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ABSTRACT

We define a goodness of fit measure for generative networks which captures how
well the network can generate the training data, which is necessary to learn the true
data distribution. We demonstrate how our measure can be leveraged to under-
stand mode collapse in generative adversarial networks and provide practitioners
with a novel way to perform model comparison and early stopping without having
to access another trained model as with Frechet Inception Distance or Inception
Score. This measure shows that several successful, popular generative models,
such as DCGAN and WGAN, fall very short of learning the data distribution. We
identify this issue in generative models and empirically show that overparameteri-
zation via subsampling data and using a mixture of models improves performance
in terms of goodness of fit.

1 INTRODUCTION AND RELATED WORK

Generative adversarial networks (Goodfellow et al., 2014) are a specific type of generative model
that has shown impressive performance lately. The main idea is that there are two networks that
compete against each other: a generator network that generates images and a discriminator network
that tries to distinguish between real and fake images. These models are useful because they can
generate very realistic images that are not in the training set. Throughout the rest of the paper, we
will use GANs as a specific class of models to study, however, the goodness of fit measure discussed
in Section 3.2 and its applications can be extended to other generative networks such as Variational
Autoencoders.

Some GANs that appear to be successful in practice cannot actually reproduce the training set, as
we will see. Other generative models, such as Generative Latent Optimization (GLO) (Bojanowski
et al., 2017) and Implicit Maximum Likelihood Estimation (IMLE) (Li and Malik, 2018) attempt to
memorize the training data as part of the learning algorithm. These methods are not as successful as
GANs in producing realistic images. We believe that the reason for this difference in performance
is due to a lack of overparameterization in GANs, GLO, and IMLE.

Our solution starts with measuring how well a generative model can generate the training data. We
explain in Section 3.2 that our goodness of fit measure F (G) is zero if we are able to perfectly
generate the training data. If we cannot generate the training data, then F (G) represents how far
away we are from generating our training set in an average of total least square sense. We use
this goodness of fit measure to evaluate different models and training settings as well as study the
evolution of the approximation error through training.

Ideally, we would like to overparameterize GANs in order to increase their capacity and reduce
F (G). Recently, it was shown that overparameterization in classifiers and autoencoders leads to
better performance (Radhakrishnan et al., 2019; Belkin et al., 2018). Another reason to overparam-
eterize is that we observed, while calculating F , that our models actually use the the full potential
of the latent distribution on z to generate different images. In other words, suppose that we train a
GAN with z ∼ N (0, I), then we observe that the optimal z’s corresponding to the closest gener-
ated images from the training set are also distributed as N (0, I). That is, once trained, the latent
distribution fixed a priori becomes the optimal one minimizing the approximation error.

Despite the above findings, increasing the complexity of the generator becomes very difficult due to
the training algorithms for GANs requiring careful hyper-parameter settings for convergence (Rege
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and Monteleoni, 2019). As such, we explore two alternatives that do not impact the training stability.
First, increasing the dimension of the latent space which is currently set to 100 across models and
dataset. We demonstrate that this solution indeed allows to reduce the approximation error. Second,
we consider a mixture of GAN setting. That is, we train K different GANs on subsets of the data
of size approximately N

K for total data size N . Note that training a mixture of GANs has been
done in practice Hoang et al. (2017), we thus will quantify the approximation error reduction that
can be obtained with this solution. Hence, we see that if our original GAN has P parameters, we
now have KP parameters total. Also, each one is trained on N/K data. Hence, we see that our
”effective” parameters for this mixture of GANs is P ′

N ′ = K2 P
N . Hence we can get an effective

overparameterization of 100 fold if we divide our data into K = 10 subsets. We first demonstrate
how a single GAN trained on a smaller dataset has a smaller approximation error. In particular we
also find that how the dataset is subsampled, random or from a clustering based partitioning, matters
for performances. We then build on those finding to train the mixture of GANs on a K-means based
partitioned dataset and demonstrate important reduction in the approximation error.

We summarize our contributions that apply to arbitrary generative models s.a. GANs, VAE as fol-
lows:

• We provide a novel goodness of fit measure for generative networks and how it defines necessary
conditions for generative networks to be optimal (Sec. 3.1). We also relate the metric to mode
collapse and provide implementation details on computing it efficiently (Sec. 3.2). Finally we
demonstrate how our metric compares to standard GAN metric s.a. the Frechet score (Sec. 3.3).
• We demonstrate how our goodness of fit metric allows to gain novel insights into GANs. We

show that DCGAN and WGAN do not memorize and have very different behavior w.r.t. overfit-
ting Sec. 4.1. In particular DCGAN is able to match with WGAN performances if early stopping
is performed. We then show the impact architecture and residual connection (Sec. 4.2). Finally,
we study the latent space distribution and in particular demonstrate how the optimal latent space
distribution which minimizes the approximation error of a trained GAN matches the distribution
used for training, highlighting how current approximation errors are due to underparametrized
GANs (Sec. 4.3).
• We provide two solutions to reduce the approximation error without altering training stability

Sec. 5. First, we propose to increasing the latent space dimension in Sec. 5.1. Then we study
how dataset subsampling also helps reducing the approximation error Sec. 5.2 which motives the
use of a mixture of GANs Sec. 5.3.

2 BACKGROUND

In this section we briefly overview Generative Adversarial Networks (GANs) and generative latent
optimization (GLO) (Bojanowski et al., 2017), which is another generative model. Finally describe
how one can optimize the generator network latent space to obtain a desired generated sample.
We remind that all our development applies to arbitrary black/white box generative networks even
though we only focus on GANs in this paper.

Generative Adversarial Networks. Generative adversarial networks (GANs) are generative neural
networks that use an adversarial loss; the adversarial loss is typically another neural network. In
other words, a GAN consists of two neural networks that compete against each other. The generator
network G : R` → Rp generates p-dimensional images from an `-dimensional latent space. The
discriminator D : Rp → (0, 1) is a classifier which is trained to distinguish between the training set
and generated images. The training loss for a batch size of NB for the discriminator is given by

LD = − 1

NB

NB∑
i=1

log(D(xi))−
1

NB

NB∑
j=1

log(1−D(G(zj))),

where xi and G(zi) is a real image and a generated image for each i ∈ {1, 2, . . . , NB}, respectively.
The generator loss is given by

LD =
1

NB

NB∑
j=1

log(1−D(G(zj))).
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Notice that the loss for the generator does not explicitly use the training data. Instead, the training
data is used indirectly through the training of the discriminator.

In this paper, we discuss two popular GANs: DCGAN (Radford et al., 2015) which uses the loss
above and WGAN (Arjovsky et al., 2017) which uses a slightly different learning algorithm.

Generative latent optimization. In contrast to GANs, GLO is a generative network that does not
use an adversarial loss. Instead, GLO attempts to memorize the training data by using this loss:

LG =
1

NN

NB∑
i=1

min
z∈R`

L(G(z),xi)

where L is a loss function. In the original paper, the authors use different loss functions to demon-
strate how the model differs.

Latent space optimization. The generator is a mapping from a latent space R` into an image space
Rp. In the GLO paper one aims at finding a specific z ∈ R` such that the generated sample G(z) is
close to a target output. In particular, one picks a target as being a randomly generated GAN image
from some target vector z∗. That is, the target is guaranteed to lie in the span of G. Following this,
one aims at finding the z vector that led to the target G(z∗) by

ẑ = argmin
z∈R`

‖G(z)−G(z∗)‖22. (1)

Since the above optimization problem in non-convex, there is not theoretic guarantee of finding a
global minima, in general. However, empirically it was shown that the above optimization problem
is solved 100% of the time in practice (Lipton and Tripathi, 2017). We now propose to leverage the
above to develop our goodness of fit measure.

3 GOODNESS OF FIT METRIC

In this section we first motivate and define our metric (Sec. 3.1) and provide its approximation
(Sec. 3.2). We demonstrate that our measure being minimized is a necessary and sufficient condition
to detect mode collapse. Finally, we study the different with current GAN measures that are the
Inception Score and the Frechet Inception Score (Sec. 3.3).

3.1 METRIC, OPTIMUM GENERATIVE NETWORK, AND MODE COLLAPSE

The generator G is a continuous mapping for any type of layer used as current layers in deep learning
are all continuous. As such, the following defines the image of the generator:

Imag(G) = {G(z) : z ∈ R`}, (2)

with ` the dimension of the latent space. Then the approximation of the true data manifold denoted
as X with G can be measure by ”how far” is the span of G. Since the two quantities to compare are
sets one solution is the following standard Total Least Square metric defines as

d(Imag(G),X ) =
∫

min
z
‖G(z)− x‖dx (3)

which in practice with a finite dataset becomes our proposed measure:

F (G,X ) = 1

N

N∑
n=1

min
z
‖G(z)− xn‖2 =

1

N

N∑
n=1

m(xn;G). (4)

As a result, F is an empirical average least square distance between reference points, the observed
input, and Imag(G).

Turning the above argument into a probabilistic setting, we obtain the following motivation. A gen-
erative model or network is learned to approximate some target distribution. This target distribution
is itself observed via some samples, the given observations. It is common to use the likelihood
as a measure of fitness for such models, and it is defined as L(X ) =

∏N
n=1 p(xn), with p(xn)
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some distribution density. A necessary condition to allow maximization of the likelihood is that
the samples lie in the support of the distribution, that is p(xn) > 0 ⇐⇒ xn ∈ Support(p), as
Support(p) = {x ∈ X : p(x) > 0}. In the case of a generative network, the distribution p(x) is not
easily available. However its support is directly accessible as we have
Proposition 1. Support(p) = Imag(G).

As a result, from a probabilistic fitting point of view, ensuring that all the samples lie in the span
of the generator is a necessary condition that must be fulfilled, which otherwise would prevent
maximization of the likelihood, leading to the following result.
Theorem 1. The optimal generative model in term of distribution approximation must have
F (G,X ) = 0.

The above setting also allows the following direct and intuitive result that any sample x in X such
that m(x;G) = 0 is a sample that can be generated, potentially with very small probability, by a
generative network. We conveniently employed the L2 in our metric and we will use this throughout
the rest of the paper. However, notice that if X ⊂ Imag(G), the choice of the distance function is
not important because d(x,y) = 0 implies that x = y for any distance metric d.

Relation to mode collapse. We now relate the value of m(xn;G) for samples from the training set
to mode collapse. We also refer to the case m(xn;G) = 0 as a memorized sample and in general
we refer as memorization F (X , G) = 0. The lack of memorization in current generative networks
is evident when generators experience mode collapse. Mode collapse translates into the absence of
approximation of the generator to some parts of the target distribution. Suppose that the data comes
from a distribution PX . Then, mode collapse happens if PX(x) > 0 but minz ||G(z)− x|| > 0. In
practice, we do not have PX , but we do have the empirical distribution P̂X , so that mode collapse
will occur if we do not memorize the training data. A generative model must memorize the training
data in order to avoid mode collapse. We thus obtain the following result.
Proposition 2. A necessary condition to avoid mode collapse for a generative network G is to
memorize, that is, F (X , G) = 0.

We now demonstrate how one can compute our metric and in particular m(xn;G) efficiently.

3.2 METRIC APPROXIMATION

We now turn into the actual computation of our metric. Suppose that we have a generator neural
network G : R` → Rp that maps a latent space to a data space, such as an image space. We would
like to measure how much of the data set is memorized and if not, how far off is the approximation
in that region of the space.

We calculate m(xn, G) by solving the non-convex optimization problem
min
z

d(G(z),xi)

for i ∈ {1, 2, . . . , N}. Since this is a non-convex optimization problem, we do not have many
theoretic guarantees. This optimization is computationally expensive to run on every single image.
Therefore, we run it on a small subset of the data to obtain an estimate m̂(G). In order to show that
this estimate has low variance, we bootstrap our distance calculations to calculate the standard error
of m̂(G). The variance of m̂(G) is shown in the figures as errorbars and is typically low enough
to justify using a subset of the data. We use 100 images to calculate m(G) unless otherwise stated.
Moreover, for the optimization algorithm, we pick the latent variable z and error ||G(z)− x||2 that
corresponds to the smallest error instead of picking the latent variable that Adam Kingma and Ba
(2014) finds. This is because we can be pushed out of local minima temporarily since we are using
stochastic optimization. Nevertheless, theoretical analysis of the surface of the generator from Hand
and Voroninski (2019) suggests that such optimization can be done with great chances of reaching
the global minima.

3.3 CORRELATION WITH INCEPTION AND FRECHET SCORES

In this section highlight the key differences between our proposed measure and existing ones, in
particular the Inception Score (IS) (Salimans et al., 2016) and its extension, the Frechet Inception
distance (FID).
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Figure 1: Depiction of our
fitness measure in blue during
training with yaxis on the left
of the figures versus the FID
measure in red with yaxis on
the right of the figures (left)
DCGAN and (right) WGAN.

Figure 2: Depiction of the closest reconstruction to the target image (left) from WGAN trained as (from
left to right) (i) standard, all dataset (ii) with K-means subsampling K = 10 (iii) with K-means subsampling
K = 100 (iv) with 300 dimensional latent space dimension

A current limitation of metrics for GANs is their dependence on another pretrained deep neural
network model. This poses limits as to what dataset GANs can be evaluated on, as well as any
internal bias induced by the different models used. On the other hand our measure does not rely
on any other trained model and thus can be applied as is across different datasets. We now briefly
describe those metric and then empirically observe how our metric compares to FID.

The Frechet Inception distance (FID) (Heusel et al., 2017) measures how similar two data sets are.
This metric is used in GAN training and evaluation because it captures, loosely speaking, how
diverse the images from the generator are. However FID has two limitations: it requires a trained
DN and a target dataset. This means it is sensitive to new dataset applications and to the size of the
dataset. We demonstrate that our memorization metric is correlated with the FID score of a neural
network in Figure 1.

We trained WGAN and DCGAN from their git repositories in order reproduce their networks. For
both networks, we observe that F̂ (G) > 0 meaning that we do not observe any memorization in
these GANs. It is specifically surprising that WGAN does not memorize because of the diversity
of its generated images. This implies that even though a generator can produce a wide spectrum of
images, it can not reproduce the training data. We provide in Fig. 2 an example of a target image and
its closest reconstruction from different GAN training settings that we explore through the paper.

4 GENERALIZATION AND MODEL ARCHITECTURE COMPARISON

In this section we propose to demonstrate some direct applications of our metric. First we demon-
strate how it can be used to probe the state of a generator during learning and measure how GAN
fitness varies from training samples to validation samples. We then demonstrate how the measure
can used to perform model comparison and in particular study the impact of residual connections and
latent space dimension. Finally, we conclude by demonstrating how the optimal latent distribution
of a trained GAN matches the distribution imposed during training.

4.1 VALIDATION MEASURE AND EARLY STOPPING

A key problem in GAN training is knowing when to stop. Either to save resources or prevent
overfitting, being able to probe a GAN during training and infer a stopping policy is crucial. We
demonstrate in this section that our goodness of fit metric can be used as a validation metric for
early stopping. In fact we demonstrate how it can be used during training to provide a meaningful
signal on the state of the GAN distribution approximation. We do experiments with the DCGAN
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Figure 3: Depiction
of our measure of
the GAN fitness for
DCGAN (top row)
and WGAN (bottom
row) for the train and
test set of cluster 0
(left column) and dif-
ferent cluster test set
(right column).
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Figure 4: Evolution of the dis-
tribution of the errors m(xn)
during training for DCGAN
(top) and for WGAN (bottom)

model and WGAN in Fig. 3. We obtain the following conclusions. The DCGAN favors a minority
of points making the overall F (G) measure first decrease and then increase when this specialization
occurs. In fact, the DCGAN will favor learning exactly some images and less good on average. On
the other hand WGAN is much more robust to such degeneracy and thus has performances stable
even if training for a long period of time. As such, in the DCGAN case our metric can be used to do
early stopping and prevent decrease in overall performances, in the WGAN setting it allows to save
resources by stopping when no gains appear even though the performance do not get worse with
time. We also provide in Fig. 4 the evolution of the histograms of the errors m(xn) for both settings
highlighting how for the DCGAN, the main reason for increase of the approximation error lies in
outliers being more and more apart from Imag(G).

4.2 MODEL COMPARISON

In this section we propose to study the impact of the architecture onto the goodness of fit of the
generator. To do so we experiment adding residual connection onto DCGAN. In Figure 7, two
WGAN networks were trained on CIFAR10 (Krizhevsky et al., 2009) and the LSUN (Yu et al.,
2015) bedrooms dataset.
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Figure 5: WGAN experiment
on CIFAR10 (left) and LSUN
(right) for the same network
with and without residual con-
nections
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Figure 6: The initialization of
z and the final z∗. For illus-
trative purposed, the wide dis-
tributions on the left are shown
with smaller standard devia-
tions than in practice.

4.3 LATENT SPACE DISTRIBUTION ANALYSIS

Recall that we solve the optimization problem z∗ = argminz∈R` ‖G(z) − x‖2 in order to try and
generate x. A natural question is what is the distribution of z∗? In this setting we have a GAN with
latent space distribution z ∼ N (0, I). In fact, while the optimization algorithm can be initialized
with normal independent and identically distributed random variables, it might be possible to have
less likely z that would allow better reconstruction. However we demonstrate in figure 6 that the
actual distribution a GAN is trained with is also the one that will minimize the overall goodness of
fit metric. That is, once trained with a specific distribution, one can not increase performance just by
changing this distribution. This brings an interesting observation that the limit in the reconstruction
and span of the generator comes form the model and weights themselves rather the z distribution.

5 REDUCING A GAN’S APPROXIMATION ERROR

In this section we study the two proposed strategies to decrease the approximation error of GANs.
First in Sec. 5.1 we demonstrate how the dimension of the latent space can be increased. Then in
Sec. 5.2 we demonstrate how reducing the size of the dataset allows to better fit the data and then
build upon this finding to experiment with a mixture of GANs in Sec. 5.3.

5.1 INCREASING LATENT DIMENSION

We now turn into the latent space dimension itself. It has been set to 100 across a very large number
of networks and dataset. However, recall that Imag(G) depends on the latent space itself and thus
incidentally on its dimension. We thus experiment with two different setting, the standard ` = 100
and the expanded ` = 300 and this on CIFAR10 and LSUN dataset. We report the results in Fig. 7
where one can observe how increasing the dimension naturally allows to reduce the approximation
error of the generator.

5.2 DATASET SUBSAMPLING HELPS

We demonstrated above that current GANs can not span the training set and in general seem limited
by their generative network. We propose in this section to study how dataset subsampling affects
our measure. As the generator capacity is limited we reduce the complexity of the data and observe
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Figure 7: WGAN
experiment on
CIFAR10 (left)
and LSUN (right)
for the same
network with and
without residual
connections.
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Figure 8: (left): Histograms of m(xi, G) for different subsampling methods. We notice that the K100 method
is the best among the three in terms of goodness of fit. We perform random subsampling (R100), kmeans
clustering (K100), and a mixture of the two (K10R10). In the K10R10 case, we first use kmeans clustering
with 10 clusters and then subsample randomly by 10 in each of those clusters. (right) Histograms of m(xi, G)
for WGAN and our mixture of WGANs

the new measure of F (G) after training. We obtain the key following conclusions. As we sub-
sample our data and our parameters to data ratio increases, our goodness of fit measure decreases.
Clustering images that are close in the input space allows for a better goodness of fit measure, even
though we are in a very high dimensional setting. That is, the number of points matter but also the
similarity between those points. This is a key insight that might play a role in explaining conditional
GANs (Mirza and Osindero, 2014) that act as a subsampling by forcing each class to have its own
set of parameters.

5.3 MIXTURE OF GANS

In this section we leverage the finding from the previous section and exploit a K-means based parti-
tioning of LSUN with K = 10 to subsample the dataset into 10 non overlapping subsets. We then
propose to train an independent WGAN on each of the subset to then form the overall generative
network being a combination of the per subset WGANS. The sampling strategy thus becomes (i)
randomly sample one of the subset (ii) randomly generate an image from the WGAN of the picked
subset. This two step sampling can be assimilated to a mixture model such as Gaussian Mixture
Model. We obtain the following approximation error when performing such training in Fig. 8.

6 CONCLUSION

We defined a goodness of fit measure F (G) for generative networks. We used F (G) to show that
DCGAN and WGAN fail to memorize the training data even though they can generate compelling
images. We provide means to get a better goodness of fit measure by subsampling data randomly or
with K-means clustering.
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