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ABSTRACT

Pre-trained models have demonstrated their effectiveness in many downstream
natural language processing (NLP) tasks. The availability of multilingual pre-
trained models enables zero-shot transfer of NLP tasks from high resource lan-
guages to low resource ones. However, recent research in improving pre-trained
models focuses heavily on English. While it is possible to train the latest neural
architectures for other languages from scratch, it is undesirable due to the required
amount of compute. In this work, we tackle the problem of transferring an existing
pre-trained model from English to other languages under a limited computational
budget. With a single GPU, our approach can obtain a foreign BERTBASE model
within a day and a foreign BERTLARGE within two days. Furthermore, evaluat-
ing our models on six languages, we demonstrate that our models are better than
multilingual BERT on two zero-shot tasks: natural language inference and depen-
dency parsing.

1 INTRODUCTION

Pre-trained models (Devlin et al., 2019; Peters et al., 2018) have received much of attention re-
cently thanks to their impressive results in many down stream NLP tasks. Additionally, multilingual
pre-trained models enable many NLP applications for other languages via zero-short cross-lingual
transfer. Zero-shot cross-lingual transfer has shown promising results for rapidly building applica-
tions for low resource languages. Wu & Dredze (2019) show the potential of multilingual-BERT
(Devlin et al., 2019) in zero-shot transfer for a large number of languages from different language
families on five NLP tasks, namely, natural language inference, document classification, named
entity recognition, part-of-speech tagging, and dependency parsing.

Although multilingual models are an important ingredient for enhancing language technology in
many languages, recent research on improving pre-trained models puts much emphasis on English
(Radford et al., 2019; Dai et al., 2019; Yang et al., 2019). The current state of affairs makes it difficult
to translate advancements in pre-training from English to non-English languages. To our best knowl-
edge, there are only three available multilingual pre-trained models to date: (1) the multilingual-
BERT (mBERT)1 that supports 104 languages, (2) cross-lingual language model (XLM; Lample &
Conneau, 2019)2 that supports 100 languages, and (3) Language Agnostic SEntence Representations
(LASER; Artetxe & Schwenk, 2018)3 that supports 93 languages. Among the three models, LASER
is based on neural machine translation approach and strictly requires parallel data to train.

Do multilingual models always need to be trained from scratch? Can we transfer linguistic knowl-
edge learned by English pre-trained models to other languages? In this work, we develop a tech-
nique to rapidly transfer an existing pre-trained model from English to other languages in an energy
efficient way (Strubell et al., 2019). As the first step, we focus on building a bilingual language
model (LM) of English and a target language. Starting from a pre-trained English LM, we learn
the target language specific parameters (i.e., word embeddings), while keeping the encoder layers
of the pre-trained English LM fixed. We then fine-tune both English and target model to obtain
the bilingual LM. We apply our approach to autoencoding language models with masked language

1https://github.com/google-research/bert/blob/master/multilingual.md
2https://github.com/facebookresearch/XLM
3https://github.com/facebookresearch/LASER
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model objective and show the advantage of the proposed approach in zero-shot transfer. Our main
contributions in this work are:

• We propose a fast adaptation method for obtaining a bilingual BERTBASE of English and a
target language within a day using one Tesla V100 16GB GPU.

• We evaluate our bilingual LMs for six languages on two zero-shot cross-lingual transfer
tasks, namely natural language inference (XNLI; Conneau et al., 2018) and universal de-
pendency parsing. We show that our models offer competitive performance or even better
that mBERT.

• We illustrate that our bilingual LMs can serve as an excellent feature extractor in supervised
dependency parsing task.

2 BILINGUAL PRE-TRAINED LMS

We first provide some background of pre-trained language models. Let Ee be English word-
embeddings and Ψ(θ) be the Transformer (Vaswani et al., 2017) encoder with parameters θ. Let
ewi

denote the embedding of word wi (i.e., ewi
= Ee[w1]). We omit positional embeddings and

bias for clarity. A pre-trained LM typically performs the following computations: (i) transform a
sequence of input tokens to contextualized representations [cw1

, . . . , cwn
] = Ψ(ew1

, . . . , ewn
;θ),

and (ii) predict an output word yi at ith position p(yi|cwi
) ∝ exp(c>wi

eyi
).

Autoencoding LM (BERT; Devlin et al., 2019) corrupts some input tokens wi by replacing them
with a special token [MASK]. It then predicts the original tokens yi = wi from the corrupted to-
kens. Autoregressive LM (GPT-2; Radford et al., 2019) predicts the next token (yi = wi+1) given
all the previous tokens. The recently proposed XLNet model (Yang et al., 2019) is an autoregressive
LM that factorizes output with all possible permutations, which shows empirical performance im-
provement over GPT-2 due to the ability to capture bidirectional context. Here we assume that the
encoder performs necessary masking with respect to each training objective.

Given an English pre-trained LM, we wish to learn a bilingual LM for English and a given target
language ` under a limited computational resource budget. To quickly build a bilingual LM, we
directly adapt the English pre-traind model to the target model. Our approach consists of three
steps. First, we initialize target language word-embeddings E` in the English embedding space
such that embeddings of a target word and its English equivalents are close together (§2.1). Next,
we create a target LM from the target embeddings and the English encoder Ψ(θ). We then fine-tune
target embeddings while keeping Ψ(θ) fixed (§2.2). Finally, we construct a bilingual LM of Ee,
E`, and Ψ(θ) and fine-tune all the parameters (§2.3). Figure 1 illustrates the last two steps in our
approach.
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Figure 1: Pictorial illustration of our approach. Left: fine-tune language specific parameters while
keeping transformer encoder fixed. Right: jointly train a bilingual LM and update all the parameters.

2.1 INITIALIZING TARGET EMBEDDINGS

Our approach to learn the initial foreign word embeddings E` ∈ R|V`|×d is based on the idea of
mapping the trained English word embeddings Ee ∈ R|Ve|×d to E` such that if a foreign word
and an English word are similar in meaning then their embeddings are similar. Borrowing the
idea of universal lexical sharing from Gu et al. (2018), we represent each foreign word embedding
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E`[i] ∈ Rd as a linear combination of English word embeddings Ee[j] ∈ Rd

E`[i] =

|Ve|∑
j=1

αijEe[j] = αiEe (1)

where αi ∈ R|Ve| is a sparse vector and
∑|Ve|

j αij = 1.

In this step of initializing foreign embeddings, having a good estimation of α could speed of the
convergence when tuning the foreign model and enable zero-shot transfer (§5). In the following, we
discuss how to estimate αi ∀i ∈ {1, 2, . . . , |V`|} under two scenarios: (i) we have parallel data of
English-foreign, and (ii) we only rely on English and foreign monolingual data.

Learning from Parallel Corpus Given an English-foreign parallel corpus, we can estimate word
translation probability p(ej | `i) for any (English-foreign) pair (ej , `i) using popular word-alignment
(Brown et al., 1993) toolkits such as fast-align (Dyer et al., 2013). We then assign:

αij = p(ej | `i) (2)

Since αi is estimated from word alignment, it is a sparse vector.

Learning from Monolingual Corpus For low resource languages, parallel data may not be avail-
able. In this case, we rely only on monolingual data (e.g., Wikipedias). We estimate word translation
probabilities from word embeddings of the two languages. Word vectors of these languages can be
learned using fastText (Bojanowski et al., 2017) and then are aligned into a shared space with En-
glish (Lample et al., 2018b; Joulin et al., 2018). Unlike learning contextualized representations,
learning word vectors is fast and computationally cheap. Given the aligned vectors Ē` of foreign
and Ēe of English, we calculate the word translation matrixA ∈ R|V`|×|Ve| as

A = sparsemax(Ē`Ē
>
e ) (3)

Here, we use sparsemax (Martins & Astudillo, 2016) instead of softmax. Sparsemax is a sparse
version of softmax and it puts zero probabilities on most of the word in the English vocabulary
except few English words that are similar to a given foreign word. This property is desirable in our
approach since it leads to a better initialization of the foreign embeddings.

2.2 FINE-TUNING TARGET EMBEDDINGS

After initializing foreign word-embeddings, we replace English word-embeddings in the English
pre-trained LM with foreign word-embeddings to obtain the foreign LM. We then fine-tune only
foreign word-embeddings on target monolingual data. The training objective is the same as the
training objective of the English pre-trained LM (i.e., masked LM for BERT). Since the trained
encoder Ψ(θ) is good at capturing association, the purpose of this step is to further optimize tar-
get embeddings such that the target LM can utilized the trained encoder for association task. For
example, if the words Albert Camus presented in a French input sequence, the self-attention in the
encoder more likely attends to words absurde and existentialisme once their embeddings are tuned.

2.3 FINE-TUNING BILINGUAL LM

We create a bilingual LM by plugging foreign language specific parameters to the pre-trained En-
glish LM (Figure 1). The new model has two separate embedding layers and output layers, one for
English and one for foreign language. The encoder layer in between is shared. We then fine-tune
this model using English and foreign monolingual data. Here, we keep tuning the model on English
to ensure that it does not forget what it has learned in English and that we can use the resulting
model for zero-shot transfer (§3). In this step, the encoder parameters are also updated so that in can
learn syntactic aspects (i.e., word order, morphological agreement) of the target languages.

3 ZERO-SHOT EXPERIMENTS

In the scope of this work, we focus on transferring autoencoding LMs trained with masked lan-
guage model objective. We choose BERT and RoBERTa (Liu et al., 2019) as the source models
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for building our bilingual LMs, named RAMEN4 for the ease of discussion. For each pre-trained
model, we experiment with 12 layers (BERTBASE and RoBERTaBASE) and 24 layers (BERTLARGE and
RoBERTaLARGE) variants. Using BERTBASE allows us to compare the results with mBERT model.
Using BERTLARGE and RoBERTA allows us to investigate whether the performance of the target LM
correlates with the performance of the source pre-trained model. RoBERTa is a recently published
model that is similar to BERT architecturally but with an improved training procedure. By training
for longer time, with bigger batches, on more data, and on longer sequences, RoBERTa matched or
exceed previously published models including XLNet. We include RoBERTa in our experiments to
validate the motivation of our work: with similar architecture, does a stronger pre-trained English
model results in a stronger bilingual LM? We evaluate our models on two cross-lingual zero-shot
tasks: (1) Cross-lingual Natural Language Inference (XNLI) and (2) dependency parsing.

3.1 DATA

We evaluate our approach for six target languages: French (fr), Russian (ru), Arabic (ar), Chinese
(zh), Hindi (hi), and Vietnamese (vi). These languages belong to four different language families.
French, Russian, and Hindi are Indo-European languages, similar to English. Arabic, Chinese,
and Vietnamese belong to Afro-Asiatic, Sino-Tibetan, and Austro-Asiatic family respectively. The
choice of the six languages also reflects different training conditions depending on the amount of
monolingual data. French and Russian, and Arabic can be regarded as high resource languages
whereas Hindi has far less data and can be considered as low resource.

For experiments that use parallel data to initialize foreign specific parameters, we use the same
datasets in the work of Lample & Conneau (2019). Specifically, we use United Nations Parallel
Corpus (Ziemski et al., 2016) for en-ru, en-ar, en-zh, and en-fr. We collect en-hi paral-
lel data from IIT Bombay corpus (Kunchukuttan et al., 2018) and en-vi data from OpenSubtitles
20185. For experiments that use only monolingual data to initialize foreign parameters, instead
of training word-vectors from the scratch, we use the pre-trained word vectors6 from fastText (Bo-
janowski et al., 2017) to estimate word translation probabilities (Eq. 3). We align these vectors into a
common space using orthogonal Procrustes (Artetxe et al., 2016; Lample et al., 2018b; Joulin et al.,
2018). We only use identical words between the two languages as the supervised signal. We use
WikiExtractor7 to extract extract raw sentences from Wikipedias as monolingual data for fine-tuning
target embeddings and bilingual LMs (§2.3). We do not lowercase or remove accents in our data
preprocessing pipeline.

We tokenize English using the provided tokenizer from pre-trained models8. For target languages,
we use fastBPE9 to learn 30,000 BPE codes and 50,000 codes when transferring from BERT and
RoBERTa respectively. We truncate the BPE vocabulary of foreign languages to match the size
of the English vocabulary in the source models. Precisely, the size of foreign vocabulary is set to
32,000 when transferring from BERT and 50,000 when transferring from RoBERTa.

We use XNLI dataset (Conneau et al., 2018) for classification task and Universal Dependencies
v2.4 (UD; Nivre et al., 2019) for parsing task. Since a language might have more than one tree-
bank in Universal Dependencies, we use the following treebanks: en ewt (English), fr gsd
(French), ru syntagrus (Russian) ar padt (Arabic), vi vtb (Vietnamese), hi hdtb (Hindi),
and zh gsd (Chinese).

Remark on BPE Lample et al. (2018a) show that sharing subwords between languages improves
alignments between embedding spaces. Wu & Dredze (2019) observe a strong correlation between
the percentage of overlapping subwords and mBERT’s performances for cross-lingual zero-shot
transfer. However, in our current approach, subwords between source and target are not shared. A
subword that is in both English and foreign vocabulary has two different embeddings.

4The first author likes ramen.
5http://opus.nlpl.eu/
6https://fasttext.cc/docs/en/crawl-vectors.html
7https://github.com/attardi/wikiextractor
8https://github.com/huggingface/pytorch-transformers
9https://github.com/glample/fastBPE
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3.2 ESTIMATING TRANSLATION PROBABILITIES

Since pre-trained models operate on subword level, we need to estimate subword translation proba-
bilities. Therefore, we subsample 2M sentence pairs from each parallel corpus and tokenize the data
into subwords before running fast-align (Dyer et al., 2013).

Estimating subword translation probabilities from aligned word vectors requires an additional pro-
cessing step since the provided vectors from fastText are not at subword level10. We use the follow-
ing approximation to obtain subword vectors: the vector es of subword s is the weighted average of
all the aligned word vectors ewi

that have s as an subword

es =
∑

wj : s∈wj

p(wj)

ns
ewj (4)

where p(wj) is the unigram probability of word wj and ns =
∑

wj : s∈wj
p(wj). We take the top

50,000 words in each aligned word-vectors to compute subword vectors.

In both cases, not all the words in the foreign vocabulary can be initialized from the English word-
embeddings. Those words are initialized randomly from a Gaussian N (0, 1/d2).

3.3 HYPER-PARAMETERS

In all the experiments, we tune RAMENBASE for 175,000 updates and RAMENLARGE for 275,000
updates where the first 25,000 updates are for language specific parameters. The sequence length
is set to 256. The mini-batch size are 64 and 24 when tuning language specific parameters using
RAMENBASE and RAMENLARGE respectively. For tuning bilingual LMs, we use a mini-batch size of
64 for RAMENBASE and 24 for RAMENLARGE where half of the batch are English sequences and the
other half are foreign sequences. This strategy of balancing mini-batch has been used in multilingual
neural machine translation (Firat et al., 2016; Lee et al., 2017).

We optimize RAMENBASE using Lookahead optimizer (Zhang et al., 2019) wrapped around Adam
with the learning rate of 10−4, the number of fast weight updates k = 5, and interpolation parameter
α = 0.5. We choose Lookahead optimizer because it has been shown to be robust to the initial
parameters of the based optimizer (Adam). For Adam optimizer, we linearly increase the learning
rate from 10−7 to 10−4 in the first 4000 updates and then follow an inverse square root decay. All
RAMENLARGE models are optimized with Adam due to memory limit11.

When fine-tuning RAMEN on XNLI and UD, we use a mini-batch size of 32, Adam’s learning rate
of 10−5. The number of epochs are set to 4 and 50 for XNLI and UD tasks respectively.

All experiments are carried out on a single Tesla V100 16GB GPU. Each RAMENBASE model is
trained within a day and each RAMENLARGE is trained within two days12.

4 RESULTS

In this section, we present the results of out models for two zero-shot cross lingual transfer tasks:
XNLI and dependency parsing.

4.1 CROSS-LINGUAL NATURAL LANGUAGE INFERENCE

Table 1 shows the XNLI test accuracy. For reference, we also include the scores from the previ-
ous work, notably the state-of-the-art system XLM (Lample & Conneau, 2019). Before discussing
the results, we spell out that the fairest comparison in this experiment is the comparison between
mBERT and RAMENBASE+BERT trained with monolingual only.

10In our preliminary experiments, we learned the aligned subword vectors but it results in poor performances.
11Because Lookahead optimizer needs an extra copy of the model’s parameters
1219 and 36 GPU hours, to be precise. Learning alignment with fast-align takes less than 2 hours and we do

not account for training time of fastText vectors.
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� fr ru ar hi vi zh

Conneau et al. (2018) � 67.7 65.4 64.8 64.1 66.4 65.8
Artetxe & Schwenk (2018) ì 71.9 71.5 71.4 65.5 72.0 71.4
Lample & Conneau (2019) (MLM) � 76.5 73.1 68.5 65.7 72.1 71.9
Lample & Conneau (2019) (MLM+TLM) ì 78.7 75.3 73.1 69.6 76.1 76.5
mBERT (Wu & Dredze, 2019) � 73.8 69.0 64.9 60.0 69.5 69.3

RAMENBASE

+ BERT � 75.2 69.4 68.2 62.2 71.0 71.7
ì 77.0 68.8 68.7 62.8 74.0 70.4

+ RoBERTa � 79.2 72.4 71.6 63.4 74.9 73.3
ì 78.2 73.1 72.0 65.0 73.7 74.2

RAMENLARGE

+ BERT � 78.1 71.2 72.4 65.2 76.0 73.3
ì 78.3 71.7 71.0 66.1 75.5 73.1

+ RoBERTa � 81.7 73.6 72.8 64.0 79.2 74.1
ì 81.7 76.4 75.0 68.5 79.7 77.7

Table 1: Zero-shot classification results on XNLI. ì indicates parallel data is used. RAMEN only
uses parallel data for initialization. The best results are marked in bold.

We first discuss the transfer results from BERT. Initialized from fastText vectors, RAMENBASE

slightly outperforms mBERT by 1.9 points on average and widen the gap of 3.3 points on Ara-
bic. RAMENBASE gains extra 0.8 points on average when initialized from parallel data. With triple
number of parameters, RAMENLARGE offers an additional boost in term of accuracy and initializa-
tion with parallel data consistently improves the performance. It has been shown that BERTLARGE

significantly outperforms BERTBASE on 11 English NLP tasks (Devlin et al., 2019), the strength of
BERTLARGE also shows up when adapted to foreign languages.

Transferring from RoBERTa leads to better zero-shot accuracies. With the same initializing con-
dition, RAMENBASE+RoBERTa outperforms RAMENBASE+BERT on average by 2.9 and 2.3 points
when initializing from monolingual and parallel data respectively. This result show that with sim-
ilar number of parameters, our approach benefits from a better English pre-trained model. When
transferring from RoBERTaLARGE, we obtain state-of-the-art results for five languages.

Currently, RAMEN only uses parallel data to initialize foreign embeddings. RAMEN can also
exploit parallel data through translation objective proposed in XLM. We believe that by utilizing
parallel data during the fine-tuning of RAMEN would bring additional benefits for zero-shot tasks.
We leave this exploration to future work. In summary, starting from BERTBASE, our approach obtains
competitive bilingual LMs with mBERT for zero-shot XNLI. Our approach shows the accuracy gains
when adapting from a better pre-trained model.

4.2 UNIVERSAL DEPENDENCY PARSING

We build on top of RAMEN a graph-based dependency parser (Dozat & Manning, 2016). For the
purpose of evaluating the contextual representations learned by our model, we do not use part-of-
speech tags. Contextualized representations are directly fed into Deep-Biaffine layers to predict arc
and label scores. Table 2 presents the Labeled Attachment Scores (LAS) for zero-shot dependency
parsing. Unlabeled Attachment Scores are provided in Appendix A.1.

We first look at the fairest comparison between mBERT and monolingually initialized
RAMENBASE+BERT. The latter outperforms the former on five languages except Arabic. We ob-
serve the largest gain of +5.2 LAS for French. Chinese enjoys +3.1 LAS from our approach. With
similar architecture (12 or 24 layers) and initialization (using monolingual or parallel data), RA-
MEN+RoBERTa performs better than RAMEN+BERT for most of the languages. Arabic and Hindi
benefit the most from bigger models. For the other four languages, RAMENLARGE renders a modest
improvement over RAMENBASE.
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� fr ru ar hi vi zh

mBERT � 71.6 65.2 36.4 30.4 35.7 26.6

RAMENBASE

+ BERT � 76.8 66.1 32.9 33.0 36.8 29.7
ì 77.2 66.7 35.1 35.1 37.3 30.7

+ RoBERTa � 78.4 66.5 37.4 33.9 39.1 30.0
ì 78.1 67.1 35.2 34.1 38.8 30.7

RAMENLARGE

+ BERT � 78.2 61.0 38.8 36.2 37.2 31.3
ì 78.1 65.7 36.4 37.4 38.2 31.3

+ RoBERTa � 79.4 68.5 39.3 32.5 39.7 31.6
ì 79.8 66.6 42.4 39.5 39.6 29.3

Table 2: LAS scores for zero-shot dependency parsing. ì indicates parallel data is used for initial-
ization. Punctuation are removed during the evaluation. The best results are marked in bold.

5 ANALYSIS

5.1 IMPACT OF INITIALIZATION

Initializing foreign embeddings is the backbone of our approach. A good initialization leads to
better zero-shot transfer results and enables fast adaptation. To verify the importance of a good
initialization, we train a RAMENBASE+RoBERTa with foreign word-embeddings are initialized ran-
domly from N (0, 1/d2). For a fair comparison, we use the same hyper-parameters in §3.3. Table 3
shows the results of XNLI and UD parsing of random initialization. In comparison to the initial-
ization using aligned fastText vectors, random initialization decreases the zero-shot performance
of RAMENBASE by 15.9% for XNLI and 27.8 points for UD parsing on average. We also see that
zero-shot parsing of SOV languages (Arabic and Hindi) suffers random initialization.

� fr ru ar hi vi zh ∆

XNLI rnd 65.3 41.9 56.9 43.2 65.4 66.5
vec 79.2 72.4 71.6 63.4 74.9 73.3 15.9

UD rnd 27.8 17.5 9.3 5.3 33.9 24.2
vec 78.4 66.5 37.4 33.9 39.1 30.0 27.8

Table 3: Comparison between random initialization (rnd) of language specific parameters and ini-
tialization using aligned fastText vectors (vec).

5.2 ARE CONTEXTUAL REPRESENTATIONS FROM RAMEN ALSO GOOD FOR SUPERVISED
PARSING?

All the RAMEN models are built from English and tuned on English for zero-shot cross-lingual
tasks. It is reasonable to expect RAMENs do well in those tasks as we have shown in our experi-
ments. But are they also a good feature extractor for supervised tasks? We offer a partial answer to
this question by evaluating our model for supervised dependency parsing on UD datasets.

fr ru ar hi vi zh

mBERT 92.1 93.1 83.6 91.3 62.2 85.1

BERT + RAMENBASE 92.2 93.1 83.8 92.1 63.4 84.4
+ RAMENLARGE 92.2 93.6 84.6 92.3 64.4 85.3

RoBERTa + RAMENBASE 92.7 93.5 85.1 92.3 65.3 85.7
+ RAMENLARGE 93.1 94.0 85.3 92.6 66.1 86.9

Table 4: Evaluation in supervised UD parsing. The scores are LAS.

We used train/dev/test splits provided in UD to train and evaluate our RAMEN-based parser. Ta-
ble 4 summarizes the results (LAS) of our supervised parser. For a fair comparison, we choose
mBERT as the baseline and all the RAMEN models are initialized from aligned fastText vectors.
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With the same architecture of 12 Transformer layers, RAMENBASE+BERT performs competitive to
mBERT and outshines mBERT by +1.2 points for Vietnamese. The best LAS results are obtained
by RAMENLARGE+RoBERTa with 24 Transformer layers. Overall, our results indicate the potential
of using contextual representations from RAMEN for supervised tasks.

5.3 HOW DOES LINGUISTIC KNOWLEDGE TRANSFER HAPPEN THROUGH EACH TRAINING
STAGES?

We evaluate the performance of RAMEN+RoBERTaBASE (initialized from monolingual data) at each
training steps: initialization of word embeddings (0K update), fine-tuning target embeddings (25K),
and fine-tuning the model on both English and target language (at each 25K updates). The results
are presented in Figure 2.

0 25 50 75 100 125 150 175
Number of updates (x 1000)

fr

ru

ar

hi

vi

zh

La
ng

ua
ge

45.0 70.3 76.4 77.4 76.4 77.3 77.1 79.2

41.1 60.8 70.4 71.9 71.6 71.9 72.4 72.4

37.4 55.7 69.5 67.8 69.6 71.6 70.8 71.6

37.7 52.1 61.3 62.5 63.8 64.3 60.8 63.4

37.3 60.5 73.2 71.7 73.9 74.6 73.7 74.9

39.9 59.9 70.6 72.7 72.0 70.2 71.9 73.3

Zero-shot XNLI RoBERTa

0 25 50 75 100 125 150 175
Number of updates (x 1000)

fr

ru

ar

hi

vi

zh
La

ng
ua

ge

 5.9 50.3 78.3 78.0 78.8 78.6 78.2 78.4

 5.4 20.6 62.5 65.3 66.2 66.1 67.1 66.5

 0.9  4.2 34.7 36.6 36.0 35.3 35.7 37.4

 3.1  6.4 31.4 33.5 35.4 32.6 36.7 33.9

 2.6  6.4 37.3 38.1 38.9 39.1 38.1 39.1

 3.4  5.6 30.2 30.3 31.1 31.3 31.1 30.0

Zero-shot parsing RoBERTA

Figure 2: Accuracy and LAS evaluated at each checkpoints.

Without fine-tuning, the average accuracy of XLNI is 39.7% for a three-ways classification task, and
the average LAS score is 3.6 for dependency parsing. We see the biggest leap in the performance
after 50K updates. While semantic similarity task profits significantly at 25K updates of the target
embeddings, syntactic task benefits with further fine-tuning the encoder. This is expected since the
target languages might exhibit different syntactic structures than English and fine-tuning encoder
helps to capture language specific structures. We observe a substantial gain in LAS from 25 to 40
LAS for all languages just after 25K updates of the encoder.

Language similarities have more impact on transferring syntax than semantics. Without tuning
the English encoder, French enjoys 50.3 LAS for being closely related to English, whereas Arabic
and Hindi, SOV languages, modestly reach 4.2 and 6.4 points using the SVO encoder. Although
Chinese has SVO order, it is often seen as head-final while English is strong head-initial. Perhaps,
this explains the poor performance for Chinese.

6 LIMITATIONS

While we have successfully adapted autoencoding pre-trained LMs from English to other languages,
the question whether our approach can also be applied for autoregressive LM such as XLNet still
remains. We leave the investigation to future work.

7 CONCLUSIONS

In this work, we have presented a simple and effective approach for rapidly building a bilingual LM
under a limited computational budget. Using BERT as the starting point, we demonstrate that our
approach produces better than mBERT on two cross-lingual zero-shot sentence classification and
dependency parsing. We find that the performance of our bilingual LM, RAMEN, correlates with
the performance of the original pre-trained English models. We also find that RAMEN is also a
powerful feature extractor in supervised dependency parsing. Finally, we hope that our work sparks
of interest in developing fast and effective methods for transferring pre-trained English models to
other languages.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot
cross-lingual transfer and beyond. Arxiv, abs/1812.10464, 2018.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning principled bilingual mappings of word
embeddings while preserving monolingual invariance. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2289–2294, Austin, Texas, November
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1250.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017. doi: 10.1162/tacl a 00051.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The math-
ematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19
(2):263–311, 1993.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475–2485, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In ACL, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. Deep biaffine attention for neural dependency parsing.
In ICLR, 2016.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization
of IBM model 2. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 644–648,
Atlanta, Georgia, June 2013. Association for Computational Linguistics.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 866–875, San Diego, California, June 2016. Association for Computational Linguistics.
doi: 10.18653/v1/N16-1101.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K. Li. Universal neural machine translation for
extremely low resource languages. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 344–354, New Orleans, Louisiana, June 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/N18-1032.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, and Edouard Grave. Loss in trans-
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A APPENDIX

A.1 UNLABELED ATTACHMENT SCORES AND LABEL ATTACHMENT SCORES

� fr ru ar hi vi zh

mBERT � 82.7 / 71.6 78.8 / 65.2 53.3 / 36.4 43.7 / 30.4 55.4 / 35.7 53.6 / 26.6

RAMENBASE

+ BERT � 84.1 / 76.8 80.2 / 66.1 50.4 / 32.9 46.0 / 33.0 56.1 / 36.8 59.4 / 29.7
ì 84.5 / 77.2 79.5 / 66.7 51.9 / 35.1 49.4 / 35.1 56.9 / 37.3 60.1 / 30.7

+ RoBERTa � 85.5 / 78.4 81.9 / 66.5 55.9 / 37.4 48.7 / 33.9 59.6 / 39.1 59.7 / 30.0
ì 85.5 / 78.1 81.4 / 67.1 53.6 / 35.2 49.9 / 34.1 58.7 / 38.8 61.2 / 30.7

RAMENLARGE

+ BERT � 85.1 / 78.2 74.2 / 61.0 55.5 / 38.8 48.4 / 36.2 56.2 / 37.2 61.8 / 31.3
ì 84.7 / 78.1 79.5 / 65.7 51.5 / 36.4 50.5 / 37.4 58.8 / 38.2 61.1 / 31.3

+ RoBERTa � 86.5 / 79.4 82.8 / 68.5 53.6 / 39.3 49.3 / 32.5 58.9 / 39.7 61.0 / 31.6
ì 86.5 / 79.8 81.5 / 66.6 58.6 / 42.4 56.0 / 39.5 59.7 / 39.6 60.2 / 29.3

Table 5: UAS/LAS scores for zero-shot dependency parsing. ì indicates parallel data is used for
initialization. Punctuation are removed during the evaluation.

11


	Introduction
	Bilingual Pre-trained LMs
	Initializing Target Embeddings
	Fine-tuning Target Embeddings
	Fine-tuning Bilingual LM

	Zero-shot Experiments
	Data
	Estimating translation probabilities
	Hyper-parameters

	Results
	Cross-lingual Natural Language Inference
	Universal Dependency Parsing

	Analysis
	Impact of initialization
	Are contextual representations from RAMEN also good for supervised parsing?
	How does linguistic knowledge transfer happen through each training stages?

	Limitations
	Conclusions
	Appendix
	Unlabeled Attachment Scores and Label Attachment Scores


