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ABSTRACT

We propose a multi-agent learning approach for designing crowdsourcing contests
and all-pay auctions. Prizes in contests incentivise contestants to expend effort on
their entries, with different prize allocations resulting in different incentives and
bidding behaviors. In contrast to auctions designed manually by economists, our
method searches the possible design space using a simulation of the multi-agent
learning process, and can thus handle settings where a game-theoretic equilibrium
analysis is not tractable. Our method simulates agent learning in contests and eval-
uates the utility of the resulting outcome for the auctioneer. Given a large contest
design space, we assess through simulation many possible contest designs within
the space, and fit a neural network to predict outcomes for previously untested
contest designs. Finally, we apply mirror descent to optimize the design so as
to achieve more desirable outcomes. Our empirical analysis shows our approach
closely matches the optimal outcomes in settings where the equilibrium is known,
and can produce high quality designs in settings where the equilibrium strategies
are not solvable analytically.

1 INTRODUCTION

Many economic allocation decisions are determined by a competition for a prize based on expending
costly efforts. For example, multiple political candidates may engage in costly political campaigns,
but only one candidate wins; though only the winner is rewarded, other candidates cannot recover
their expenditure. Similarly, Netflix offered a prize of one million dollars in an open competition
to improve its recommender system (Bell & Koren, 2007). Again, only the winning entry gets the
prize, but other participants incur the cost of their effort. Such contests are modelled in the economic
literature as all-pay auctions (Vojnović, 2015), where players simultaneously bid for a fixed prize;
the highest bidder receives the prize, and every player, including non-winners, pay their bid.

A key question regarding crowdsourcing contests (or equivalently, all-pay auctions) is how to design
the contest to optimize the utility achieved by the principal. 1 For instance, should the principal give
all the reward to the top entry, or does it make sense to give some of the reward to the top entry,
and some for the second best? Earlier research has investigated how different contest designs affect
the utility of the principal (Archak & Sundararajan, 2009; DiPalantino & Vojnovic, 2009; Gao et al.,
2012; Chawla et al., 2015). Such work examines a specific model of the all-pay auction given
as a normal-form game and analytically solves for the Nash equilibrium of the bidding strategy,
expressed as a probability distribution over the possible bids. This approach has multiple limitations.
First, economists have only managed to solve for the Nash equilibrium under very specific auction
designs. Secondly, in many settings, participants are likely to adjust their bidding strategy by using
simple learning behaviors based on their experience (Gneezy & Smorodinsky, 2006; Anderson et al.,
1998; Nanduri & Das, 2007), so one cannot always assume the Nash equilibrium behaviour as a
model of participants’ behavior when designing the contest.

Our Contribution: We propose a machine learning method for designing crowdsourcing con-
tests, investigating how the principal’s utility is affected by the reward allocation. By simulating the
behavior of learning participants, and predicting the outcomes of contests with a neural network, our
approach constructs a differentiable model for the principal’s utility under various contest designs.

1The all-pay auction literature sometimes refers to the principal as the auctioneer.
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Given the model, we then optimize the design by employing mirror descent (Beck & Teboulle, 2003;
Nemirovsky & Yudin, 1983), which allows optimizing the design while adhering to the fixed budget
of the principal. Our approach is flexible: it can be applied to arbitrary mechanism design problems,
including analytically intractable settings. It allows using various models for the behavior of par-
ticipants. We apply fictitious play (FP) (Brown, 1951; Fudenberg & Kreps, 1993) or independent
reinforcement learning (Littman, 1994; Hu et al., 1998; Bu et al., 2008).

We empirically evaluate our framework on several auction design problems. We study opti-
mally allocating a fixed reward budget in the setting of contests with rank-order allocation of prizes,
where the utility of a submission has diminishing returns in effort.

We first examine contests with few participants and no performance noise, for which earlier research
characterized the Nash equilibrium behavior (Baye et al., 1996; Cohen & Sela, 2008; Sisak, 2009).
We find that simulating participants’ behavior using fictitious play closely agrees with the Nash
equilibrium prediction, 2 and our framework identifies a contest design near the optimal design
prescribed by the economic equilibrium analysis. 3

Finally, we investigate contests where the performance of a participant’s entry is determined by their
exerted effort perturbed by random noise. Such uncertainty can be a more realistic model of contests,
but the Nash equilibrium behavior is unknown, highlighting the advantage of using our simulation
based approach. We show that designs with multiple prizes outperform awarding a single first prize
in terms of principal utility. As the variance of the random noise grows, we find that the optimal
designs award larger second prizes, acting to protect bidders against the effect of the noise.

1.1 OPTIMIZATION GOAL AND CONTEST DESIGN SPACE

We consider maximizing the principal’s utility in a crowdsourcing contest (or equivalently, the rev-
enue of the auctioneer in an all-pay auction). We examine contests that award multiple prizes based
on the rank ordering of the performance of the participants. For instance, a contest may award a large
first prize to the best performing contestant, and a smaller runner-up prize to the second best per-
former. Offering more prizes could incentivise more participants to exert effort, however a smaller
top prize means that the maximum bid possible is also reduced.

Consider a contest with n bidders. The principal decides on a division of a fixed total prize w̄. The
prize awarded to the kth ranked player is denoted wk, so

∑n
k=1 wk = w̄. We insist that prizes are

decreasing with rank, i.e. that w1 ≥ w2 ≥ ... ≥ wn. Awarding a last-place prize only reduces
performance at equilibrium, as it reduces the incentive to exert more effort than other bidders, so we
set wn = 0. Bidders each choose a bid (their effort level), and the vector of all bids is denoted as b.
Effort is costly, so the payoff for bidder i is their prize winnings minus their effort:

si(b) =

n∑
j=1

wjxi,j(b)− bi

where xi,j(b) = 1 when player i’s submission is ranked jth in terms of its quality, and 0 otherwise.
Allocation is based on the ranking of the realized performance of the bidders. Some earlier work
considers the realized performance to be deterministic given the bidder’s effort (Baye et al., 1996),
whereas others model the performance as a nosiy, stochastic, function of the effort (Amegashie,
2006). We also consider the performance qi as a noisy function of the effort bi, indicating that
participants have uncertainty about the exact effectiveness of their effort in producing high quality
work. We model this uncertainty as random additive noise on the effort level: qi = εi + bi, where
εi is a random variable, drawn i.i.d for each contestant. We consider cases where εi’s distribution
is either uniform or a Beta distribution (α = β = 1

2 )) as well as the noiseless case (i.e. εi =
0). A bidding strategy σi of participant i is a distribution over the bid levels. A set of bidding
strategies σ = (σ1, . . . , σn) is a Nash equilibrium if for any bidder i and any alternative strategy σ̃i

2 FP is only known to converge to a Nash equilibrium in two-player zero-sum games (Papadimitriou &
Roughgarden, 2008), and we examine all-pay auctions, which are not zero-sum and have more than two partic-
ipants. Nonetheless, we empirically show that FP does converge to the Nash equilibrium bidding strategies in
the restricted settings where the Nash equilibrium is known.

3Simulations using multi-agent reinforcement learners, using simple REINFORCE (Williams, 1992) learn-
ers, exhibit noisier behavior. We discuss these results in the appendix.
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(alternative distribution over bid levels) we have si(σ) ≥ si(σ−i, σ̃i), i.e. given the bidding strategy
of others σ−i, no player i wants to unilaterally deviate from their strategy σi to any other strategy
σ̃i. It is only known how to derive Nash equilibria for specific all-pay auction domains.

Given the realized performance of each contestant, the principal receives a utility as a function u of
the maximum performance, i.e. u(maxi qi). The utility function u describes how the performance
of the bidders translates into value to the principal 4. We consider the case of diminishing marginal
returns on effort, modelled by a logarithmic utility function. Diminishing returns can also be used
to model risk-aversion of the principal. We model a fixed entry cost of b that does not contribute to
the solution quality 5 Finally, we assume that the principal has some existing default solution with
a utility of 0. If no bid is better, the principal uses the default solution and receives a utility of 0.
Hence our principal’s utility function is u(q) = max(log(a(q − b)), 0), where a is a scale factor.

Goal: we seek to find the allocation w = (w1, . . . , wn) of the total prize that maximizes the princi-
pal’s expected utility Eπ(u(maxi qi)) (given how participants would behave in the resulting contest).

Multiple Nash equilibria may exist in rank-allocation auctions. We focus on the symmetric case,
where all bidders use the same strategy, a distribution over bids between 0 and the maximum prize
available. In the noiseless case, theoretical analysis of the symmetric Nash is possible; for fewer
than 5 bidders the density function of the symmetric equilibrium can be derived exactly, while for
larger numbers of bidders it can only be sampled from. We present this analysis in appendix C.

2 METHODS

Our approach for automating the contest design process is illustrated in Figure 1. Shortly, we sim-
ulate agent learning in contests under various designs and record the resulting utilities. Next, we
generalize from the training data by fitting a parameterized mapping from designs to utilities. Be-
cause the mapping is differentiable, it allows gradient based optimization in the continuous space of
designs, so we apply an optimization procedure to identify the optimal design under the model. We
provide a detailed discussion of our method, with a formal description in Algorithm 2.

We begin by investigating a set D of possible possible contest designs. As discussed in Section 1.1,
a design for n bidders is characterized by the reward distribution w = (w1, . . . , wn), lying on the
simplex (i.e.

∑n
i=1 wi = 1). Given a design d ∈ D, our framework simulates how agents would

learn to bid under this design. For the simulation, we use fictitious play (Brown, 1951), one of the
most prominent models for how an agent may learn and adapt their strategy; We also discuss other
alternatives such as independent multi-agent reinforcement learning (Littman, 1994). We emphasize
that our method is flexible and may use any model for agent learning in our simulation.

For a design d ∈ D, the output of the simulation are the bidding strategies σd of agents under this
design, where σd is a distribution over the bid levels. Given the bidding strategies σd and contest
simulation, we can also determine the expected utility ud for the principal, as given in Section 1.1
(the subscript d indicates the bidding strategies and the principal’s utility depend on the contest
design d). By performing the simulation for many designs d1, . . . , dk chosen from the design space
D, we obtain a simulation dataset {(di, udi)}ki=1 , where di ∈ D is a design and udi is the expected
utility the simulation shows it would generate for the principal (shown in the left of Figure 1).

Using the simulation dataset, we train a differentiable model to predict the principal’s utility ud
under a contest design d ∈ D (including designs not observed during training). In other words, the
true model for the principal’s utility is a function m : D → R, mapping any possible contest design
in D to the utility it would provide to the principal. We approximate m using a neural network,
trained on simulation data, yielding the approximate function mθ : D → R (where θ are model
parameters). We use a simple feedforward network trained on many auction designs (see full details
regarding architecture and training in Appendix B), depicted in the middle of Figure 1.

Given mθ, we aim to identify designs resulting in high utility for the principal; Our goal is thus
to “reverse engineer” the model, seeking inputs causing the model to output a high value reflecting

4In the noiseless case, when u is invertible this is equivalent to specifying a cost function c(bi) on the bid
where c = u−1, as done in previous work (Vojnović, 2015).

5For instance in the Netflix competition, contestants had to perform some work just to enter the contest, e.g.
downloading data or reading documentation, efforts that provide no value to the principal.
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high utility to the principal. The model is differentiable, so we can calculate the gradient of the
output with regard to the inputs∇wmθ(w), allowing gradient-based optimization. A key challenge
here is that the input design (w1, . . . , wn) must respect the principal’s budget, i.e.

∑n
i=1 wi = w̄.

As illustrated on the right of Figure 1, we perform the optimization while adhering to the principal’s
budget by employing a form of entropic mirror ascent (Beck & Teboulle, 2003), given in Algorithm 1
below. We now describe the data generation (Step 1) and design optimization (Step 3) in more detail.

Fit Differentiable Model

--- design ---

utility

Simulate Agent 
Learning and 

Outcomes under 
Different Designs
{(Design, Utility)i}

Optimize Over Designs

xk+1← xk + 𝛼∇U(xk)

Algorithm 1

Figure 1: Diagram of the contest design process (Algorithm 2). Step 1) Simulate contests and agent
learning to determine the utility of possible designs. Each data point represents an (contest design,
utility) pair. Step 2) Fit a deep network to predict utility given contest design. Step 3) Optimize the
output (utility) over the input (contest design) of the deep network to find the optimal design.

2.1 DATA GENERATION

We generate data to train the model mθ by simulating the learning process of agents in contests
of a given design. The simulated contest receives bids as input and returns the rewards earned by
the participants, as well as the principal’s revenue. We use FP (Brown, 1951) as a model of agent
learning. In FP, each the agents adjust a distribution over discrete bid levels by computing the best
response to historical play. We use FP as it is a well-established model of agent learning in strategic
settings. However, we emphasize that there are many alternative algorithms that can be used as the
simulation method in our framework.

Multi-agent independent RL (MARL) is an appealing simulation alternative. We discuss how our
empirical results change as we switch from FP to MARL in the appendix. Various surveys contain
a detailed comparison of FP, MARL and other methods (Claus & Boutilier, 1998; Shoham et al.,
2003; Yang & Gu, 2004). In 3-bidder auctions, we found that MARL agreed with Nash for large
first prizes (≥ 0.8w̄), but deviated significantly from Nash with smaller first prizes (≤ 0.7w̄)

2.2 DESIGN OPTIMIZATION

As discussed in Section 1.1, the contest design space is a convex set, the simplex
∑n
i=1 wi = w̄.

Entropic Mirror Ascent (Beck & Teboulle, 2003) is a non-euclidean gradient ascent method from the
convex optimization literature, specifically designed for simplex constraints. The optimizer update
rule for a design, w is: w ← softmax(log(w) + η∇mθ(w)) where mθ(w) represents the neural
model’s predicted utility for input design w. By inspection, w remains on the simplex after the
update and log(w) is always defined as long as w = w0 is initialized to the interior of the simplex.

The simplex constraint for w = (w1, . . . , wn) is insufficient. Having prizes that are not monotoni-
cally decreasing in rank gives participants an incentive to attempt to obtain a lower rank (as they get
a higher prize for exerting less effort). Hence, we want designs with strictly monotonically decreas-
ing prizes and zero last prize (giving a prize to the lowest quality submission is wasteful, causing
lower efforts). We propose a modified entropic mirror ascent procedure to constrain iterates to this
region of the simplex with a transformation. For example, in an (n=4) four bidder contests, let
w = [z1 + z2 + z3, z2 + z3, z3, 0] where zi > 0. zi denotes the marginal increase of the prize from
that of rank i−1 to that of rank i. This sequencew is strictly monotonically decreasing. The simplex
constraint implies z1 + 2z2 + 3z3 = 1. Let e be the vector of coefficients, e.g., e = [1, 2, 3], and
define z̃i = eizi. Then z̃ lives on a simplex. We can run entropic mirror descent on z̃ and transform
back to z with z = z̃/e. We formally express this idea in the transformation given in Algorithm 1
where � and � denote element-wise multiplication and division respectively, ∆n

int denotes the in-
terior of the n−1 dimensional simplex, w[i:j] = [wi, . . . , wj−1], softmax(y) = eyi∑

j e
yj , rev

reverses an array, and cumsum(y) denotes the cumulative sum, i.e., [y1, y1 + y2, . . . ,
∑
j yj ].
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Algorithm 1: Monotonic Entropic Mirror Ascent (M-EMA)

INPUT: initial design w0, with w0[0:n−1] ∈ ∆n−1
int , utility neural netmθ(w): Rn−1→R, number

of optimization iterations K, learning rate η.
z = w[0:n−1] − w[1:n]
e = [1, 2, . . . n− 1]
for k = 1 : K do
zk+1 ← softmax(log(e� zk) + η∇zmθ(zk) � e) � e

end for
wK [0:n−1] = rev(cumsum(rev(z)))
OUTPUT: wK

2.3 CONTEST DESIGN USING SIMULATION, LEARNING AND OPTIMIZATION

Algorithm 2 describes the overall contest design optimization method, described informally in the
beginning of Section 2. It samples contest designs (we use a Dirichlet distribution Dirn−1(α=1)),
uses FP to simulate agent learning on each design, trains a neural network for predicting the princi-
pal’s revenue and finally uses Algorithm 1 to optimize the design.

Algorithm 2: Neural Auction Design

INPUT: n learning agents (bidders), utility metric, presumed optimal design w0, with
w0[0:n−1] ∈ ∆n−1

int , empty dataset D, number of auction simulations M , untrained neural net-
work mθ(w), number of optimization iterations K.
for m = 1 : M do

Sample design d ∈ D: w[0:n−1] ∼ Dirn−1(α=1), w[n−1] = 0. Sort x (decreasing).
Use FP to simulate contest until convergence, obtaining participant strategies σ.
Fix agent strategies σ, simulate contests to compute expected auctioneer’s utility ud(σ).
Record (design d, expected utility ud) pair to dataset K.

end for
Train neural network, mθ(w), to regress on M samples from K.
Optimize design using Algorithm 1, w∗ ← M-EMD(w0,mθ)
OUTPUT: w∗

3 EXPERIMENTS

Section 1.1 describes various assumptions one can make regarding the performance noise model
and the utility of the principal in crowdsourcing contests. We applied our proposed frame-
work to optimize the design of crowdsourcing contests under various such assumptions. In all
our experiments, we consider the principal’s utility function to be the one given in Section 1.1,
u(q) = max(log(a(q − b)), 0), which reflects a risk averse principal, with a minimal quality bar.

Section 3.1 shows empirical results for a domain with three or four bidders, and noiseless perfor-
mance. As discussed in Section 1.1, in this model the symmetric Nash equilibrium strategy is known.
Our analysis shows that the FP simulation results in agent behavior that is extremely close to the
Nash equilibrium prediction. Further, after fitting a differentiable model and optimizing the design
using Algorithm 2 we obtain the same optimal design prescribed by equilibrium based analysis.

Section 3.2 considers settings where the equilibrium behavior is not known, so standard economic
techniques struggle to recommend an optimal design. We consider settings with 10 participants and
various performance noise models, and apply our framework to identify the optimal design. We
show that our designs award prize money to a few top entrants. As the variance of performance
noise increases, optimal designs award more prizes, and larger prizes to the runner-up in the contest.

3.1 MODELS WITH KNOWN EQUILIBRIUM BEHAVIOUR

Consider a setting with three or four bidders, and with no performance noise. The first step in our
framework is simulating agents who learn from repeated interaction in the contest, by applying FP.
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We first investigate whether the predictions of FP agree with the Nash equilibrium strategies. In
general FP may not converge to a Nash equilibrium as an all-pay auction is not a constant-sum or
dominance solveable game (Jafari et al., 2001; Shamma & Arslan, 2005). Furthermore, the solution
found with fictitious play is to a discrete version of the auction (where bids take one of a discrete set
of values), whereas the analytic solution is for the case where bids can take any real value.

The top left of Figure 2 shows the symmetric Nash equilibrium bidding strategy, as the cummulative
distribution function (CDF) of the distribution over bid levels, under multiple three bidder contest
designs, characterized by the prize for the top rank (the remainder prize goes to the second rank,
and the prize for the third rank is zero). The remaining plots of Figure 2 each examine one design
(characterized by the first rank prize), and plot the bid CDFs of the Nash equilibrium versus those
outputted by FP. Figure 2 shows that the FP output closely matches the Nash equilibrium.

Figure 2: Bidding strategy CDFs. The top left plot shows the CDFs for each of five different contest
designs assuming the bidder plays the Nash distribution. The first prize is listed in the legend; the
second prize equals one minus the first; no prize is given to the third bidder. The remaining plots
compare the Nash CDF with the CDF learned by fictitious self-play for different first prize amounts.

The next phase in our pipeline takes the dataset of simulation outcomes under various designs, and
trains a neural network to predict the principal’s utility in any given contest design (attempting
to generalize to unsimulated designs). Figure 3 compares the principal’s utility under Nash bidding
against the prediction of our trained model for various designs (characterized by the first rank reward,
shown on the x-axis). We observe that the simulation results for the principal’s utility are consistently
very slightly below the Nash-based analytical solution. The model has an almost perfect fit to the
simulation results. The final step of our method is optimizing the contest design given the model
(Algorithm 1). The optimal design is marked in Figure 3, for both the Nash-based curve and our
method. These match almost perfectly (the location on the x-axis is almost identical), indicating our
method finds the same optimal design as prescribed by the Nash equilibrium analysis.

Finally, we explore a four bidder contest to investigate the effect of possible designs on the princi-
pal’s utility. Figure 4 shows a heatmap for the principal’s utility for possible designs. The x-axis is
the reward w1, the prize for the first rank, and the y-axis is the reward w2 for the second rank (the
lowest rank gets no reward w4 = 0, and the third rank reward is w3 = w−w1−w2). Figure 4 shows
that the utility is fairly robust to designs with a high first prize, i.e., w1 ∈ [0.7− 0.9] and third prizes
w3 < .1. However, good designs with a low first prize (e.g. w1 < 0.7) offer no reward to the third
rank. This indicates that in settings with many participants we might expect a greater distribution of
reward across top prizes, but the principal’s utility may be fairly robust around the optimal design.

3.2 MODELS WITH UNKNOWN EQUILIBRIUM BEHAVIOUR

We explore contests where the each participant’s bid is perturbed by random noise to yield their
performance. We consider noise following either a uniform or a Beta( 12 ,

1
2 ) distribution. Due to the

noise distribution, the Nash equilibrium bidding strategy is not known for this setting. We apply our
method on such contests, and investigate how the optimal design is affected by the noise distribution.

Figure 5 shows heatmaps of the principal’s utility in the noisy setting (uniform noise on the left and
Beta noise on the right), under different contest designs. Similarly to Figure 4 the axes are the w1

and w2, the last prize is w4 = 0, and w3 = 1 − w1 − w2. Figure 5 shows that as more noise is
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Figure 3: Principal’s utility as a function of the
first rank prize, as given by the analytical Nash
CDFs, the simulation data, and the trained neural
network. Markers denote maxima.

Figure 4: Heatmap for the principal’s utility for
various four bidder contest designs. The star
marks the optimal design.

introduced to the bids, the optimal designs tighten around more evenly distributing reward across
the top two bids (in both cases in the optimal design w3 = 0). In other words, as the noise increases,
the optimal design transfers more reward from the top rank to the one below it.

Figure 5: Heatmaps for the principal’s utility in four bidder contests with realized bids drawn from
an interval [bid−d,bid+d] either (L) uniformly or (R) according to Beta( 12 ,

1
2 ), d = 0.06. Plotted on

top of the heatmap are arrows to the optimal designs for different values of d annotated on the map.

We now investigate contests with more participants, showing how the performance noise affects
the optimal design. Figure 6 shows the optimal design for n = 10 participants, under different
performance noise levels. We only illustrate the top 3 prizes in a 3D plot (lower ranks typically get
very little or no reward under the optimal design). Figure 6 shows that increasing the noise makes
the optimal design spread the reward more evenly among the top ranks. Table 1 shows the same
effect as a table, giving the optimal design and inequality in prize levels.

Finally, we investigate the limitations of our approach. Our framework may suggest sub-optimal
design due to multiple issues. First, the simulation of how participants learn may not be an accurate
model of their behavior. Second, the neural network may may have an approximation error in
predicting the principal’s utility. Third, the optimization procedure (Algorithm 1) may converge
on a local rather than global optimum. Figure 7 illustrates the generalization error contrasting the
principal’s utility when running the FP simulation and when predicting it using the trained model on
previously unobserved designs. We note that the neural network’s predictions are slightly different
from the simulation data, though they follow similar trends. Further, Figure 7 also marks the location
of the optimized design suggested by Algorithm 2 with a star, showing how slight errors occur due
to convergence to a local rather than global optimum (e.g. in the figure for the third rank prize).

4 RELATED WORK AND CONCLUSION

Crowdsourcing contests and all-pay auctions have received significant attention in the economic
literature, including recently published surveys and books focusing on the topic (Vojnović, 2015;
Dechenaux et al., 2015). We propose a neural approach to designing crowdsourcing contests. Earlier
work has carried out equilibrium analysis for several restricted models of all-pay auctions (Milgrom

7



Under review as a conference paper at ICLR 2020

Figure 6: First three prizes of the optimized ten
bidder contest plotted on top a simplex for refer-
ence. Each point denotes the optimal design for
a different noise level. The square marks zero
noise with the trajectory ending at the star with
realized bids drawn uniformly from bid ±0.06.

w w∗
0 w∗

1 w∗
2 Gini

0.000 1.000 0.000 0.000 0.900
0.002 0.916 0.084 0.000 0.883
0.004 0.850 0.075 0.075 0.855
0.006 0.848 0.152 0.000 0.870
0.008 0.733 0.260 0.004 0.844
0.010 0.500 0.500 0.000 0.800
0.020 0.500 0.500 0.000 0.800
0.030 0.500 0.500 0.000 0.800
0.040 0.471 0.325 0.204 0.753
0.050 0.461 0.319 0.209 0.746
0.060 0.443 0.319 0.152 0.724

Table 1: First three prizes of the optimal
ten bidder auction given by Algorithm 2.
Prizes given to fifth and higher are all zero.
Width of the uniform distribution around
bidder’s bid is specified in w column; Gini
index of each design is in the last column.

Figure 7: Utility for the ten bidder contest vs the top four prizes with realized bids drawn uniformly
from bid ±.06. Note plots are shown on different scales and for different slices of the design space.

& Weber, 1982; Baye et al., 1993; 1996; Krishna & Morgan, 1997; Amegashie, 2006; Siegel, 2009),
including the impact of risk-aversion (Fibich et al., 2006; Gao et al., 2012). Empirical evaluation of
how people actually bid in such settings has revealed significant discrepancies with the predictions
of the equilibrium based analysis (Rapoport & Amaldoss, 2004; Gneezy & Smorodinsky, 2006;
Liu et al., 2014). Such empirical work suggests that people tend to employ simple learning heuris-
tics (Rapoport & Amaldoss, 2004; Dechenaux et al., 2015).

We examine a principal deciding on a rank reward allocation, in order to maximize its utility. This
broadly falls in the field of mechanism design or auction design (Myerson, 1981; Nisan & Ro-
nen, 2001), a subfield in economics, seeking to decide the “rules of the game” so as to achieve
desired outcomes. Typically, auctions are designed manually by economists seeking to maximize
revenue (Myerson, 1981; Bulow & Roberts, 1989; Roth, 2002). In contrast, we automate the pro-
cess, similarly to the recent field of automated mechanism design (Conitzer & Sandholm, 2002;
Sandholm, 2003; Conitzer & Sandholm, 2004; Hajiaghayi et al., 2007; Guo & Conitzer, 2010).

We use machine learning to search the space of designs, akin to recent deep-learning mechanism de-
sign frameworks proposed for other auction types (Dütting et al., 2017; Feng et al., 2018; Manisha
et al., 2018; Tacchetti et al., 2019). In contrast to these, we leverage agent learning of the auc-
tion (Mizuta & Steiglitz, 2000; Vorobeychik & Wellman, 2008). Learning agents are increasingly
capable of solving complex problems; using such capable agents for mechanism design holds the
promise of optimizing the design of mechanisms in more complex settings than previously possible.

Our empirical analysis shows the promise of automated mechanism design based on deep learning.
However, our technique has several limitations, such as the dependence on a good model for the
learning of agents, and errors introduced by inaccurate function approximation and converging on
local optima. Several questions are open for future research. Can our methods generalize well to
other mechanism design domains such as other types of auctions? What are good models of agent
learning in other strategic settings? Do such models do a good job in characterizing the bidding
behavior of human participants? Finally, can better methods be devised to optimize over designs?
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A SIMULATIONS USING FICTITIOUS PLAY AND INDEPENDENT
MULTI-AGENT REINFORCEMENT LEARNING

The discussion in the main text has focused no applying Fictitious Play (FP) (Brown, 1951; Fuden-
berg & Kreps, 1993) for the simulation phase. As we discussed, an alternative is applying indepen-
dent multi-agent reinforcement learning (Littman, 1994; Hu et al., 1998; Bu et al., 2008). We now
provide an empirical analysis of the choice regarding the simulation phase.

We first note that FP operates by applying a simple learning rule: each agent assumes the opponents
play a stationary (mixed) strategy. In each each round, every player chooses the best response to the
empirical frequency of play of their opponents. The key parameter determining the computational
cost of the simulation is this the number of such simulation rounds. Figure 8 investigates the impact
of the number of rounds on the learned bidding strategies (distribution over bid levels), contrasting
it with the Nash equilibrium for the game. It shows that same results as Figure 2 in the main text,
but for varying number of FP rounds and discretization granularities for bid levels.

Figure 8: This figure compares the bidder CDFs. The top left plot shows the CDFs for each of five
different auction designs assuming the bidder plays the Nash distribution. The first prize is listed
in the legend; the second prize equals one minus the first; no prize is given to the third bidder. The
remaining plots compare the Nash CDF with the CDF learned by fictitious self-play for different first
prize amounts. Figures (b-d) also show the effect of training iterations and discretization granularity
on the final CDF. The arrow in Figure (c) highlights a common trend where the CDF converges
to Nash from above as a finer discretization is introduced. In other words, coarser discretizations
lead to under bidding and, in turn, underestimates of the auctioneer utility. Figure (d) shows that
increasing training iterations reduces error, but in a less structured manner than bid granularity.

Figure 8 indicates that the number of FP rounds and the granularity of discretization of bid levels
have an impact on the learned bidding strategies. However, the results are somewhat robust to the
choice of these parameters, yielding relatively similar bidding strategies under many settings (and
in most settings the results are qualitatively very similar to the Nash equilibrium).

We now turn to investigate using multi-agent reinforcement learning (MARL) for the simulation
phase. Independent MARL based methods have recently become a very popular means of modeling
agent behavior in multi-agent environments. Such approaches have the advantage of being simple
and relatively easy to implement. We have used independent REINFORCE agents (Williams, 1992),
and investigate the bidding strategies learned by the agents. The bidding strategies learned using
MARL are shown in Figure 9, and are contrasted with both the Nash equilibrium bidding strategies
and the bidding strategies learned via FP (similarly to Figure 2 and Figure 8). These results show
that for large first prizes (where the first prize is 0.8 or higher), all three methods yield a relatively
similar distribution. However, there is a significant deviation for lower top prizes, where the RL
distribution has a step function curve.

The results in Figure 9 indicates that the model for agent learning may have a significant impact
on the assumed bidding strategies (and hence on the choice of a design). Ultimately, we feel like
this is a modelling decision on the user’s side. In other words, in order to choose a good design,
one must first determine what is a reasonable model of the learning behavior of agents. In the
case of crowdsourcing contests (all-pay auctions), using the FP learning rule yields results that
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Figure 9: This figure compares the bidder CDFs. The top left plot shows the CDFs for each of
five different auction designs assuming the bidder plays the Nash distribution. The first prize is
listed in the legend; the second prize equals one minus the first; no prize is given to the third bid-
der. The remaining plots compare the Nash CDF with the CDFs learned by fictitious self-play and
REINFORCE respectively using their optimal hyperparameter configurations (iterations, bid levels,
learning rate, batch size). Both REINFORCE and fictitious self-play agree closely with the Nash
equilibrium when the first prize ≥ 0.8. For smaller prizes, there is a larger discrepancy. We see that
FP is consistently closer to the Nash equilibrium than REINFORCE.

are more similar to those used in traditional Nash equilibrium based analysis. In contrast, if one
believes agents are more likely to be reinforcement learners, an alternative bidding strategy is a
likely outcome. One possible choice is a conservative approach, where one only considers design
where there is a consensus between simulation learning rules (e.g. FP or MARL). In this case, one
may opt for a large top prize, as in this case, the different models for agent learning behaviour agree
with each other.

B DESIGN PROCESS ARCHITECTURE AND HYEPRPARAMETERS

To aid reproducability, we now provide full details regarding our network architecture and hyperpa-
rameters.

For our neural network mθ, we have used a simple feedforward network with 2 hidden layers, 256
neurons per layer, and ReLU nonlinearities. We trained the network for 10, 000 iterations using
the Adam optimizer Kingma & Ba (2014) with a learning rate=1e-3, using with default β1 = 0.9,
β2 = 0.999 and mini-batches of size 51 for the 3 bidder auction and 1000 for the 10 bidder auction.

Design Optimization (E-EMA): We initialized designs such that the first prize was given 0.9
and all remaining marginals were given a constant zi>1 = ε. We performed 100, 000 iterations of
E-EMA with a learning rate of 0.1 for the 3 bidder auction and 200, 000 iterations with a learning
rate of 0.001 for the 10 bidder auctions.

Principal Utility Fuction: We set a = 50 and b = 0.1 (see Figure 10).

Fictitious Play: We ran fictitious play for 100, 000 iterations with a discretization of 1001 ef-
fort levels for the bid interval [0, 1]. We were searching for a symmetric equilibrium so all bidders
played using the same bid distributions, i.e. using fictitious self-play.

C ANALYTIC RESULTS ON NOISELESS AUCTIONS

We now very briefly discuss how one can solve for the closed form bidding strategies in crowdsourc-
ing contests. A more detailed discussion of this can be found in contest theory textbooks (Vojnović,
2015) and in various papers on all-pay auctions (Milgrom & Weber, 1982; Baye et al., 1993; 1996;
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Figure 10: The principal’s utility function: max(log(a(q − b)), 0).

Krishna & Morgan, 1997; Siegel, 2009; DiPalantino & Vojnovic, 2009; Horton & Chilton, 2010;
Zheng et al., 2011). 6

We are interested in finding the symmetric Nash equilibrium for an all-pay auction, as discussed in
Section 1.1. In a symmetric Nash equilibrium, all bidders use the same bidding strategy σ, which
is simply a distribution over the bid levels. In a symmetric Nash equilibrium, no bidder i wants to
unilaterally deviate from σ to an alternative bidding strategy σ̃i.

We write the CDF of a bidding strategy as B(b), and attempt to identify the symmetric Nash equi-
librium. First note that this equilibrium strategy is atomless. If it weren’t, agents bidding at the
atom could achieve non-infinitesimal increases in their expected prize money by increasing their bid
infinitesimally so as to outperform all other bids at the atom, therefore B would not be Nash.

The expected prize money from bidding b when all bidders are following the bidding strategy B is
given by:

n∑
j=1

wjGj(B(b)), where Gj(z) =

(
n− 1

j − 1

)
zn−j(1− z)j−1

Each term of the sum is simply the value of the jth prize wj times the probability Gj(B(b)) that a
bid of percentile B(b) achieves rank j against a set of n− 1 independent bids drawn from B.

Proposition: The symmetric Nash equilibrium results in an expected value of 0 to all participants.

Proof: B(0) = 0 and B is continuous because B is atomless.

We write the expected utility when bidding b against opponents bidding according to B as s(b;B)

Choose δ > 0. The value s(b;B) of bids b < B−1(δ) is bounded by the expected prize money
under those bids, i.e.

s(b;B) ≤
n∑
j=1

wjGj(B(b)) ≤
n∑
j=1

wjGj(δ)

Since Gj(δ) tends to 0 as δ tends to 0, for any ε > 0, ∃δ > 0 s.t. bids b ≤ B−1(δ) have an expected
value s(b;B) ≤ ε. Furthermore, because δ > 0, some such bids are in the support of B. Therefore

6Some prior work, such as Amegashie (2006), has made progress analytically for specific noise models, but
not for the models considered in this work.

14



Under review as a conference paper at ICLR 2020

there are bids in the Nash with value arbitrarily close to 0. Therefore no bid b̃ can have s(b̃;B) > 0,
since this would imply that there were bids that outperformed bids in the support of the Nash.

Finally note that a bid of 0 cannot win a prize, but also incurs no cost, so has a value of 0. Therefore
the value to bidders of the Nash must also be at least 0. �

The proposition tells us that the symmetric Nash equilibrium B(b) satisfies:

s(b;B) =

n∑
j=1

wjGj(B(b))− b = 0 (1)

This equation is a polynomial of order n− 1 in B(b) for each value of b. Polynomials of up to order
4 can be solved analytically, therefore the CDF of the symmetric Nash can be expressed analytically
for auctions with 5 or fewer bidders.

For any number of bidders, we can easily express the inverse-CDF using equation 1 as follows:

n∑
j=1

wjGj(B(b))− b = 0

b =

n∑
j=1

wjGj(B(b))

B−1(y) =

n∑
j=1

wjGj(y)

This allows sampling directly from the Nash equilibrium bid distribution in the noiseless setting, but
relies on the fact that the probability of winning with a bid of b depends on B only through the value
of B(b), which is not true in a noisy auction.

A final result of interest to this work concerns settings for which the optimal design in the noiseless
auction is to award the entire prize budget to the first place prize:

Theorem: If the principal’s utility function u : R+ 7→ R is strictly increasing, continuously dif-
ferentiable and its inverse u−1 is log-concave, then E[u(max bi)] under the symmetric Nash equi-
librium is maximized by allocating the entire prize budget to the first prize.

A proof can be found in Vojnović (2015).

Note however, that the inverse of log(a(x − b)) is nowhere log-concave for b > 0. Therefore the
utility function considered in this work is not covered by this theorem. Indeed, we often found
superior designs that awarded prizes to multiple places.
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