (Foerster
et al., 2016) learns to communication through back-propagating all other agents’ gradients to the
message generator network. Similarly, CommNet (Sukhbaatar et al., 2016) sends all agents’ hidden
states to the shared communication channel, and further learns the message based on the average
of all other hidden states. MFRL (Yang et al., 2018) approximates the influence of other agents by
averaging the actions of surrounding neighbor agents, which could mitigate the dimensional disaster
for large-scale case. However, this can be considered as predefined communication pattern, which
is unable to adapt to complex large-scale scenarios. Communication between all agents will lead to
high communication complexity and difficulty of useful information extraction. DGN (Jiang et al.,
2018) employs graph convolution network (GCN) to extract relationships between agents which
could result in better collaboration. However, the method considers all agents equivalently and as-
sumes the communication of each agent have to involve all neighbor agents which limits to adapt
to more practical bandwidth-limited environments. IC3Net (Singh et al., 2019) uses a communi-
cation gate to decide weather to communicate with center, but adopt the same star structure like
CommNet require high bandwidth and can hard to extract valuable information with only one cen-
ter. ATOC (Jiang & Lu, 2018) and TarMAC (Das et al., 2019) introduce the attention mechanism to
determine when to communicate and who to communicate with, respectively. TarMAC focus more
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on message aggregation rather than the communication structure. SchedNet (Kim et al., 2019) aims
to learn a weight-based scheduler to determine the communication sequence and priority.

Before the main method, we introduce some preliminaries to facilitate the presentation.
Partial Observable Stochastic Games. In stochastic games, agents learn policies by maximizing
their cumulative rewards through interacting with the environment and other agents. The partial ob-
servable stochastic games (POSG) can be characterized as a tuple

〈
I,S, b0,A,O,P,Pe,R

〉
where

I denotes the set of agents indexed from 1 to n; S denotes the finite set of states; b0 represents the
initial state distribution and A denotes the set of joint actions. Ai is the action space of agent i,
a = 〈a1, ·, an〉 denotes a joint action; O denotes the joint observations and Oi is the observation
space for agent i, o = 〈o1, ·, on〉 denotes a joint observation; P denotes the Markovian transition
distribution with P

(
s̃,o
∣∣s,a) as the probability of state s transit to s̃ and result o after taking action

a. Pe(o|s) is the Markovian observation emission probability function. R : S × A → Rn means
the reward function for agents. The overall task of the MARL problem can be solved by properly
objective function modeling, which also indicates the relationship among agents, e.g., cooperation,
competition or mixed.
Graph Neural Network. Graph neural network (GNN) (Scarselli et al., 2008) is a deep embedding
framework to handle graph-based data on a graph G = (V, E). vi denotes the node feature vector for
node vi ∈ V (for Nv nodes), ek denotes the edge feature vector for edge ek ∈ E (for Ne edges) with
rk, sk be the receiver and sender of edge ek respectively. The vector u denotes the global feature.
The graph network framework in (Battaglia et al., 2018) is employed, which divides computation on
graph data to several blocks to gain flexible processing ability. Each block introduces the aggregation
and embedding functions to handle graph data. There are many variants of GNN, like message-
passing neural network (Gilmer et al., 2017) and non local neural networks (Wang et al., 2018).
By treating every agent as a node and each communication message exchanging as the edge in a
graph, the observations and messages as the attributes of nodes and edges, respectively. The whole
communication process can be formulated to a graph neural network. The relationships among
agents can be effectively extracted to enable efficient communication message learning.
Independent Deep Q-Learning. Deep Q-Network (DQN) (Mnih et al., 2015) is popular in deep
reinforcement learning, which is one of the few RL algorithms applicable for large-scale MARL.
In each step, each agent observes state s and takes an action a based on policy π. It receives
reward r and next state s̃ from environment. To maximize the cumulative reward R =

∑
t rt,

DQN learns the action-value function Qπ(s, a) = Es∼P,a∼π(s) [Rt|st = s, at = a] by minimizing
L(θ) = Es,a,r,s̃ [ỹ −Q(s, a; θ)], where ỹ = r + γmaxãQ (s̃, ã; θ). The agent follows ε-greedy
policy, that is, selects the action that maximizes the Q-value with probability 1-ε or randomly. The
Independent Deep Q-Learning (IDQN) (Tampuu et al., 2017) is an extension of DQN by ignoring
the influence of other agents for multi-agent case. Every agent learns a Q-function Qa(ua|s; θa)
based on its own observation and received reward.

Our algorithm employs DQN as the basic RL algorithm based on the following two considera-
tions: 1) our algorithm is dedicated to discuss the learning communication mechanism in large-scale
MARL scenarios, as a result we can choose a concise and effective basic RL algorithm like the
well-known DQN; 2) data collection in large-scale MARL environments is extremely inefficiently,
while DQN has excellent data efficiency as an offline RL algorithm.

3 LSC: LEARNING STRUCTURED COMMUNICATION

Our communication architecture has two key modules: structured communication network module
and communication-based policy module, shown in Figure 4. The first module aims to establish the
dynamic hierarchical structured communication network in a distributed fashion, while the second
module contains the GNN-based communication extraction and Q-network components. Without
loss of generality, we use DQN as the basic reinforcement algorithm, however our approach can
incorporate any value-based or actor-critic methods. The details of LSC is depicted in Algorithm
1, where the details of CBRP and HCOMM can be found in Appendix. Specifically, the CBRP
function automatically and distributively establishes the structured communication network based
on the learnt importance weights. The HCOMM function denotes the communication-based policy
module, which outputs the Q-values based on the GNN-based communication messages.

4



Under review as a conference paper at ICLR 2020

Central Agents

CBRP

A!"#$%&'(
Weight

Generator

Q-Net

Input/Output Arrow

Gradient Arrow

ENVIRONMENT

Differentiable Module

    Non-Differentiable Module

Structured Communication Network  Module

Inter-group

sharing

Communication-based Policy Module

GNN-based Communication

a1
a2

a3

a4

o1
o2

o3
o4

w4

w3

w2
w1

o4
o3

o1
o2

s1
s2

s3
s4

Normal Agents

Inter-group

sharing
Intra-group

aggregation

Figure 4: Algorithm framework of LSC with Structured Communication Network Module and
Communication-based Policy Module, where si, oi, ai and wi denote state (global perception),
observation, action and importance weight of agent i. The former module uses partial observation
to establish the communication structure. The latter employs GNN-based communication and Q-
Network to extract communication content and produces collaboration policies respectively based
on established communication structure.

Algorithm 1 LSC: Learning Structured Communication
1: Initialization: weight generator parameters θw, Q-net parameters θQ, GNN parameters θgnn,

target Q-net parameters θQ̃, replay bufferR = ∅, group radius d, the number of agents n;
2: for Episode = 1, · · · ,M do
3: Reset t = 0, global state st and observation oti for each agent i, Normal agents set Vtn =
{all agents} and Vtc = ∅;

4: for t = 1, · · · , T and st 6= terminal do
5: for each agent i do
6: With probability ε pick a random action wti else wti = arg max{wi}Qθw(oti);
7: Get current position POSsti of each agent i;
8: (Vtn,Vtc, E) = CBRP((Vt−1n ,Vt−1c ),{wt1, · · · , wtn}, {POSst1, · · · ,POSstn}, d);
9: {qt1, · · · , qtn} = HCOMM(Vtn, Vtc , E);

10: for each agent i do
11: With probability ε pick a random action ati else choose the action that has the largest
12: value in the vector qti ;
13: Execute global actions and get global reward rt , next state st+1 , next observation ot+1;
14: Get updated position POSst+1

i for each agent i;
15: Store (st, ot, {POSst1, · · · ,POSstn}, at, rt, ot+1, {POSst+1

1 , · · · ,POSst+1
n }, st+1) toR;

16: for k = 1, · · · ,K do
17: Sample a random mini-batch transitions fromR;
18: Update weight generator θw by minimizing Eq. (1);
19: Update communication based policy module (θQ, θgnn) by minimizing Eq. (2);
20: Update the target networks through Eq. (3).

3.1 STRUCTURED COMMUNICATION NETWORK MODULE

The structured communication network module takes the role of establishing a hierarchical struc-
tured communication network which will be employed in communication-based policy module.
Two sub-modules are included, i.e., the weight generator and the Cluster Based Routing Protocol
(CBRP). The weight generator sub-module aims to determine the importance weight for each agent
automatically. It is modeled through a neural network fwg : o → w, where the weight w can
measure the confidence of a agent to become a center. Further the CBRP sub-module employs the
weights of all agents {wi} to construct the hierarchical structured communication network. To em-
phasize, the CBRP sub-module can be implemented in a distributed fashion, as a result the central
agents can be elected distributedly. This advantage ensures the practicability for large-scale case.
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The CBRP method (Rezaee & Yaghmaee, 2009) is a typical method for establishing a hierarchical
routing structure. The key idea for CBRP is that each agent will check whether central agent or agent
that has larger weightw exists in its receptive area. The agent will become a central agent if no above
agent is found, else it will keep its own role. With enough checking steps, each agent will either be
an central agent or in some central agents’ receptive. All agents can be separated into several groups
with each central agent as the group leader. The overall hierarchical structured communication
network further will be established by fully connecting all central agents from different groups and
connecting the agents in each group to their central agent.

There is a strong connection between these two modules in LSC algorithm. Different generated
weights will lead to different hierarchical structured communication network, which would cause
diverse performance of the communication-based policy. Some experiment results also have con-
firmed that the weights have a great influence on the performance, which motivates us to train these
two modules end-to-end. However the CBRP sub-module is not differentiable, which means the gra-
dients cannot be back-propagated from communication-based policy module to the weight generator
sub-module. Therefore, we introduce another RL task as an auxiliary, i.e., each agent takes its weight
as an action by treating the communication-based policy module as an extra unobservable part of the
environment, and receiving the same reward as the main RL task in the communication-based policy
module motioned below. Moreover the weight w is constrained in the integer set {0, 1, 2, 3, 4}. The
action space becomes discrete, as a result DQN algorithm can be used again to train the weight gen-
erator. At this time, the weight generator can be regarded as a Q-value function. The loss `(θw) for
the weight generator sub-module becomes clear as follows, with yi = ri+γmaxw̃i

Qθw(õi, w̃i). ri
denotes the reward received for agent i from environment.

`(θw) = Eo,w,r,õ

[ n∑
i=1

(Qθw(oi, wi)− yi)2
]
. (1)

3.2 COMMUNICATION-BASED POLICY MODULE

After the structured communication network topology is determined, the communication-based pol-
icy module will learn the communication content and generate the final global collaboration policy.
The communication-based policy module consists of two sub-modules, i.e., GNN-based commu-
nication sub-module and the Q-Net sub-module. The first one aims to learn the communication
messages and further update overall state perception, while the other sub-module learns the policy
based on the new state perceptions after efficient communication. Different from many existing
works (Foerster et al., 2016; Das et al., 2019; Singh et al., 2019), the agents play differently in the
GNN-base communication sub-module. Central agents should guarantee high-level information and
dominate the agents in their driven groups respectively. The hope is that such a structure can ensure
the effectiveness of communication and the efficiency of intra-group and inter-group collaboration.

Recall Figure 3, the well-established hierarchical structured communication network can be repre-
sented by a tuple (V, E) while the edges are directed. The node set V contains Nv nodes which can
be divided into the central node set Vc and the normal node set Vn. For central node i ∈ Vc, the
node feature vector vi includes the embedding feature vni , the central role feature vci and the global
feature vgi ; for normal node i ∈ Vn, the node feature vector vi only includes the embedding feature
vni . For each edge (i→ j) ∈ E with i, j ∈ V , the edge feature vector is denoted as eij . Functions φ
and ρ denote the update embedding function and aggregate function respectively.

As shown in Figure 3, the overall GNN-based communication sub-module consists of three steps,
and the GNN operation is detailed in Table 1 and as follows:
Step 1: Intra-group aggregation. In each group, the normal agent embeds their local information
and sends it to the associated central agent j ∈ Vc; the central agent aggregates the information from
all associated normal agents and updates its central role feature;
Step 2: Inter-group sharing. The central agent communicates with the other central agent with
cluster information, further aggregates the received and indicates the global perception;
Step 3: Intra-group sharing. The central agent communicates all its feature with the associated
normal agents while the normal agent aggregates the received information from central agents. Both
the embedding feature of central and normal agents will be updated.

The GNN-based communication sub-module is modeled as a GNN (fθgnn ) with parameter θgnn,
while the following Q-Net of agent i (QiθQ ) is parameterized by shared parameter θQ. The gradient
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Table 1: GNN-based Communication Architecture
Type Edge (i→ j) ∈ E Edge Update Scheme Node Update Scheme

Step 1: intra-group aggregation i ∈ Vn, j ∈ Vc eij = φ(vni ), ēj = ρ({eij}(i→j)∈E) vcj = φ(ēj , v
n
j )

Step 2: inter-group sharing i ∈ Vc, j ∈ Vc eij = φ(vci , v
n
i ), ēj = ρ({eij}(i→j)∈E) vgj = φ(ēj , v

n
j )

Step 3: intra-group sharing i ∈ Vc, j ∈ Vn ∪ Vc eij = φ(vgi , v
c
i , v

n
i ), ēj = ρ({eij}(i→j)∈E) vni = φ(ēi, v

n
i ), vnj = φ(ēj , v

n
j )

Table 2: Comparison of different MARL algorithms for communication efficiency.
Algorithm DIAL CommNet IC3 ATOC LSC
Nmsg O(n2) O(n) O(n) O(kb) O(k2 + kb)
Nstep O(1) O(1) O(1) O(d) O(1)
Nb-r O(n) O(n) O(n) O(b) O(max(b, k))

can be back-propagated from Q-Net to the graph neural network, as a result the overall loss of
communication based policy module is as follows:

`(θQ, θgnn) := Eo,a,r,õ

[
n∑
i=1

(
QiθQ(fθgnn(o), ai)− yi

)2]
, (2)

where yi = ri + γmaxãi Q
i
θQ(fθgnn(õ), ãi). ri denotes the reward received for agent i from

environment. Some softly updating scheme is further employed to update target network, i.e.,

θQ̃ = τθQ + (1− τ)θQ̃, and θ ˜gnn = τθgnn + (1− τ)θ ˜gnn. (3)

Here we discuss communication efficiency from three aspects: the number of message exchanging
(Nmsg) among agents; the number of steps during the communication procedure (Nstep); the com-
munication bandwidth and range requirements for each agent (Nb-r), and n is the total number of
agents. The details about communication efficiency are presented in Table 2 for each stage of the
MARL algorithms. For DIAL, each agent communicates with all other agents based on the fully-
connected network, which results in O(n2) message exchanging complexity. DIAL need only one
communication step, however the communication bandwidth and range requirement for each agent
is high and in the order of O(n). Different from DIAL, CommNet and IC3 both employ the star
communication network, as a result the number of message exchanging is in the order of O(n).
Nstep and Nb-r are the same as DIAL. The communication complexity of ATOC and our proposed
LSC depend on the number of groups (denoted as k < n, which is automatically determined in the
algorithms) and the maximum output degree of the communication network (denoted as b < n).
For ATOC, the communication network it tree-type, so that it only need to exchange O(kb) mes-
sages. However, the number of steps is larger for ATOC for its sequential property and is in the
order ofO(d) (d denotes the depth of the communication network). Nb-r will become much smaller
to be O(b) because communication happens in groups. Furthermore for our LSC, the number of
message exchanging is a bit larger than ATOC due to the communication among all elected centers,
i.e., O(k2 + kb). However the depth of the hierarchical communication network is only two which
results in O(1) communication steps, while Nb-r is in the order of O(max(b, k)). Overall, our LSC
algorithm has advantage in the communication efficiency.

4 EXPERIMENTS

We compare LSC with state-of-the-art MARL methods in two large-scale battle environments, i.e.,
the grid world platform MAgent (Zheng et al., 2017) and StarCraft2 (Samvelyan et al., 2019), to
evaluate their performances from aspects of both network structure and communication.

4.1 LARGE SCALE BATTLE GAME IN MAGENT

Settings. In a MAgent battle, agents fighting against enemies in a 40 × 40 grid world. Each agent
only receives its local observation, acts independently and cooperatively, and further gains its own
reward. The goal for each agent is to attack its enemies and prevent from being attacked. Each
agent from both sides has a 6× 6 visual field, and can attack its 8 adjacent grids. The speed, attack
power and health point for each agent are 1, 1 and 4, which are increased to 2, 2 and 10 for enemy
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Figure 5: Reward of algorithms and message pattern visualization in the MAgent environment.

Table 3: Performance comparisons in terms of average mean-reward, numbers and ratio of kills and
death (64 vs. 64 agents, in 50 testing trials). The bold stands for the best result in each row.

LSC CommNet IC3 ATOC IDQN MFQ
Mean-reward 1.11 0.86 0.93 0.58 0.8 0.83

Nkill 62.6 61.3 62.48 61.46 62.1 62
Ndead 28.9 31.64 32.0 51.42 32.3 31.4
Ratiokd 2.16 1.93 1.95 1.20 1.92 1.97

to increase the difficulty. Reward is +5 for successfully attacking an enemy,−2 for being killed and
−0.01 for attacking a blank grid.

Baselines. To evaluate the effects of communication scheme, three peer methods on learning to
communicate for MARL, i.e., CommNet, IC3 and ATOC, are chosen to compete with our pro-
posed LSC. Considering the weakness of mean aggregation, we replace the aggregation function of
CommNet and IC3 with GNN which is same as LSC. The group radius is 6, the same as the visual
field, in ATOC and LSC. All communication messages are embedded to 3-dimension vectors for
cost-effectiveness. Besides, two MARL methods with no communication, i.e., IDQN and MFQ are
also compared, since they are widely used in large-scale environments. In MAgent, the policy of
enemy is pretrained by IDQN.

Policy performance. Figure 5(a) and Table 3 show the overall performances of compared algorithm
in a 64 vs. 64 battle. The learning curves in Figure 5(a) present the average reward of different agents
by epoch. LSC achieves better rewards quickly after 700 epochs, and finally converges to a obvious
higher point (about 1.15) than baselines. Table 3 and Table 4 give quantitative comparisons of these
methods. Each algorithm is given 50 trials with its well-trained model. Mean-reward, Nkill, Ndead,
Ratiokd in Table 3 denote the mean of average final rewards of agents, the number of killed enemies
and dead agents, and the ratio Nkill

/
Ndead, respectively. In accordance with Figure 5(a), LSC can

obtain a better mean reward stably, with a 30% performance advantage at least. Nkill are similar,
because all approaches fulfill the mission, and beat the pre-trained IDQN. It is achieved by LSC with
the least casualty, i.e., the smallest Ndead and the highest Ratiokd. Table 4 gives the comparisons
in terms of the number of epochs to achieve the same reward value from 0.7 to 1.2 within maximal
1750 epochs in the training procedure. One can see that LSC need less epochs to achieve the same
reward compared with all the other algorithms, while more reward can be guaranteed within the
maximal epochs. These results indicate that LSC can promote the collaboration and cooperation,
and produce superior policies.

Communication effectiveness. As observed from the blue and orange curves in Figure 5(a) and the
first and fifth columns in Table 3, that LSC outperforms IDQN greatly. Since IDQN is actually the
special case of LSC without communication procedure, this phenomenon demonstrates the useful-
ness of our proposed communication solution. Meanwhile, it can be noted that LSC also surpasses
other MARL with communication algorithms, which is the consequence of its advanced structure.
As mentioned in our experiments, CommNet and IC3 adopt the same message dimension and the
same aggregation function as LSC, which leads to better performances than the original versions.
However, the star structure makes the center node need to process all agents’ information in Comm-
Net and IC3. When the agent number increases, the message extraction could be difficult. Thus,
the final performances cannot be compared with the LSC. For ATOC in large scale environments,
message need to jump multiple times between local circles, and multiple information aggregation
and extraction bring in approximation error, which results in policy deterioration.
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Table 4: Comparisons on the used epoch number to achieve same reward of the training procedure
in the MAgent environment.

Reward LSC CommNet IC3 ATOC IDQN MFQ
0.7 769 1199 787 933 1133 1254
0.8 828 1292 935 1151 1460 1304
0.9 1051 1525 1508 1471 – 1426
1.0 1271 – 1588 1506 – –
1.1 1413 – 1619 – – –
1.2 1704 – – – – –

(a) Initial state (b) Encircle (c) Fire focusing

(d) LSC (e) CommNet (f) IC3 (g) ATOC (h) IDQN (i) MFQ

Figure 6: Behavior illustration. The first row shows two typical behavior by LSC. In the second row,
the top and bottom plot denote the early state and the near to final battle state, respectively.

Scalability. Figure 5(b) shows the total reward curves of team by the agent number (10-99). Espe-
cially when the team has 99 agents, the reward of LSC is 1.45-2.75 times of other methods. It can
be seen that the structured communication of LSC confers superior performances at different scales,
because it utilizes the divide-and-conquer strategy to automatically group local agents and aggregate
centers. In Figure 5(b) When the agent number is less than 80, the communication between agents
can help to learn policy, so the orange dashed line is almost bellow other lines. When the number
is more than 80, the demand of star-style information processing exceed the ability of aggregation
network, thus CommNet and IC3 are inferior to IDQN. For ATOC, the jump of message becomes
the bottleneck as the agent number increases, as inspected in the analysis above. To sum up, the
experiments indicate LSC obviously has better scalability than the baseline.

Message visualization. To analyze the communication messages learned by GNN, we execute LSC
with its well-trained policy 50 times, and visualize the 3 dimensional vector sent by central nodes in
Figure 5. Observing Figure 5(c) and 5(d), the majority of messages are for move, and the minority
are for attack. This means that agents in LSC is very positive to adjust the team formation and
then cooperate to attack. Meanwhile, it is worthy to notice that most messages have a small norm
(less than 10), and the norm of a large proportion is around 0. From the aspect of optimization, the
redundant messages with larger norm will bring in more noise to other agents. In this way, LSC
minimizes the impact of redundant messages on the final performance. This similar phenomenon
that central nodes is nearly silent in many cases, is also mentioned by CommNet (Sukhbaatar et al.,
2016). Therefore, the message representation module via the GNN-based communication module
can generate meaningful and efficient messages theoretically and empirically.

Behavior pattern. Here, we demonstrate the battle tactics evolved for MARL via structured com-
munication. With the purpose to prove the efficiency of the guaranteed policy and the globally
cooperation strategy of LSC, we visualize the progress of the battle. For fairness, we start six algo-
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rithms from the same state in Figure 6(a). The typical behavior patterns learnt by LSC are presented
in the figures of the first row. Via the intra-group communication and cooperation, in Figure 6(b),
the blue team (LSC) organizes an encirclement to nearby red enemies; the team has a local numer-
ical superiority, and focus agents’ fire to wipe out enemies, denoted by the black attack arrows in
Figure 6(c). These proves the intra-group cooperation of LSC. Upper figures in the second row of
Figure 6 shows the situation of early stage (17 steps) after initialization for six methods, and lower
figures show the states after 50 steps. From these results, we may arrive a conclusion that the team
with our LSC can beat the opponent more quickly with a more aggressive policy. By intra-group and
inter-group collaboration, Figure 6(d) LSC has carried out encircling and fire-focusing many times,
and achieves an enormous advantage within only 17 steps, and wipe out the enemies within 50 steps.
For both IDQN and MFQ, agents tend to cooperate within their visual range, and once the agents get
separated out of visual range, they can hardly form global cooperation, which lead to the failure re-
sult in Figure 6(h) and 6(i). Similarly, agents controlled by ATOC communicate only among group
range, thus they encounter similar situations. Agents for CommNet and IC3 have global commu-
nication, however once some agents get far away from the central agents, central agents can hardly
understand their messages, making ineffective cooperation. As Figure 6(e) and 6(f), some agents
get far away from the majority of agents, thus their results are not ideal. To sum up, in Figure 6(d),
agents controlled by LSC form a global encircle strategy by communication in both intra-group and
inter-group, thus LSC-based agents can wipe out enemies faster than the baselines.

4.2 LARGE SCALE BATTLE GAME IN STARCRAFT2

Battle game in StarCraft2 is a confrontation between two marine teams shown in appendix, which
is much more complex than MAgent. Specifically, we use a 25 vs. 25 map, i.e., 25m, where the
range vision is 9 and the map size are is 1920× 1200. To evaluate the cooperation, agents one team
are controlled by the individual learned policy. Here, we compare our LSC with IQDN, Commnet
and IC3. The action space consists of movement to an adjacent grid and shooting with the range
6. We adopt the same dense reward setting (0.44 for killing an enemy, 8.9 for winning the battle)
as SMAC (Samvelyan et al., 2019). Agents of the enemy are controlled by the built-in game AI.
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Figure 7: Reward curves on StarCraft2

In Figure 7, LSC outperforms compared algorithms,
where the blue reward curve is much higher than others.
Although the agent number (25) is fewer than MAgent,
the observation and action space of StarCraft2 are much
larger, leading to the difficulty to learn policy. Therefore,
the performance of IDQN degrades notably in this com-
plex environment, while LSC, IC3 and CommNet out-
perform it. This is because they entail communication
to facilitate cooperation. Moreover, LSC outperforms
IC3 and CommNet greatly. We do not compare with
ATOC because its poor performance in MAgent. This
demonstrates that the flexible hierarchical communica-
tion and expressive GNN-based message extraction make
LSC more qualified for complex tasks than CommNet and
IC3’s star-style communication.

5 CONCLUSION AND FUTURE WORK

In this paper, a novel learning structured communication (LSC) algorithm is proposed for multi-
agent reinforcement learning. The hierarchical structure is self-learnt by cluster based routing pro-
tocol. The communication message representation is naturally embedded and extracted via a graph
neural network. Experiments in large-scale games (MAgent and StarCraft2) demonstrated that our
LSC can outperform existing learning-to-communicate algorithms with better communication effi-
ciency, cooperation capability and scalability. In the future, we will to improve LSC by considering
some practical constrains, such as communication bandwidth and delay.

10



Under review as a conference paper at ICLR 2020

REFERENCES

Jeffrey L Adler and Victor J Blue. A cooperative multi-agent transportation management and route
guidance system. Transportation Research Part C: Emerging Technologies, 10(5-6):433–454,
2002.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks, 2018.
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A APPENDIX

A.1 CBRP ALGORITHM AND HCOMM ALGORITHM

Algorithm 2 CBRP: Cluster Based Routing Protocol

1: function CBRP((Vtn,Vtc),{wt1, · · · , wtn}, {POSst1, · · · ,POSstn}, d)
2: Define neighbours are distance< d, Te is a constant to control the max-waiting time,Vu = ∅

is the undecided nodes set and E = ∅;
3: Each node i broadcast its weight wti to neighbours;
4: for i is in central node set Vtc do . Maintain the structure
5: if there is a central nodes in neighbours and its weight is bigger than agent i then
6: Pop node i from Vtc and append it to Vtn;
7: for i is in normal nodes set Vtn and no central node is in its neighbour do
8: Pop node i from Vtn and append it to Vu;
9: for i is in Vu concurrently do . Elect central nodes

10: if does not receive larger weight for Te then
11: append i to Vtc and broadcast to neighbours;
12: else
13: Wait for the signal from central node for 2Te;
14: if received a signal from central node then
15: append i to Vtn;
16: else
17: append i to Vtc;
18: for i in Vtc do . generate communication link
19: for j in Vti and j is neighbouring i do
20: append eij = 0 and eji = 0 to E ;
21: for j in Vtc do
22: append eij = 0 to E ;
23: Return (Vtn,Vtc, E)

A.2 BATTLE SCENARIOS OF MAGENT AND STARCRAFT2

reward +5 for attcack 

reward -2 for being killed

(a) MAgent (b) StarCraft2

Figure 8: Battle scenarios of MAgent and StarCraft2.

A.3 DISCUSSIONS ON WEIGHT GENERATOR AND GROUP RADIUS

Although LSC utilize the reward feedback to establish the weight generator, which will be various
with respect to different settings. To investigate the improvement brought by our learned importance
weight generator, we also compare with a basic random weight generator (randomly chosen the
central nodes and separate normal nodes into groups). As shown in Figure 9(a), our learned weight
generator significantly outperforms randomly. Faster convergence of our learned weight generator
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Algorithm 3 HCOMM: Communication based Policy Module
1: function HCOMM(Vn,Vc, E)
2: ] Intra-group aggregation
3: for vi in Vn do
4: for vj in Vc and (i→ j) in E do
5: eij = φenc(vi); . Generate normal to central messages
6: for vj in Vc do ēj = ρ({eij}(i→j)∈E); . Central agents aggregate received messages
7: vcj = φ(ēj , v

n
j ); . Generate cluster perception

8: ] Inter-group sharing
9: for vj in Vc do

10: for vi in Vc and (i→ j) in E do
11: eij = φ(vci , v

n
i ); . Generate central to central messages

12: for vj in Vc do
13: ēj = ρ({eij}(i→j)∈E); . Aggregate received central to central messages
14: vgj = φ(ēj , v

n
j ); . Obtain global perception

15: ] Intro-group sharing
16: for vi in Vc do
17: for vj in Vn and (i→ j) in E do
18: eij = φ(vgi , v

c
i , v

n
i , eji), ēj = ρ({eij}(i→j)∈E); . Generate central to normal

messages
19: for vj in Vn ∪ Vc do
20: for vi in Vc and (i→ j) in E do
21: ēj = ρ({eij}(i→j)∈E); . Aggregate received central to normal messages

22: vnj = φ(ēj , v
n
j ); . Update states

23: qj = Q(vnj );
return q.
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Figure 9: Discussions on weight generator and group radius.

proves the efficiency brought by involving the reward guided weight generator. The hierarchical
structured communication network guaranteed through the learned weight generator improves the
communication efficiency. The higher average reward obtained by our learned weight generator
also proves the necessity of selecting central nodes based on the learned weight generator rather
than randomly chosen.

To better investigate the hierarchical structure, we compare our LSC algorithm with respect to differ-
ent group radius d, i.e., 3, 6, 12 and 60. As shown in Figure 9(b), LSC with radius 6 outperform other
settings. When the radius increasing, the agents can establish inter-groups cooperation easier. How-
ever, LSC with radius 60 performs worse than all the other three cases. LSC with extremely large
radius will downgrade to CommNet which has been proved to be difficult in valuable information
extracting above.
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