
Under review as a conference paper at ICLR 2020

CONTINUOUS ADAPTATION IN MULTI-AGENT

COMPETITIVE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In a multi-agent competitive environment, we would expect an agent who can
quickly adapt to environmental changes may have a higher probability to survive
and beat other agents. In this paper, to discuss whether the adaptation capability
can help a learning agent to improve its competitiveness in a multi-agent environ-
ment, we construct a simplified baseball game scenario to develop and evaluate the
adaptation capability of learning agents. Our baseball game scenario is modeled
as a two-player zero-sum stochastic game with only the final reward. We purpose a
modified Deep CFR algorithm to learn a strategy that approximates the Nash equi-
librium strategy. We also form several teams, with different teams adopting dif-
ferent playing strategies, trying to analyze (1) whether an adaptation mechanism
can help in increasing the winning percentage and (2) what kind of initial strate-
gies can help a team to get a higher winning percentage. The experimental results
show that the learned Nash-equilibrium strategy is very similar to real-life base-
ball game strategy. Besides, with the proposed strategy adaptation mechanism, the
winning percentage can be increased for the team with a Nash-equilibrium initial
strategy. Nevertheless, based on the same adaptation mechanism, those teams with
deterministic initial strategies actually become less competitive.

1 INTRODUCTION

Reinforcement learning has been successfully employed to solve various kinds of decision making
problems, such as game playing (Silver et al., 2017; 2018), robotics (Levine et al., 2016), and oper-
ation management (Han et al., 2017). An RL method typically finds the optimal strategy through the
interactions with a stationary environment, which is usually modeled as an MDP process. Neverthe-
less, in the real world, there could be multiple learning agents in the same scenario. The interactions
among these learning agents may make the environment no longer stationary from the standpoint of
each individual agent. Besides, if these agents are in a competitive relationship, we would expect
an agent who can quickly adapt to environmental changes may have a higher probability to beat
other agents. To discuss whether the adaptation capability can help a learning agent to improve its
competitiveness in a multi-agent environment, we choose a simplified baseball game as the scenario
to develop and evaluate the adaptation capability of learning agents.

A lot of games, like Chess (Silver et al., 2018), Go (Silver et al., 2017) and Atari games
(Bellemare et al., 2013; Mnih et al., 2015; Wang et al., 2016), only try to find the optimal action
at each state. In comparison, some complicated games, like baseball and basketball games, need to
take into account not only the current status but also the opponent’s possible strategies. Moreover,
the opponent’s strategy is typically time-varying. Hence, players should not only determine what to
do under different situations, but also need to dynamically adjust their strategies based on the obser-
vations from the opponent’s past actions. In a typical baseball game, for example, two competitive
teams play against each other based on their pre-determined initial strategies at the beginning of the
game. As the game proceeds, the teams continuously update their strategies based on the actions of
their opponents, trying to win the game. However, baseball games are inherently highly uncertain
while the number of interactions between the pitcher and the batters is rather limited. It is very tricky
for the teams to properly adjust their strategies based on a small number of interactions.

In this work, to discuss the adaptation issue in a multi-agent competitive environment, we intention-
ally construct a simplified baseball game scenario based on the MLB data on Statcast Search (MLB).

1

Under review as a conference paper at ICLR 2020

To focus on the impact of strategy adaptation over the winning percentage, we make the following
assumptions to simplify the problem.
1. We only focus on batting and pitching in our game scenario and treat fielding as the environment
which is based on the MLB data on Statcast Search.
2. We assume there are only one pitcher & batter in each team, rather than the typical 9-batter case.
3. We assume the pitcher and the batter have the same performance in pitching and batting across
different teams. The only difference is their strategies. Besides, they always perform normally and
we do not consider the case of abnormal performance in all games.
4. Both the pitcher and the batter have only five possible actions, as explained in the next section.

Based on the above simplifications, we manually form 13 teams, with different teams adopting
different playing strategies. We also purpose a modified version of the Deep CFR (Counterfactual
Regret Minimization) (Brown et al., 2019) algorithm to learn a strategy that approximates the Nash
equilibrium strategy. In total, we form 14 teams to analyze their adaptation capabilities.

In our simulation, each of these 14 teams plays the-best-of-three game against every other team for
many series. At the beginning of each series, each team plays based on its initial strategies. As the
game proceeds, each team follows the same strategy adaptation mechanism based on the observed
actions of its opponent. In our simulation, there are only three games at most for each pair of teams
to adjust their strategies. We then analyze the following two main issues about strategy adaptation.

1. With a small number of observations (three games at most for each pair of teams), can the
adaptation mechanism help in increasing the winning percentage?
2. If two competitive teams adopt the same adaptation mechanism during the game, what kind
of initial strategies can help a team to get a higher winning percentage?

The rest of the paper is organized as follows. In Section 2, we briefly describe the setup of our base-
ball game scenario and mention a few previous works about multi-agent problems and the adaptation
issue. In Section 3, we explain how we use a modified Deep CFR algorithm to learn an initial strat-
egy that approximates the Nash equilibrium strategy. After that, we explain our strategy adaptation
mechanism. In Section 4, we show the experimental result and discuss the two main issues men-
tioned above. In Section 5, we conclude what we have observed in our experiments and mention a
few issues that worth further study in the future.

2 BACKGROUNDS

2.1 SCENARIO DESCRIPTION

We first explain how we define a simplified baseball game for the analysis of strategy adaptation in
a multi-agent scenario. Even though all the following discussions are based on the baseball game
scenario, the deduced conclusions can be useful for similar multi-agent problems as well.

In every play of the baseball game, the pitcher aims at an expected target location and selects a pitch
type. On the other hand, the batter looks for specific types of pitches appearing in some preferred
attack zones. Both the pitcher and the batter select their actions for each pitch and, depending on the
result of their actions, the game proceeds to the next state. Specifically, we treat our baseball game
scenario as a two-player zero-sum stochastic game (multi-agent MDP) (Bowling, 2000) with only
the final reward (win or lose).

We first mention two examples to explain players’ different strategies under different situations.
Situation 1: 0 out, bases empty, 3 ball, 1 strike
Under this situation, the batter tends to be more selective or may even wait for a walk. On the other
side, the pitcher tends to pitch a fastball to the middle of the strike zone to avoid a walk. However,
if the pitcher has pitched to the middle too often, the batter may look for pitches in this zone to hit.
This will increase the probability of solid contact.
Situation 2: 1 out, bases full, 3 ball, 1 strike
Under this situation, the batter tends to be more aggressive since it is a good chance to score. On the
other hand, the pitcher might take advantage of the batter’s aggressiveness and pitch to the corner to
fool the batter. However, if the pitcher has pitched to the corner too often, the batter may shrink his
attack zone to avoid being fooled.

2

Under review as a conference paper at ICLR 2020

In Figure 1, we illustrate the flow of our baseball game. The pitcher and the batter are the two
learning agents to be trained to play against each other. Here, the Pitching Control represents the
pitcher’s ability in ball control. As the pitcher aims to pitch at a target location, we model his Pitching
Control as a Gaussian distribution centered at the target location with a manually pre-determined
variance. The actual pitched location is then sampled from this distribution.

Figure 1: Flow of baseball game scenario.

On the other hand, the Batting Result Distribution P (results|zones, type, ab) models the prob-
ability of the possible batting results. Here, we classify all the possible batting results into 32
categories, listed in C, with respect to different zones (represented by different numbers in Fig-
ure 2), pitch type, and the batter’s action ab. To model this Batting Result Distribution, we
first obtain the distribution P (results|zones, type) based on the MLB data on Statcast Search.
After that, we heuristically convert the distribution P (results|zones, type) into the distribution
P (results|zones, type, ab) for every possible action ab according to the athletic ability of the bat-
ter. Since the average MLB fastball travels at 95 mph, reaching home plate in just 0.4 second, it is
very difficult for human beings to react within such a short period. Hence, the batter typically focus
on a specific zone and a specific pitch type to swing in order to increase the probability of solid con-
tact. Generally, the smaller the batter sits on the hitting zone, the more chance he can make a solid
contact if the ball goes into the pre-selected zone. In Figure 1, the fielding distribution models the
probability of the next state when a batting result occurs at a certain state. Again, this distribution is
modeled based on the MLB data on Statcast Search.

In our baseball game, we denote each state s by a 6-tuple vector: (inning, runs, outs, runners on,
strike, ball). To simply the game, both the pitcher and the batter have only five possible actions, as
listed in Table 1. These actions are defined based on the pitcher’s Pitch Location and the batter’s
Attack Zone, as illustrated in Figure 2. Here, we assume the pitcher only aims at three possible spots
(the green dots) on pitcher’s Pitch Location and only has two types of pitch, fastball or curveball.
Due to the uncertainty in pitch control, the pitched ball actually spreads around these three spots.
On the other hand, based on the pitch type and the location of the pitched ball, the batter has five
possible actions.

Figure 2: Strike Zone.

Pitcher’s action Batter’s action

1. fastM 1. Wait
(fastball in middle) (do not swing)

2. fastS 2. fastM
(fastball in shadow) (sit on fast ball in middle)

3. curveM 3. fastH
(curveball in middle) (sit on fastball in heart)

4. curveS 4. curveH
(curveball in shadow) (sit on curveball in heart)

5. curveC 5. Any
(curveball in chase) (hit any pitch in strike)

Table 1: Possible actions.

3

Under review as a conference paper at ICLR 2020

2.2 RELATED WORK

Meta-learning, also known as “learning to learn”, aims to train a model on a variety of learning tasks
so that it can solve new learning tasks or adapt to the new environments rapidly with minimal train-
ing samples. Meta-learning has been used to learn high-level information of a model such as learn-
ing optimizers for deep networks (Ravi & Larochelle, 2017; Andrychowicz et al., 2016; Li & Malik,
2016), learning task embeddings (Vinyals et al., 2016; Snell et al., 2017), and learning to learn im-
plicitly via RL (Duan et al., 2016; Wang et al., 2016). Especially, model-agnostic meta-learning
(MAML) (Finn et al., 2017b) aims to find a set of highly adaptable parameters that can be quickly
adapted to the new task. The goal of quick adaptation to the new environments for meta-learning is
similar to our work, but meta-learning discusses only the case of single learning agent, instead of the
two-agent case. On the other hand, Maruan et al. (Al-Shedivat et al., 2018) construct an adversarial
multi-agent environment, RoboSumo, allowing the agent to continuously adapt to the changes of the
opponent’s strategies. However, their approach considers only one-way adaptation and the opponent
is not allowed to anticipate the learning agent’s strategy. This is different from our scenario in which
both teams adapt their strategies in the game.

When it comes to the multi-agent environments, multi-agent reinforcement learning (MARL)
has been widely applied in various applications, such as transportation (Fernandez-Gauna et al.,
2015), social sciences (Leibo et al., 2017), resource management (Hussin et al., 2015), and con-
trolling a group of autonomous vehicles (Hung & Givigi, 2017). The critical issue in MARL is
the instability of the training process which is particularly severe in a competitive environment
(Lazaridou & Baroni, 2016). To deal with the instability issue, MADDPG (Lowe et al., 2017) and
M3DDPG (Li et al., 2019) have been proposed which adopt a centralized critic within the actor-
critic learning framework to reduce the variance of policy gradient results. However, these methods
have been designed for deterministic policies only. These methods do not perform as well in our
baseball game scenario. Opponent modeling (Zhang & Lesser, 2010; Foerster et al., 2017b) is an-
other method in which each agent can explore the opponent’s strategy. Foerster et al. (Foerster et al.,
2017b) purpose a learning method, named Learning with Opponent-Learning Awareness (LOLA),
to consider the learning processes of other agents. Their method has successfully enabled the coop-
eration of two players in repeated prisoner’s dilemma games. In this paper, we further extend the
discussion to the learning issue of multiple agents in a competitive game scenario.

3 NASH-EQUILIBRIUM STRATEGY & STRATEGY ADAPTATION

3.1 NASH-EQUILIBRIUM STRATEGY

Intuitively, the Nash-equilibrium strategy is a proper strategy in a competitive game. To study the
impact of initial strategy over the strategy adaptation mechanism, we propose an algorithm based
on the modification of the Deep CFR algorithm to learn a strategy that approximates the Nash equi-
librium strategy between the batter and the pitcher. The Deep CFR algorithm is a state-of-the-art
technique to solve the imperfect information game, especially the Poker game, by traversing the
game tree and playing with the regret matching algorithm at each iteration to reach the Nash equi-
librium (Brown et al., 2019; Zinkevich et al., 2007). However, due to the stochastic state transitions
in our baseball game scenario, we learn the state-value function via temporal-difference (TD) learn-
ing (Sutton, 1988), instead of the tree searching method originally used in Deep CFR. Besides,
baseball games are inherently highly uncertain and only has one final reward (win or lose). This
makes it difficult to reach Nash equilibrium. To simplify the problem, we learn the strategies of the
pitcher and the batter in a half-inning and then apply the learned strategies for the whole game.

In a half-inning game, a state s is represented by a 5-tuple vector: (runs, outs, runners on, strike,
ball). The batter’s final reward Vt is defined as expressed in Equation 1, while the pitcher’s final
reward is defined as −Vt. We regard the final reward as “the state-value of the terminal state Vt(s)”
to avoid the possible confusion with the term “reward”, which is to be discussed later.

Vt(s) =











−20 · δ[runs] + 30 · δ[runs− 1] + 90 · δ[runs− 2]
+180 · δ[runs− 3] + 300 · δ[runs− 4] + 400 · δ[runs− 5]

if runs ≤ 5
400 + (runs− 5) · 30 if runs > 5

(1)

4

Under review as a conference paper at ICLR 2020

The above definition is based on the observation that the average number of runs per game in MLB is
about 5 and the intuition that different number of runs in a half-inning would have different impacts
on the final winning percentage.

To learn the Nash-equilibrium strategy, our algorithm alternatively estimates the payoff matrices
and updates the two agents’ strategies based on the modified Deep CFR algorithm. In two-player
zero-sum games, it has been proven that if both agents play according to CFR at every iteration, then
these two agents’ average strategies will gradually converge to the Nash equilibrium as the number of
iterations approaches infinity(Cesa-Bianchi & Lugosi, 2006; Zinkevich et al., 2007; Waugh, 2009).

In more details, at the Iteration t, given the batter’s strategy σ′t−1
b , the pitcher’s strategy σ′t−1

p ,

and Vt(s), a state-value network V (s|θv) is trained from scratch by using TD learning. Based on
V (s|θv), we define the trained reward as

rewardtrained = V ′ − V (s|θv) where V ′ =

{

V (s′|θv) s′ 6= sterminal

Vt(s
′) s′ = sterminal

(2)

where s′ is the next state, depending on the current state and the two agents’ joint actions (ab, ap).

Since this game only has one final reward, we manually choose a default reward rewarddefault in
order to improve the training efficiency. In our approach, the reward is defined as

reward = [V ′ − V (s|θv)] ·
t

K1
+ rewarddefault · (1 −

t

K1
) (3)

where K1 is a manually selected constant. Based on the above definitions, an action-value network
Q(s, ab, ap|θQ) is trained from scratch to estimate the expected reward of the two agents’ joint
actions (ab, ap). We can express Q(s, ab, ap|θQ)) at the state s as a 5× 5 payoff matrix with respect
to pitcher’s and batter’s actions. With Q(s, ab, ap|θQ), the batter’s instantaneous regrets rb can be
estimated by the following equation:

rb(s, ab) = Eap∼σ
′t−1

p (s)[Q(s, ab, ap|θQ)]− Eap∼σ
′t−1

p (s),ab∼σ
′t−1

b
(s)[Q(s, ab, ap|θQ)] (4)

The pitcher’s instantaneous regrets rp is calculated in a similar way. We assume both agents know
each other’s strategies in order to improve the learning efficiency. The sharing of strategy informa-
tion is feasible in real life since we can ask the pitcher and the batter in the same team to compete
with each other to learn their individual strategies.

These instantaneous regrets rb(s, ab) and rp(s, ap) are converted to the new strategies σt
b, σt

p based
on the following equation:

σt(s, a) =
r+(s, a)

Σa′∈A(s) r+(s, a′)
(5)

where A(s) denotes the actions available at the state s and r+(s, a) = max(r(s, a), 0). If
Σa′∈A(s) r+(s, a

′) = 0, each action is assigned an equal probability.

Equation 5 comes from the modification of the Deep CFR algorithm. The original Deep CFR al-
gorithm converts the agent’s accumulated regret R into the strategy by using the regret matching
algorithm at each iteration (Hart & Mas-Colell, 2000; Zinkevich et al., 2007; Brown et al., 2019).
Due to the heavy computational load of the learning process, we cannot afford too many iterations.
Hence, we replace the accumulated regret R in the Deep CFR algorithm by the instantaneous regrets
r. However, the replacement of R by r results in larger strategy variations at different iterations. To
mitigate this problem, we define the new strategy based on the following equation

σ′t = σ̄t−1 ·
t

K2
+ σt · (1−

t

K2
) (6)

where σ̄t−1 denotes the average strategy and K2 is a manually selected constant to balance between
σ̄t−1 and σt. At the next Iteration (t + 1), σ′t

b , σ
′t
p are used to train a new value network V (s|θv).

Meanwhile, σt
b, σ

t
p are accumulated respectively in their strategy memories Mσ as encountering the

state s, weighted by t as expressed below:

Mσ(s, a)←Mσ(s, a) + σt(s, a) · t (7)

The average strategy at Iteration t is then computed from the strategy memories, expressed as

σ̄t−1(s, a) =
Mσ(s, a)

Σa∈A(s)Mσ(s, a)
(8)

5

Under review as a conference paper at ICLR 2020

where A(s) denotes the actions available at the state s. Note that the state-value function V (s|θv)
highly depends on the agents’ strategies, which have large variations at different iterations. Hence,
V (s|θv) has to be retrained from scratch at every iteration.

To sum up, two agents play against each other for several iterations. In principle, their average
strategies will gradually converge to the Nash-equilibrium strategy. The learned strategy is then
used as the initial strategy of one baseball team for performance comparison.

3.2 STRATEGY ADAPTATION

At the beginning of the baseball game, each team plays against each other with its initial strategies
σp and σb for the pitcher and the batter, respectively. The payoff matrix Q(s, ab, ap|θQ) at each state
is then learned based on σp and σb. The payoff matrix is used for a team to estimate the expected
reward of the two agents’ joint actions at any state. As the game proceeds, we propose a strategy
adaptation mechanism to gradually modify the strategies. In the following paragraphs, we present
the adaptation mechanism for the batter only. The adaptation mechanism for the pitcher can be
deduced in an analogous way.

During the team’s batting time, σb is the batter’s initial strategy and σp is the prior assumption about
the opponent pitcher’s strategy. At each pitch, the batter anticipates what the pitcher will pitch
based on the past observations over the pitcher’s actions. In Equation 9, O(s) denotes all the past
observations at the state s and σ̃p(s, ap) denotes the predicted probability of the pitcher’s action ap
at the state s. In our mechanism, we treat σ̃p(s, ap) as the posterior probability, conditioned on the
past observations and the prior belief. That is,

σ̃p(s, ap) = π(ap|s,O(s)) =
Π

N(O(s))
i=1 π(oi(s)|s, ap)

π(O(s))
σp(s, ap) (9)

In Equation 9, σp(s, ap) denotes the prior knowledge about the pitcher’s action at the state s.

Π
N(O(s))
i=1 π(oi(s)|s, ap) denotes the likelihood function based on all the past observations at this

state s for the pitcher’s action ap. Here, N(O(s)) denotes the number of observations at the state s.

In addition to properly anticipate the pitcher’s action, the batter should also know the expected
reward of each action under different situations, which are expressed by Q(s, ab, ap|θQ). The batter
can then obtain the advantageous strategy σ̃b by calculating the instantaneous regret in 4 based on
Q(s, ab, ap|θQ), σ̃p(s, a), and σb(s, a). After that, he can update his strategy σ̃b based on 5. To
gradually modify the strategy, the batter also takes into account the initial strategy σb(s, a). The
adapted strategy at the state s is then defined as

σ∗

b (s, ab) = σb(s, ab) · (1−
N(O(s))

K3
) + σ̃b(s, ab) ·

N(O(s))

K3
(10)

where K3 is a manually selected constant. Equation 10 indicates that σ∗

b (s, ab) depends more on
σ̃b as the number of observations N(O(s)) at this state s increases. This is similar to the batter’s
behavior in real-life baseball games.

As the batter’s strategy is adaptively modified as described above, the strategy adaptation of the
opponent pitcher is performed based on the batter’s reaction in an analogous way. As the number
of observations N(O(s)) reaches a pre-selected threshold Npitch, both σb(s, ab) and σp(s, ap) are
updated based on the following equations:

σp(s, ap)← σp(s, ap) · (1− η) + σ̃p(s, ap) · η (11)

σb(s, ab)← σb(s, ab) · (1− η) + σ̃b(s, ab) · η (12)

where η is a manually determined learning rate. After the update, all the past observations are reset
and the same strategy adaptation process starts again.

In our simulation, each team has its own strategy pair (σp, σb) for its pitcher and its batter. For
each team, either the pitcher’s strategy or the batter’s strategy is adaptively modified depending on
whether the team is under pitching or batting. In our baseball game scenario, each team plays best-
of-three games with every other team. That is, each team has at most three games to observe the
opponent team.

6

Under review as a conference paper at ICLR 2020

4 EXPERIMENTAL RESULTS

4.1 LEARNED NASH-EQUILIBRIUM STRATEGY

Table 2 lists the learned strategies for the pitcher and the batter at 24 different states based on the
modified Deep CFR algorithm. Here, we attempt to observe the strategy differences with respect
to different states. In Table 2, the ”count” denotes the number of balls and the number of strikes.
For example, (2-1) means 2 balls and 1 strike. Each row in Table 2 represents the probability of
each action with respect to a specific count for the pitcher and the batter, respectively. It is very
interesting to observe that the learned Nash-equilibrium strategy is actually quite similar to real-life
baseball strategies. For example,

Case 1: Count of two strikes
When there are already two strikes, the batter has less freedom to sit on any preferred zone or specific
pitch type. As shown in Table 2, for the batter, the probability of ”any” is indeed quite high for these
2-strike cases, except the very special case of 3-2 (3 balls, 2 strikes). On the other hand, for the
pitcher, the probability of curveC becomes higher because the pitcher has more freedom to pitch out
of the strike zone to fool the batter.

Case 2: Count of 3-1
For this case (3 balls, 1 strike), we may consider two different situations. When the number of
runners is smaller than or equal to 1 (Situation 1), the probability of fastM is quite high for the
pitcher (0.98) because the pitcher wants to avoid a possible walk in this situation. On the other hand,
the batter would have the freedom to reduce the attack zone to make a solid contact (the probability
of (fastH+any) in Situation 1 is only 0.27 for the batter). However, when the number of runners are
larger than 1 (Situation 2), a batter will be more aggressive since it is a good opportunity to score
(the probability of (fastH+any) in Situation 2 for the batter is 0.44). On the other hand, the pitcher
needs to pitch more carefully to prevent solid contact. (the probability of fastM (0.76) is lower than
the probability (0.98) in Situation 1).

Table 2: Strategies of the batter and the pitcher.

Situation1: number of runners≤ 1. Situation2: number of runners > 1.

7

Under review as a conference paper at ICLR 2020

4.2 STRATEGY ADAPTATION

In our simulation of competitive games, we form 14 teams, including 13 manually determined teams
and 1 team trained by the modified Deep CFR algorithm. Each team has its own initial strategy and
the payoff matrix. Each team plays the-best-of-three game against every other team for 200 series.
In each series, each team has its own initial strategy at the beginning, followed by the adaptation
mechanism mentioned in Section 3.2 to update its strategy based on the observations of its opponent.

In the left three columns of Table 3, we list the 14 teams, together with the characteristics of the
pitcher and the batter in each team. For Team-0 to Team-3, an active batter is more aggressive to
swing, while a passive batter tends to wait or to choose the action fastM more often. On the other
hand, an active pitcher tends to pitch to the middle, while a passive pitcher tends to pitch to the
corner. For Team-4 to Team-7, both the pitcher and the batter keep choosing the same action. For
example, the batter of Team-4 always chooses the action fastH and the pitcher always chooses the
action fastS. Team-8 to Team-11 are intentionally formed to defeat Team-4 to Team-8. For example,
the strategy of Team-8 is especially designed to defeat Team-6, while the strategy of Team-9 is
designed to defeat Team-4. The strategies of Team 0 to Team 3 & Team 8 to Team 11 are listed in B.

In the two columns on the right of Table 3, we list the averaged winning percentage (WP) of each
team with respect to the other teams. For the teams with ”specific tendency” (Team-4 to Team-
11), some of them have higher WP, such as Team 5 and Team 9 in the without-adaptation domain.
This indicates some strategies, like always pitch to the corner, can be very effective in winning
the games. However, as the strategy adaptation mechanism is employed, the WP of most teams
with ”specific tendency” actually decreases. This is quite reasonable since the team with ”specific
tendency” strategy will restrict themselves to properly modify their strategies against various kinds
of opponents and can be easily exploited by their opponents. On the other hand, it seems the Nash
equilibrium strategy for Team-13 can serve as a good initial strategy if we want to adopt the strategy
adaptation mechanism.

Table 3: Average Winning Percentage (WP) for each team in the without-adaptation domain (non)
and the with-adaptation domain (adap.).

Table 4: Winning Percentage (WP) among Team-0 to Team-3. The number stands for the WP of the
corresponding team listed in the left column.

8

Under review as a conference paper at ICLR 2020

In Table 4, we compare the winning percentage among the first four teams (Team-0 to Team-3) in the
without-adaptation domain. The simulation results are very similar to real-life baseball games: (1)
when the batter is active, a passive pitcher has a better chance to win than an active pitcher (Team-1
vs Team-0); (2) when the batter is passive, an active pitcher has a better chance to win than a passive
pitcher (Team-2 vs Team-3); (3) when the pitcher is active, an active batter has a better chance to
win than a passive batter (Team-0 vs Team-2); and (4) when the pitcher is passive, a passive batter
has a better chance to win than an active batter (Team-3 vs Team-1).

Table 4 shows that none of these four teams can dominate the games. Team-1 beats Team-0, Team-0
beats Team-2, Team-2 beats Team-3, while Team-3 beats Team-1. This implies the importance of
strategy adaptation. Besides, in Table 4, we also show that all these four teams have better chances
to beat Team-12, which adopts a random initial strategy. This implies that a team with a strategy is
better than a team without any strategy.

When two teams, if named as home team and guest team, compete with each other, there are four
possible combinations in strategy adaptation: (1) only the guest team adapts, (2) both teams do not
adapt, (3) both teams adapt, and (4) only the home team adapts. In Table 5, we list the competition
results of these four different combinations when we choose Team-5 or Team-13 as the home team
and choose each of the remaining teams as the guest team. Here, Team-5 represents those teams with
a ”specific tendency” strategy, while Team-13 represents the team with a Nash-equilibrium initial
strategy. Besides, in Table 5, we classify Team-4 to Team-11 as Category 1, whose initial strategy
has ”specific tendency”, while classify the other teams as Category 2. On the right three columns
of Table 5, ”avg” represents the averaged WP value with respect to all the guest teams, ”avg-1”
represents the averaged WP with respect to Category-1 teams, and ”avg-2” represents the averaged
WP value with respect to Category-2 teams.

In Table 5, we observe some interesting phenomena:

1. In terms of ”avg”, Team-5 has the best performance when both teams do not adapt, while has the
worst performance when both teams adapt.
2. In terms of ”avg1”, the WP of Team-5 is roughly 50%, basically independent of the adaptation
mechanism.
3. In terms of ”avg2”, the WP of Team-5 drops drastically from ”No Adapt” to ”Both Adapt”.
4. For Team-13, the WP increases if the strategy adaptation mechanism is adopted (see ”Both Adapt”
and ”Home Adapt”).
5. With strategy adaptation, the WP of Team-13 against any other team is higher than 50 %. This
implies, in average, Team-13 always wins when strategy adaptation is used.

Based on the above observations, we have the following conclusions:

1. Those teams with a ”specific tendency” strategy might have high winning percentage against
some of the other teams when there is no strategy adaptation. However, as the adaptation
mechanism is adopted, those teams’ advantage tends to drop.

2. The team with a Nash-equilibrium initial strategy benefits from the strategy adaptation
mechanism.

Table 5: WP of Team-5 and Team-13 against the other teams for 2000 series.

WP of Team 5 against the other teams.

WP of Team 13 against the other teams.

9

Under review as a conference paper at ICLR 2020

5 CONCLUSION

In this paper, we construct a simplified baseball game scenario to develop and evaluate the adaptation
capability of learning agents. We are especially interested in what kinds of teams have a better
chance to survive when there is strategy adaptation. Intuitively, the Nash equilibrium is a proper
strategy in competitive games and thus we purpose a modified Deep CFR algorithm to learn an
initial strategy that approximates the Nash equilibrium strategy. The experimental results indeed
show that the team with a Nash-equilibrium-like initial strategy is more favorable than a team with
a deterministic initial strategy.

In this work, since we only focus on the impact of strategies on Winning Percentage, the capabilities
of the pitcher and the batter are fixed across different teams. In the future work, we would relief
this constraint and both teams are required to anticipate the ” capabilities and strategies ” of the
opponents during the game process. This setup will make the game scenario more realistic, and the
behavior of the agents would be more similar to the behavior of human players in the real life.

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. In Pro-
ceedings of International Conference on Learning Representations, 2018.

Marcin Andrychowicz, Denil Misha, Gomez Sergio, W Hoffman Matthew, Pfau David, and Schaul
Tom. Learning to learn by gradient descent by gradient descent. In Advances in Neural Informa-
tion Processing Systems, 2016.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: an
evaluation platform for general agents. Journal of Artifcial Intelligence Research, 2013.

M. Bowling, M.and Veloso. An analysis of stochastic game theory for multiagent reinforcement
learning. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., 2000.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret. In
Proceedings of the 36 th International Conference on Machine Learning, 2019.

N. Cesa-Bianchi and G Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

Yan Duan, John Schulman, Xi Chen, L Bartlett Peter, and Ilya. Fast reinforcement learning via slow
reinforcement learning. arXiv preprint, (arXiv:1611.02779), 2016.

B. Fernandez-Gauna, I. Etxeberria-Agiriano, and M. Grana. Learning multirobot hose transportation
and deployment by distributed round-robin q-learning. PloS One, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networksg. arXiv preprint, (arXiv:1703.03400), 2017b.

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, and Pieter Abbeel.
Learning with opponent-learning awareness. arXiv preprint, (arXiv:1709.04326), 2017b.

Cai Han, Ren Kan, Zhang Weinan, and KleanthisMalialis. Real-time bidding by reinforcement
learning in display advertising. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining. ACM, 2017.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 2000.

S. M. Hung and S. N. Givigi. A q-learning approach to flocking with uavs in a stochastic environ-
ment. IEEE Transactions on Cybernetics, 2017.

M. Hussin, N. A. W. A. Hamid, and K. A. Kasmiran. Improving reliability in resource manage-
ment through adaptive reinforcement learning for distributed systems. Journal of Parallel and
Distributed Computing, 2015.

10

Under review as a conference paper at ICLR 2020

Peysakhovich Lazaridou and Baroni. Multi-agent cooperation and the emergence of (natural) lan-
guage. arXiv preprint, (arXiv:1612.07182), 2016.

J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-agent reinforcement learn-
ing in sequential social dilemmas. In Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems, 2017.

Sergey Levine, Chelsea Levine, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17, 2016.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint, (arXiv:1606.01885), 2016.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In AAAI Conference on
Artificial Intelligence, 2019.

R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in Neural Information Processing Systems,
2017.

MLB. Statcast search. https://baseballsavant.mlb.com/statcast_search.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, and M. G. Bellemare. Human-level control
through deep reinforcement learning. Nature, 2015.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations (ICLR), 2017.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, and A. Guez. Mastering the
game of go without human knowledge. Nature, 550:354–359, 2017.

D. Silver, T. Hubert, J. Schrittwieser, and I. Antonoglou. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362, 2018.

Jake Snell, Swersky Kevin, and S Zemel Richard. Prototypical networks for few-shot learning.
arXiv preprint, (arXiv:1703.05175), 2017.

Richard Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:
9–44, 1988.

Oriol Vinyals, Blundell Charles, and Lillicrap Tim. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, 2016.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network architec-
tures for deep reinforcement learning. In International Conference on Machine Learning, 2016.

K Waugh. Abstraction in large extensive games. Master’s thesis, University of Alberta, 2009.

Chongjie Zhang and Victor R Lesser. Multi-agent learning with policy prediction. In AAAI, 2010.

M. Zinkevich, M. Johanson, M. H. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. In Proceedings of the Annual Conference on Neural Information Pro-
cessing Systems, 2007.

11

https://baseballsavant.mlb.com/statcast_search

Under review as a conference paper at ICLR 2020

A PSEUDO CODE

A.1 MODIFIED DEEP CFR

Algorithm 1 Modified Deep CFR

1: function LEARNSTRATEGY

2: Initialize strategies σ0
b , σ

0
p, σ

′0
b , σ′0

p with random strategies.
3: Initialize Strategy memories Mσb

,Mσp
.

4: Choose final reward Vt(s) and default reward rewarddefault . Select constant K1 and K2.
5: for Iteration t=1 to T do
6: V (s|θV),Mσb

,Mσp
= LEARNVALUE(σt−1

b , σt−1
p , σ′t−1

b , σ′t−1
p ,Mσb

,Mσp
)

7: Q(s, ab, ap|θQ) = LEARNQ(V (s|θV)
8: Calculate both players’ instantaneous regrets rb, rp respectively with equation 4.
9: Convert the both players’ instantaneous regrets rb, rp to the new strategies σt

b, σ
t
p respec-

tively with equation 5.

10: Calculate the average strategy σ̄t−1
b , σ̄t−1

p from Strategy memories Mσb
,Mσp

respec-

tively with equation 8.

11: Calculate the new strategies σ′t
b , σ

′t
p with equation 6.

12: end for
13: return σ̄T

b , σ̄
T
p

14: end function

Algorithm 2 Learning Value function

1: function LEARNVALUE(σb, σp, σ
′

b, σ
′

p,Mσb
,Mσp

)

2: Initialize V (s|θV), Replay buffer D.
3: for episode t=1 to K do
4: Initialize s.
5: repeat (for each state of episode)
6: Accumulate σb(s), σp(s) respectively in their strategy memories, weighted by t with

equation 7.

7: Select actions according to σ′

b, σ
′

p from s and observe the new state s′.

8: Store transition (s, s′) Into D.
9: Sample a random minibatch of N transitions (si, s

′

i) from D. Update the value
function V (s|θV) by minimizing the loss:

L = 1
N
Σi[(V (si|θV)− V ′)2] where V ′ =

{

V (s′i|θv) s′i 6= sterminal

Vt(s
′

i) s′i = sterminal

10: s← s′

11: until s is terminal
12: end for
13: return V (s|θV),Mσb

,Mσp

14: end function

12

Under review as a conference paper at ICLR 2020

Algorithm 3 Learning Q function

1: function LEARNQ(V (s|θV))
2: Initialize Q(s, ab, ap|θQ), Replay buffer D.
3: for episode t=1 to K do
4: Randomly initialize s.
5: repeat (for each state of episode)
6: Randomly select actions (ab, ap) from s and observe the new state s′ and reward

according to equation 3.

7: Store transition (s, ab, ap, reward, s
′) into D.

8: Sample a random minibatch of N transitions (si, ab,i, ap,i, rewardi, s
′

i) from D.
Update the Q function Q(s, ab, ap|θQ) by minimizing the loss:

L = 1
N
Σi[(Q(si, ab,i, ap,i|θQ)− rewardi)

2]
9: s← s′

10: until s is terminal
11: end for
12: return Q(s, ab, ap|θQ)
13: end function

A.2 ADAPTATION MECHANISM

Algorithm 4 Adaptation mechanism for the batter during a game

1: procedure A GAME

2: Set Npitch, η,K3.
3: Initialize the observation memory O.
4: Prepare σb(The batter’s initial strategy), σp(the prior assumption about the opponent

pitcher’s strategy), and payoff matrix Q(s, ab, ap|θQ).
5: repeat (for each state of episode)
6: if N(O(s)) ≥ 1 then // N(O(s)) denotes the number of observations at the state s.
7: Anticipate the pitcher’s strategy σ̃p(s, a) based on the past observations in O(s)

according to equation 9.

8: Calculate the regret rb(s, ab) by 4 with Q(s, ab, ap|θQ), σ̃p(s, a), σb(s, a).
9: Convert rb(s, ab) to the strategy σ̃b(s, a) with equation 5.

10: end if
11: Calculate σ∗

b (s, ab) according to equation 10.
12: We select action according to σ∗

b (s, ab), and the opponent pitcher select his action.
13: The game proceeds to the new state s′.
14: Restore the observed pitch into O(s).
15: N(O(s))+ = 1.
16: if N(O(s)) == Npitch then
17: update σp(s, ap) by equation 11
18: update σb(s, ab) by equation 12
19: N(O(s)) = 0
20: Reset O(s).
21: end if
22: s← s′

23: until s is terminal
24: end procedure

B THE STRATEGIES OF TEAM 0 TO TEAM 3, AND TEAM 8 TO TEAM 11

During a game, these team’s strategies only depend on ”count”.

13

Under review as a conference paper at ICLR 2020

Table 6: The strategy of Team 0 Table 7: The strategy of Team 1

Table 8: The strategy of Team 2 Table 9: The strategy of Team 3

Table 10: The strategy of Team 8 Table 11: The strategy of Team 9

Table 12: The strategy of Team 10 Table 13: The strategy of Team 11

14

Under review as a conference paper at ICLR 2020

C POSSIBLE BATTING RESULTS

We collect every piece of data of batters vs. pitchers from MLB data on Stacast Search in 2016.
Then we classify all the possible batting results into 32 categories, as listed in Table 14, according
to the batted ball information of “Event”, “Location”, “Type”, “Distance”, and “Exit Velocity” from
collected data.

Batted Ball Type describes a batted ball, depending on how it comes off the bat and where in the
field it lands. There are generally four descriptive categories: fly ball, pop-up, line drive, ground
ball. Line drive is that a batted ball hit hard enough and low enough that it appears to travel in a
relatively straight line. Pop-up is a specific type of fly ball that goes very high while not traveling
very far laterally.

Table 14: The 32 categories of possible batting results

15

	introduction
	Backgrounds
	Scenario Description
	Related Work

	Nash-Equilibrium Strategy & Strategy Adaptation
	Nash-Equilibrium Strategy
	Strategy Adaptation

	Experimental results
	Learned Nash-equilibrium Strategy
	Strategy Adaptation

	Conclusion
	Pseudo code
	Modified Deep CFR
	Adaptation mechanism

	The strategies of Team 0 to Team 3, and Team 8 to Team 11
	Possible batting results

