
Under review as a conference paper at ICLR 2020

FUZZING-BASED HARD-LABEL BLACK-BOX ATTACKS
AGAINST MACHINE LEARNING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models are known to be vulnerable to adversarial examples.
Based on different levels of knowledge that attackers have about the models,
adversarial example generation methods can be categorized into white-box and
black-box attacks. We study the most realistic attacks, hard-label black-box at-
tacks, where attackers only have the query access of a model and only the final
predicted labels are available. The main limitation of the existing hard-label black-
box attacks is that they need a large number of model queries, making them inef-
ficient and even infeasible in practice. Inspired by the very successful fuzz testing
approach in traditional software testing and computer security domains, we pro-
pose fuzzing-based hard-label black-box attacks against machine learning models.
We design an AdvFuzzer to explore multiple paths between a source image and
a guidance image, and design a LocalFuzzer to explore the nearby space around
a given input for identifying potential adversarial examples. We demonstrate that
our fuzzing attacks are feasible and effective in generating successful adversarial
examples with significantly reduced number of model queries and L0 distance.
More interestingly, supplied with a successful adversarial example as a seed, Lo-
calFuzzer can immediately generate more successful adversarial examples even
with smaller L2 distance from the source example, indicating that LocalFuzzer
itself can be an independent and useful tool to augment many adversarial example
generation algorithms.

1 INTRODUCTION

Machine learning models, especially deep neural networks, are demonstrated as being vulnerable to
adversarial examples (Biggio et al., 2013; Szegedy et al., 2014). Adversarial examples are gener-
ated by adding small perturbations to clean inputs to fool machine learning models to misclassify.
In image classification tasks, adversarial examples can be found by many attack methods (Good-
fellow et al., 2015; Papernot et al., 2016b; Kurakin et al., 2017; Carlini & Wagner, 2017) with the
knowledge of a neural network architecture and its parameters. This type of attacks is considered as
white-box attacks. While research on white-box attacks significantly helps the community to better
understand adversarial examples and deep neural networks, white-box attacks are only applicable to
limited real-world scenarios such as on publicly available models or exposed confidential models.

In many real-world scenarios, black-box attacks are more realistic, where an attacker only has the
query access to a model. Some recent attacks (Narodytska & Kasiviswanathan, 2017; Chen et al.,
2017; Hayes & Danezis, 2018; Ilyas et al., 2018) rely on probability vectors (e.g., predicted scores
or logits) of a model to generate adversarial examples, and they are referred to as soft-label black-
box attacks. However, in many more realistic scenarios, only the final predicted labels (e.g., the
top-1 class label) of a model are available to the attackers. This category of attacks is referred to
as hard-label black-box attacks. Three recent attack methods including Boundary attack (Brendel
et al., 2017), Label-only attack (Ilyas et al., 2018), and Opt attack (Cheng et al., 2019) fall into this
category. However, although they can generate adversarial examples with comparable perturbations
to white-box attacks, the main limitation of existing hard-label black-box attacks is that they need a
large number of model queries since model information is not available.

From a unique perspective, we propose fuzzing-based hard-label black-box attacks by leveraging
the fuzzing approach that is very successful in software testing and computer security domains (My-

1



Under review as a conference paper at ICLR 2020

ers et al., 2012; Miller et al., 1990; Haller et al., 2013). The generation of adversarial examples
can be essentially considered as an optimization problem. In order to find an optimal adversarial
example around a clean input, attack algorithms need information such as gradient of the loss func-
tion, vectors of classification probability, or hard labels from a model as guidance to walk toward
the goal. The adversarial examples then cause the model to misclassify. Interestingly, we consider
the following analogy: a machine learning model to be attacked is similar to a target program to be
tested for correctness or security bugs. Adversarial examples that cause a model to misclassify are
analogous to inputs that trigger a target program to crash. These similarities and the huge success
of the fuzzing approach in those traditional domains inspire us to leverage an originally black-box
software testing technique, fuzz testing, for exploring black-box adversarial example attacks in the
adversarial machine learning domain.

The word “fuzz” was first proposed by Miller et al. (1990) to represent random, unexpected, and
unstructured data (Takanen et al., 2008). Fuzz testing aims to find program failures by iteratively
and randomly generating inputs to test a target program (Klees et al., 2018). It is a very effective
approach to identifying correctness or security bugs in traditional software systems (Haller et al.,
2013; Appelt et al., 2014; Jeong et al., 2019) as well as development or deployment bugs in machine
learning models (Odena et al., 2019; Xie et al., 2018).

In this paper, we propose fuzzing-based attacks against machine learning models in hard-label black-
box settings. We take the fuzz testing approach to generate random inputs for exploring the adver-
sarial example space. We design two fuzzers: an adversarial fuzzer (referred to as AdvFuzzer) and a
local fuzzer (referred to as LocalFuzzer). AdvFuzzer explores multiple paths from a clean example
to a guidance example. LocalFuzzer explores the nearby space around a given input. Our approach
can be applied in both targeted and untargeted settings, aiming to generate adversarial examples
using a much smaller number of model queries than existing hard-label black-box attacks. Note
that when a successful adversarial example is supplied as the input, LocalFuzzer has the potential to
generate a large number of other successful adversarial examples in bulk. This bulk generation can
be applied to adversarial examples generated from any attack methods, and potentially refine their
“optimized” adversarial examples by reducing the L2 distance from the source example.

We perform experiments to attack deep neural networks for MNIST and CIFAR-10 datasets to eval-
uate our fuzzing approach. The experimental results show that our fuzzing attacks are feasible,
efficient, and effective. For example, the number of model queries can be reduced by 10-18 folds for
MNIST and 2-5 folds for CIFAR-10 in untargeted attacks in comparison between ours and existing
hard-label black-box methods. We also evaluate our LocalFuzzer on successful examples generated
by Boundary attack, Opt attack, and our fuzzing attacks to validate its usefulness. For example,
we achieve 100% success bulk generation rate and 48%-100% success bulk generation rate with
lower L2 for MNIST adversarial examples generated by different methods in untargeted attacks.
Our work provides evidence on the feasibility and benefits of fuzzing-based attacks. To the best of
our knowledge, this is the first work on exploring fuzz testing in adversarial example attacks.

2 BACKGROUND AND RELATED WORK

Adversarial Examples In this paper, we consider computer vision classification tasks, in which a
DNN model f aims to classify an input image x to a class y. We define a clean input image x as
source example with source class y. The attack goal is to generate an adversarial example x′ close
to source example x such that: (1) x′ is misclassified as any class other than the source class y in
the untargeted attack setting, or (2) x′ is misclassified as a specific class yt != y in the targeted
attack setting. We consider that an adversary has the hard-label black-box capability which means
the adversary only has the query access to the model f and only final label outputs are available.

White-box attacks Most existing attacks rely on full access to the model architecture and param-
eters. Example attack algorithms include Fast Gradient Sign Method (Goodfellow et al., 2015),
Jacobian-based Saliency Map Approach (Papernot et al., 2016b), Basic Iterative Method (Kurakin
et al., 2017), L-BFGS (Szegedy et al., 2014), Carlini & Wagner attack (Carlini & Wagner, 2017),
etc. White-box attacks need gradient information of the loss function as guidance to find adversarial
examples. However, the white-box scenarios are not very realistic considering the fact that many
real-world machine learning models are confidential. Besides, white-box attacks can only be applied
to differentiable model architectures like DNNs not to tree-based models.

2



Under review as a conference paper at ICLR 2020

Black-box attacks In many real-world scenarios, black-box attacks are more realistic where attack-
ers only have the query access to the model and do not have detailed model information. One type
of black-box attacks is transferability-based (Papernot et al., 2017), where an adversary trains a sub-
stitute model with a substitute dataset and then generates adversarial examples from the substitute
model using white-box attacks. Because of the transferability (Szegedy et al., 2014; Goodfellow
et al., 2015; Papernot et al., 2016a), adversarial examples generated from the substitute model can
potentially fool the targeted model, even if the two models have different architectures. One limita-
tion of this approach is that it needs information about training data. Besides, attacking the substitute
model leads to larger perturbation and lower success rate (Chen et al., 2017; Papernot et al., 2016a;
2017).

Soft-label black-box attacks (Chen et al., 2017; Narodytska & Kasiviswanathan, 2017; Ilyas et al.,
2018) rely on classification probability to generate adversarial examples. Since the classification
probability vectors are usually inaccessible, hard-label black-box attacks are considered as more re-
alistic, where only the final predicted labels are available to the attackers. Boundary attack (Brendel
et al., 2017) is based on a random walk around the decision boundary using examples drawn from a
proposal distribution. Label-only attack (Ilyas et al., 2018) uses discretized score, image robustness
of random perturbation, and Monte Carlo approximation to find a proxy for the output probability
and then uses an NES gradient estimator to generate adversarial examples in a similar way as soft-
label black-box attacks. Opt attack (Cheng et al., 2019) reformulates the problem as a continuous
real-valued optimization problem which can be solved by any zeroth-order optimization algorithm.
The main limitation of these existing hard-label black-box attacks is that they need a large number
of model queries, in part because they follow the traditional (approximated) optimization approach
and they all aim to walk closer to a clean example starting from a point that is already adversarial.
This limitation makes them inefficient and even infeasible in practice when the allowed number of
queries is limited by a model. In contrast, our fuzzing-based hard-label black-box attacks start from
a clean example and walk away from it step by step. With careful guidance and leveraging the ran-
domness advantage of the fuzz testing approach, our attacks have the potential to use a much smaller
number of queries to generate a successful adversarial example.

3 APPROACH AND ALGORITHMS

3.1 OVERVIEW OF OUR APPROACH

Fuzz testing was first proposed by Miller et al. (1990). The key idea is to use random, unexpected,
and unstructured data to find program failures. In recent years, fuzzers such as AFL (Zalewski,
2007) and libFuzzer (Serebryany, 2016) have gained great popularity because of their effectiveness
and scalability. A typical fuzzer works by iteratively (1) selecting a seed input from a pool, (2)
mutating the chosen seed to generate new inputs, (3) evaluating the newly generated inputs, and (4)
recording observations such as program crashes and adding useful inputs into the seed pool. Our
fuzzing-based hard-label black-box attacks leverage the basic idea of fuzz testing to explore the
adversarial example space.

Figure 1: Basic Intuition of Our Attacks

Figure 1 depicts the basic intuition of our at-
tacks. We design two fuzzers: an adversarial
fuzzer (referred to as AdvFuzzer) and a local
fuzzer (referred to as LocalFuzzer). Starting
from a source image which is clean, AdvFuzzer
slowly (thus with less amount of perturbations)
walks away from it step by step by randomly
selecting a path toward a guidance image. With
multiple runs, AdvFuzzer will explore multi-
ple random paths aiming to explore different re-
gions of the adversarial example space between
the two images. The guidance image could be
a clean image of a specific target class for per-
forming targeted attacks, or any image not of
the source (image) class for performing untargeted attacks. LocalFuzzer aims to explore the nearby

3



Under review as a conference paper at ICLR 2020

data points for identifying potential adversarial examples around the current image as AdvFuzzer
takes the main steps.

It is important to point out that AdvFuzzer walks from a source image to a guidance image, thus
taking a reverse direction from what is taken in existing hard-label black-box attacks including
Boundary attack (Brendel et al., 2017), Label-only attack (Ilyas et al., 2018), and Opt attack (Cheng
et al., 2019). Combining this strategy with the randomness advantage of the fuzz testing approach,
our attacks have the potential to use a much smaller number of queries to more efficiently or prac-
tically generate successful adversarial examples. Moreover, LocalFuzzer can indeed be applied to
any attack methods including black-box and white-box ones. When LocalFuzzer is supplied with a
successful adversarial example as a seed, it can efficiently generate new successful adversarial ex-
amples in bulk and among which further optimized (e.g., in terms of reducing the L2 distance from
the source image) ones could even be identified.

3.2 ALGORITHMS

AdvFuzzer The logic for AdvFuzzer is presented in Algorithm 1. It generates an adversarial
example imgadv as output, and takes a target model f , isTargeted parameter, a source image imgs,
a guidance image imgg , and attack guidance strategy k as inputs. For every iteration of the while
loop, a random main step is taken by selecting a perturbation ε based on the attack guidance strategy
k (Line 4). We adopt a L0 strategy which changes a random pixel in the perturbation ε image
to the corresponding difference pixel value between the guidance image and the current image.
Note that other strategies based on L∞ and L2 could also be applied but we found L0 strategy is
the most effective. If the current image reaches the attack goal, a medium level LocalFuzzer is
applied to explore the nearby space for potentially generating more successful adversarial examples.
Otherwise, a small level LocalFuzzer is used to check if some successful adversarial examples could
still be found nearby. The while loop ends whenever a successful example is found or the number of
steps reaches the maximum number of steps which is the L0 distance between the source image and
the guidance image. It will then fine tune a random successful adversarial example in the adversarial
example set Sadv by using a walk back fuzzer. The walk back fuzzer works in a similar manner as
LocalFuzzer as described below.

Algorithm 1 AdvFuzzer: generating an adversarial example using fuzzing
Input: f : a black-box model,

isTargeted: True for targeted attack and False for untargeted attack,
imgs: a source image with class s, i.e., f(imgs) = s,
imgg: a guidance image with f(imgg) = t for targeted attack

or f(imgg)! = s for untargeted attack,
k: attack guidance, e.g., based on L0 or L∞ distance.

Output: imgadv: an adversarial example from a successful adversarial examples set Sadv .
1: Sadv ← ∅
2: imgcur ← imgs
3: while size(Sadv)== 0 and num steps < MAX STEPS do
4: ε = SelectPerturbationAlongMainDirection(imgcur, imgg, k)
5: imgcur = imgcur + ε
6: if (isTargeted and f (imgcur) == t) or (!isTargeted and f (imgcur) != s) then
7: Sadv = Sadv

⋃
LocalFuzzer(f, imgcur, s, t, isTargeted,medium level)

8: else
9: Sadv = Sadv

⋃
LocalFuzzer(f, imgcur, s, t, isTargeted, small level)

10: num steps += 1
11: imgadv = walk back(f, imgs, Sadv[0], s, t,medium level, isTargeted)
12: return imgadv

LocalFuzzer LocalFuzzer is described in Algorithm 2. Its goal is to generate a set of adversarial
examples potentially around an input image img. An adversarial example set Sadv and a set Sall

including all examples are maintained as seed pools. A candidate seed is randomly selected and
then mutated. For an input image, fuzzer level controls the total number of mutated images to

4



Under review as a conference paper at ICLR 2020

be generated. In each iteration, a random perturbation based mutation is applied. The mutation
function randomly selects one pixel of an image and changes its value to any real number between
0 and 1. The mutated image is then added to the adversarial set Sadv if it meets the attack goal. The
loop stops once the fuzzer level is reached and the adversarial image set Sadv (could be empty) is
returned. The difference between a LocalFuzzer and a walk back fuzzer is the mutation. Instead of
changing one random pixel to a random value between 0 and 1, the walk back fuzzer mutates an
image by randomly changing some pixel values of a current image closer or directly to that of the
source image.

Algorithm 2 LocalFuzzer: generating a set of adversarial examples using fuzzing locally
Input: f : a black-box model,

img: an input image,
s: source image class,
t: target class,
isTargeted: True for targeted attack and False for untargeted attack,
fuzzer level: level of local fuzzing.

Output: Sadv: a set of successful adversarial examples.
1: Sadv ← ∅
2: Sall ← {img}
3: if (isTargeted and f (img) == t) or (!isTargeted and f (img) != s) then
4: Sadv = Sadv

⋃
{img}

5: for i from 1 to fuzzer level do
6: if Sadv != ∅ then
7: imgrand = RandomSelect(Sadv)
8: else
9: imgrand = RandomSelect(Sall)

10: imgmut = mutation(imgrand)
11: if (isTargeted and f (imgmut) == t) or (!isTargeted and f (imgmut) != s) then
12: Sadv = Sadv

⋃
{imgmut}

13: Sall = Sall

⋃
{imgmut}

14: return Sadv

4 EXPERIMENTAL RESULTS

We now evaluate the feasibility and effectiveness of our fuzzing attacks. We use two standard
datasets: MNIST (LeCun & Cortes, 2010) and CIFAR-10 (Krizhevsky, 2009). We compare fuzzing
attacks with four attacks including Boundary attack (Brendel et al., 2017), Opt attack (Cheng et al.,
2019), and C&W L0 and L2 attacks (Carlini & Wagner, 2017). Note that C&W attacks are white-
box attacks. All the experiments are performed for both targeted attacks and untargeted attacks.
Label-only attack (Ilyas et al., 2018) was evaluated by the authors only on ImageNet and we could
not find its code for MNIST and CIFAR-10, so we did not include it in our evaluation.

To have a fair comparison, we adopt the same network architecture for MNIST and CIFAR-10 used
in Carlini & Wagner (2017). Note that Brendel et al. (2017) also used the same network architec-
ture, which has two convolution layers followed by a max-pooling layer, two convolution layers, a
max-pooling layer, two fully-connected layers, and a softmax layer. Using the same parameters as
reported in Carlini & Wagner (2017), we obtained 99.49% and 82.71% test accuracy for MNIST
and CIFAR-10, respectively.

4.1 OVERALL RESULTS

From the test set of each dataset, we randomly selected 10 images for each of the 10 classes. These
same 100 images are used as source examples for all attacks. We use white-box C&W L0 and L2

5



Under review as a conference paper at ICLR 2020

Figure 2: Successful adversarial examples from fuzzing attacks on MNIST and CIFAR-10

attacks1 as baselines, and use Boundary attack2 and Opt attack3 for comparison. We adopt the default
parameters for the four attacks from their corresponding original implementations. As for fuzzing
attacks, we use three different small LocalFuzzer levels including 100, 300, and 500. We report the
average L0 and L2 distances between a successful adversarial example and a source image, and the
average number of queries for successful adversarial examples generated from 100 attack attempts.
L0 measures the number of different pixels between two images and L2 is the Euclidean distance.
Using the default attack parameters in the corresponding implementations, Opt attack, C&W attacks,
and our fuzzing attacks can achieve 100% success rates while Boundary attack achieves between
90% and 100% success rates. Note that due to the randomness of our fuzzing attacks, the results
could vary in a certain range from run to run.

Untargeted Attacks An untargeted attack is successful when an adversarial image is classified as
any class other than the source class. Although the guidance images in untargeted attacks could be
any randomly generated images or legitimate images classified as any class other than the source
class, we use the same guidance images in the targeted attacks for consistency. Also, we found that
there is not much difference between using a randomly generated guidance image and a legitimate
image. The results for untargeted attacks are summarized in Table 1. While Boundary attack and
Opt attack can generate successful adversarial examples with smallerL2 distance compared to C&W
attacks, they tend to change most of the pixels in an image since their average L0 is higher. However,
adversarial examples generated from our fuzzing attacks have larger L2 distance but smaller L0

distance. The results are comparable to C&W L0 attack. The first row in Figure 2 shows the
successful adversarial examples from the untargeted fuzzing attacks on MNIST and CIFAR-10. The
perturbations on CIFAR-10 are largely imperceptible by human eyes while they are more obvious
on MNIST. This is mostly due to the uniform dark background of MNIST images (Luo et al., 2018)
especially when L0 is reduced and L2 is increased. What we want to highlight is that the average
number of queries used by our fuzzing attacks is significantly decreased by 10-18 folds and 2-5 folds
for MNIST and CIFAR-10, respectively.

Table 1: Results for Untargeted Attacks

MNIST CIFAR-10
Avg L0 Avg L2 # queries Avg L0 Avg L2 # queries

Boundary attack 769 1.1454 115,134 3,071 0.1658 128,296
Opt attack 784 1.0839 67,536 3,072 0.1671 56,438

C&W L0 attack 10 2.5963 - 9 0.9988 -
C&W L2 attack 749 1.4653 - 3,072 0.1894 -

Fuzzing attack 100 19 2.5536 6,321 33 1.7838 24,045
Fuzzing attack 300 19 2.5041 14,697 32 1.7176 56,678
Fuzzing attack 500 19 2.4525 22,546 28 1.6822 88,488

Targeted Attacks We consider next label targeted attacks (Brendel et al., 2017; Cheng et al., 2019)
where the adversarial goal is for an adversarial example to be misclassified as a target class yt such
that yt = (y + 1) module 10 where y is the source class. The results for targeted attacks are shown
in Table 2. The second row in Figure 2 shows the successful adversarial examples from the targeted
fuzzing attacks on MNIST and CIFAR-10. The perturbations for targeted attacks are visually larger

1https://github.com/carlini/nn robust attacks
2https://github.com/bethgelab/foolbox
3https://github.com/LeMinhThong/blackbox-attack

6



Under review as a conference paper at ICLR 2020

Table 2: Results for Targeted Attacks

MNIST CIFAR-10
Avg L0 Avg L2 # queries Avg L0 Avg L2 # queries

Boundary attack 773 1.8393 126,433 3,071 0.2368 128,657
Opt attack 784 1.9040 108,556 3,072 0.6231 110,124

C&W L0 attack 26 3.6744 - 19 1.7123 -
C&W L2 attack 742 2.1752 - 3,072 0.3491 -

Fuzzing attack 100 43 3.3925 13,364 57 2.4066 50,084
Fuzzing attack 300 42 3.3553 35,002 109 3.5439 272,274
Fuzzing attack 500 41 3.3690 54,811 104 3.4381 412,766

than the perturbations for untargeted attacks. Similarly, the fuzzing attack decreases the average
L0 distance while increases the average L2 distance. The fuzzing attacks also reduce the average
number of queries by 8-9 folds and 2-2.5 folds for MNIST and CIFAR-10, respectively. Note that it
is harder to find successful adversarial examples using LocalFuzzer levels of 300 and 500 on CIFAR-
10 because of the larger feature space compared to MNIST and the smaller adversarial space in the
targeted attacks compare to that of the untargeted attacks.

Overall, the randomness advantages of the fuzzing approach help to reduce the average number of
queries and L0 distance by sacrificing a small amount of L2 distance. The experimental results show
that fuzzing attacks are feasible and effective. However, they potentially can be further strengthened
by improving the fuzzing process such as seed selection, main direction selection, step selection,
mutation operation selection, etc.

4.2 RESULTS ON APPLYING LOCALFUZZER ON SUCCESSFUL ADVERSARIAL EXAMPLES

We now apply LocalFuzzer on successful adversarial examples generated from Boundary attack,
Opt attack, and our fuzzing attacks to more intensively evaluate the bulk generation capability of
LocalFuzzer. We leverage the successful adversarial examples from the experiments in Section 4.1
for both untargeted and targeted attacks. For fuzzing attacks, we use the adversarial examples gen-
erated with a LocalFuzzer level of 500 which are shown in the third row of fuzzing attacks in both
Table 1 and Table 2. Three experiments with different LocalFuzzer levels of 100, 1,000, and 5,000
are performed.

We report six metrics including M1: success bulk generation rate (i.e., the percent of bulk runs
returning successful examples); M2: average number of successful examples generated in a bulk
run; M3: success bulk generation rate with lower L2 (i.e., percent of success bulk runs returning
adversarial examples with L2 lower than that of the seed image); M4: average number of successful
examples with lower L2 in a bulk run; M5: average decreased L2 of successful examples with lower
L2; M6: average L2 decreasing rate of successful examples with lower L2.

The results for untargeted attacks and targeted attacks are presented in Table 3 and Table 4, re-
spectively. We achieve 100% success bulk generation rate across runs in all experiments, which
indicates the great benefits of the bulk generation capability of LocalFuzzer. It is also demonstrated
that the “optimized” adversarial examples from Boundary attack and Opt attack can further be re-
fined. LocalFuzzer takes relatively a smaller number of queries (i.e., 100, 1,000, and 5,000 in the
experiments) compared with what was taken originally in Boundary attack and Opt attack, but can
immediately generate more successful adversarial examples even with smaller L2 distance from the
source example. These results indicate that LocalFuzzer itself can be an independent and useful tool
to augment many adversarial example generation algorithms.

5 CONCLUSION AND DISCUSSION

Inspired by the similarities between attacking a machine learning model and testing the correctness
or security bug of a program, we proposed fuzzing-based hard-label black-box attacks to generate
adversarial examples. We designed two fuzzers, AdvFuzzer and LocalFuzzer, to explore multiple
random paths between a source image and a guidance image, and the nearby space of each step

7



Under review as a conference paper at ICLR 2020

Table 3: Bulking successful examples from untargeted attacks

Attack M1 M2 M3 M4 M5 M6

MNIST

Boundary Attack
100% 54 48.10% 8 2.98e-3 0.28%
100% 736 58.23% 24 4.07e-3 0.36%
100% 3,851 55.70% 56 4.93e-3 0.48%

Opt Attack
100% 63 66.00% 16 2.45e-3 0.23%
100% 727 59.00% 50 4.96e-3 0.47%
100% 3,888 73.00% 112 5.64e-3 0.56%

Fuzzing attack
100% 92 67.00% 7 1.97e-2 0.90%
100% 939 100% 75 3.19e-2 1.46%
100% 4,730 100% 425 3.99e-2 1.81%

CIFAR-10

Boundary Attack
100% 57 3.26% 3 0.14e-3 0.07%
100% 676 6.52% 4 0.17e-3 0.07%
100% 3,726 9.78% 8 0.29e-3 0.10%

Opt Attack
100% 69 2.00% 2 0.15e-3 0.04%
100% 757 7.00% 3 0.18e-3 0.06%
100% 3,936 10.00% 4 0.12e-3 0.04%

Fuzzing Attack
100% 91 24.21% 8 6.34e-3 0.42%
100% 943 58.95% 54 8.93e-3 0.56%
100% 4,774 80.00% 258 1.23e-2 0.87%

Table 4: Bulking successful examples from targeted attacks

Attack M1 M2 M3 M4 M5 M6

MNIST

Boundary Attack
100% 44 45.68% 11 2.27e-3 0.14%
100% 546 51.85% 44 4.61e-3 0.31%
100% 3,105 45.68% 110 6.21e-3 0.39%

Opt Attack
100% 46 53.33% 15 3.71e-3 0.21%
100% 598 56.67% 62 6.08e-3 0.34%
100% 3,333 67.67% 279 7.11e-3 0.42%

Fuzzing attack
100% 93 82.22% 12 1.32e-2 0.42%
100% 946 100.00% 141 2.69e-2 0.89%
100% 4,722 98.89% 837 3.54e-2 1.17%

CIFAR-10

Boundary Attack
100% 41 6.90% 10 0.21e-3 0.04%
100% 548 10.34% 12 0.20e-3 0.05%
100% 2,947 10.34% 42 0.20e-3 0.05%

Opt Attack
100% 54 15.56% 8 0.14e-3 0.02%
100% 676 14.44% 11 0.22e-3 0.04%
100% 3,084 20.00% 277 0.28e-3 0.05%

Fuzzing Attack
100% 96 58.67% 19 0.98e-3 0.04%
100% 979 90.67% 149 1.67e-3 0.08%
100% 4,920 96.00% 883 2.29e-3 0.09%

along the way. We evaluated our fuzzing attacks using MNIST and CIFAR-10 datasets, and com-
pared ours with four existing attacks including Boundary attack, Opt attack, and C&W L0 and L2

attacks. The experimental results demonstrated that our fuzzing attacks are feasible and effective.
Moreover, LocalFuzzer has the bulk successful example generation capability and distance refine-
ment capability on adversarial examples generated from different attack methods. We would rec-
ommend LocalFuzzer as an independent and useful tool for augmenting many adversarial example
generation algorithms.

Our work provides evidence on adopting fuzz testing in the adversarial example generation domain.
Although the randomness advantage of the fuzzing attacks could help reduce the number of model
queries, one limitation of our attacks is that they sacrifice the L2 distance to a small extent. We
expect that further improvement of the fuzzing process could be explored to construct more powerful

8



Under review as a conference paper at ICLR 2020

fuzzing-based attacks. For example, potential ways for improvement could be a better guidance
strategy in the main direction selection, a refined seed selection process, a refined mutation function,
etc. We are working on improving our approach and we hope our fuzzing attacks could inspire more
related research in the future.

REFERENCES

Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. Automated testing for sql
injection vulnerabilities: An input mutation approach. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 2014.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion Attacks against Machine Learning at Test Time. In Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases, pp. 387–402,
2013.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In International Conference on Learning
Representations (ICLR), 2017.

Nicholas Carlini and David A. Wagner. Towards Evaluating the Robustness of Neural Networks. In
IEEE Symposium on Security and Privacy (SP), pp. 39–57, 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. pp.
15–26, 11 2017.

Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. In International Confer-
ence on Learning Representations (ICLR), 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. In International Conference on Learning Representations (ICLR), 2015.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 13), 2013.

Jamie Hayes and George Danezis. Learning universal adversarial perturbations with generative
models. pp. 43–49, 2018.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In Proceedings of the 35th International Conference on Machine
Learning (ICML), 2018.

Dae R. Jeong, KyungTae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. Razzer:
Finding kernel race bugs through fuzzing. pp. 754–768, 2019.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluating fuzz testing.
In ACM Conference on Computer and Communications Security, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial Examples in the Physical World.
In International Conference on Learning Representations (ICLR) Workshop Track, 2017.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Bo Luo, Yannan Liu, Lingxiao Wei, and Qiang Xu. Towards imperceptible and robust adversarial
example attacks against neural networks. In AAAI, 2018.

Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix
utilities. In In Proceedings of the Workshop of Parallel and Distributed Debugging, pp. pages
ix–xxi,. Academic Medicine, 1990.

9



Under review as a conference paper at ICLR 2020

Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. John Wiley &
Sons, 3rd edition, 2012.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations
for deep networks. ArXiv, abs/1612.06299, 2017.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. TensorFuzz: Debug-
ging neural networks with coverage-guided fuzzing. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pp. 4901–4911, 2019.

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in Machine Learn-
ing: from Phenomena to Black-Box Attacks using Adversarial Samples. CoRR, abs/1605.07277,
2016a.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Anan-
thram Swami. The Limitations of Deep Learning in Adversarial Settings. In IEEE European
Symposium on Security and Privacy, pp. 372–387, 2016b.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical Black-Box Attacks Against Machine Learning. In Asia Conference on Computer
and Communications Security, pp. 506–519, 2017.

Kostya Serebryany. Libfuzzer: A library for coverage-guided fuzz testing (within llvm). 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing Properties of Neural Networks. In International Conference on
Learning Representations (ICLR), 2014.

Ari Takanen, Jared DeMott, and Charlie Miller. Fuzzing for Software Security Testing and Quality
Assurance. Artech House, Inc., 1st edition, 2008.

Xiaofei Xie, Lingfei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue, Bo Li, Yang Liu, Jianjun
Zhao, Jianxiong Yin, and Simon See. Deephunter: Hunting deep neural network defects via
coverage-guided fuzzing. abs/1809.01266, 2018.

Michal Zalewski. American fuzzy lop. 2007.

10


	Introduction
	Background and Related Work
	Approach and Algorithms
	Overview of our Approach
	Algorithms

	Experimental Results
	Overall Results
	Results on Applying LocalFuzzer on Successful Adversarial Examples

	Conclusion and Discussion

