
Under review as a conference paper at ICLR 2020

FEDERATED LEARNING WITH MATCHED AVERAGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning allows edge devices to collaboratively learn a shared model
while keeping the training data on device, decoupling the ability to do model train-
ing from the need to store the data in the cloud. We propose Federated matched
averaging (FedMA) algorithm designed for federated learning of modern neu-
ral network architectures e.g. convolutional neural networks (CNNs) and LSTMs.
FedMA constructs the shared global model in a layer-wise manner by matching
and averaging hidden elements (i.e. channels for convolution layers; hidden states
for LSTM; neurons for fully connected layers) with similar feature extraction sig-
natures. Our experiments indicate that FedMA outperforms popular state-of-the-
art federated learning algorithms on deep CNN and LSTM architectures trained
on real world datasets, while improving the communication efficiency.

1 INTRODUCTION

Edge devices such as mobile phones, sensor networks or vehicles have access to a wealth of data.
However, due to concerns raised by data privacy, network bandwidth limitation, and device avail-
ability, it’s unpractical to gather all local data to the data center and conduct centralized training. To
address these concerns, federated learning is emerging (McMahan et al., 2017; Li et al., 2019; Smith
et al., 2017; Caldas et al., 2018; Bonawitz et al., 2019) to allow local clients to collaboratively train
a shared global model.

The typical federated learning paradigm involves two stages: (i) clients train models over their
datasets independently (ii) the data center uploads their locally trained models. The data center then
aggregates the received models into a shared global model. One of the standard aggregation methods
is FedAvg (McMahan et al., 2017) where parameters of local models are averaged element-wise with
weights proportional to sizes of client datasets. FedProx (Sahu et al., 2018) adds a proximal term for
client local cost functions, which limits the impact of local updates by restricting them to be close
to the global model. Agnostic Federated Learning (AFL) (Mohri et al., 2019), as another variant of
FedAvg, optimizes a centralized distribution that is formed by a mixture of the client distributions.

One shortcoming of the FedAvg algorithm is that coordinate-wise averaging of weights may have
drastic detrimental effect on the performance and hence hinders the communication efficiency. This
issue arises due to the permutation invariant nature of the neural network (NN) parameters, i.e. for
any given NN there are many variations of it that only differ in the ordering of parameters and
constitute local optima which are practically equivalent. Probabilistic Federated Neural Matching
(PFNM) (Yurochkin et al., 2019) addresses this problem by finding permutation of the parameters
of the NNs before averaging them. PFNM further utilizes Bayesian nonparametric machinery to
adapt global model size to heterogeneity of the data. As a result, PFNM has better performance and
communication efficiency, however it was only developed for fully connected NNs and tested on
simple architectures.

Our contribution In this work (i) we demonstrate how PFNM can be applied to CNNs and
LSTMs, however we find that it gives very minor improvement over weight averaging when ap-
plied to modern deep neural network architectures; (ii) we propose Federated Matched Averaging
(FedMA), a new layers-wise federated learning algorithm for modern CNNs and LSTMs utilizing
matching and model size adaptation underpinnings of PFNM; (iii) We empirically study FedMA
with real datasets under the federated learning constraints.

1

Under review as a conference paper at ICLR 2020

LeNet on
MNIST

VGG9 on
CIFAR-10

0

20

40

60

80

100

Te
st

se
t A

cc
13 10

98

68

97

20

99

76

99

83

99

84

99

85

99

87

(a) Homogeneous

LeNet
MNIST

VGG9
CIFAR-10

LSTM
Shakespeare

0

20

40

60

80

100

11 10 8

78

41
35

89

19
24

99

75

46

99

74

40

93

64

39

94

67

36

99
88

51

1-Round FedAvg
Avg Local Acc
One-Shot Matching
Ensemble
FedMA
of Layer-Round
FedAvg
of Layer-Round
FedProx
Entire Data
Training

(b) Heterogeneous

Figure 1: Comparison among various federated learning methods with limited number of communications on
LeNet trained on MNIST; VGG-9 trained on CIFAR-10 dataset; LSTM trained on Shakespeare dataset over:
(a) homogeneous data partition (b) heterogeneous data partition.

2 FEDERATED MATCHED AVERAGING OF NEURAL NETWORKS

In this section we will discuss permutation invariance classes of prominent neural network archi-
tectures and establish the appropriate notion of averaging in the parameter space of NNs. We will
begin with the simplest case of a single hidden layer fully connected network, moving on to deep
architectures and, finally, convolutional and recurrent architectures.

Permutation invariance of fully connected architectures A basic fully connected (FC) NN can
be formulated as ŷ = �(xW (1))W (2) (without loss of generality, biases are omitted to simplify
notation), where � is the non-linearity (applied entry-wise). Expanding the preceding expression
ŷ =

PL
i=1 W

(2)
i� �(hx;W (1)

�i i), where i� and �i denote ith row and column correspondingly and
L is the number of hidden units. Summation is a permutation invariant operation, hence for any
fW (1);W (2)g there are L! practically equivalent parametrizations if this basic NN. It is then more
appropriate to write

ŷ = �(xW (1)�)�W (2), where � is any L� L permutation matrix. (1)

Recall that permutation matrix acts on rows when applied on the left and on columns when applied
on the right. Suppose fW (1);W (2)g are optimal weights, then weights obtained from training on two
homogeneous datasets Xj ; Xj0 are fW (1)�j ;�jW

(2)g and fW (1)�j0 ;�j0W (2)g. It is now easy to
see why naive averaging in the parameter space is not appropriate: with high probability �j 6= �j0

and (W (1)�j +W (1)�j0)=2 6= �W (1) for any �. To meaningfully average neural networks in the
weight space we should first undo the permutation (W (1)�j�

�1
j +W (1)�j0��1

j0)=2 = W (1).

2.1 MATCHED AVERAGING FORMULATION

In this section we formulate practical notion of parameter averaging under the permutation invari-
ance. Letwjl be lth neuron learned on dataset j (i.e. lth column ofW (1)�j in the previous example)
and c(�; �) be an appropriate similarity function between a pair of neurons. Solution to the following
optimization problem are the required inverse permutations:

min
f�j

lig

LX
i=1

X
j;l

min
�i

�jlic(wjl; �i)

s.t.
X
i

�jli = 1 8 j; l;
X
l

�jli = 1 8 i; j:
(2)

Then ��1
jli = �jli and given weights fW (1)

j ;W
(2)
j gJj=1 provided by J clients, we compute the fed-

erated neural network weights W (1) = 1
J

P
jW

(1)
j ��1

j and W (2) = 1
J

P
j ��1

j W
(2)
j . If the client

data sizes are imbalanced, similar to Federated Averaging (McMahan et al., 2017), we can use
weighted averaging instead of uniform. We refer to this approach as matched averaging due to re-
lation of equation 2 to the maximum bipartite matching problem. We note that if c(�; �) is squared

2

Under review as a conference paper at ICLR 2020

Euclidean distance, we recover objective function similar to k-means clustering, however it has ad-
ditional constraints on the “cluster assignments”� j

li necessary to ensure that they form permutation
matrices.

Solving matched averaging Yurochkin et al. (2019) studied the problem of federated learning
of fully connected neural networks. They arrived at a particular form of equation 2 to compute
maximum aposteriori estimate (MAP) of their Bayesian nonparametric model based on the Beta-
Bernoulli process (BBP) (Thibaux & Jordan, 2007), where similarityc(wjl ; � i) is the corresponding
posterior probability ofj th client neuronl generated from a Gaussian with mean� i . Due to the
nonparametric aspect, their BBP-MAP inference approach allows number of neurons in the feder-
ated model to mildly grow in comparison to the client model sizes. This is an appealing property
when client datasets are heterogeneous, which is typical for federated learning. On the downside,
their Probabilistic Federated Neural Matching (PFNM) (Yurochkin et al., 2019) is only applicable
to fully connected architectures limiting its practicality. On the contrary, ourmatched averaging
perspective allows to formulate averaging of widely used architectures such as CNNs and LSTMs
as instances of equation 2 and utilize the BBP-MAP as a solver.

2.2 PERMUTATION INVARIANCE OF KEY ARCHITECTURES

Before moving onto the convolutional and recurrent architectures, we discuss permutation invariance
in deepfully connected networks and corresponding matched averaging approach. We will utilize
this as a building block for handling LSTMs and CNN architectures such as VGG (Simonyan &
Zisserman, 2014) widely used in practice.

Permutation invariance of deep FCs We extend equation 1 to recursively de�ne deep FC net-
work:

x (n) = � (x (n � 1) � (n � 1) W (n) � (n)); (3)

wheren = 1 ; : : : ; N is the layer index,� (0) is identity indicating non-ambiguity in the ordering of
input featuresx = x (0) and� (N) is identity for the same in output classes. Conventionally� (�) is
any non-linearity except for̂y = x (N) where it is the identity function (or softmax if we want prob-
abilities instead of logits). WhenN = 2 , we recover a single hidden layer variant from equation 1.
To perform matched averaging of deep FCs obtained fromJ clients we need to �nd inverse permu-
tations for every layer of every client. Unfortunately, permutations within any consecutive pair of
intermediate layers are coupled leading to a NP-hard combinatorial optimization problem. Instead
we consider recursive (in layers) matched averaging formulation. Suppose we havef � (n � 1)

j g, then

pluggingf � (n � 1)
j W (n)

j g into equation 2 we �ndf � (n)
j g and move onto next layer. The recursion

base for this procedure isf � (0)
j g, which we know is an identity permutation for anyj .

Permutation invariance of CNNs The key observation in understanding permutation invariance
of CNNs is that instead of neurons, channels de�ne the invariance. To be more concrete, let
Conv(x; W) de�ne convolutional operation on inputx with weightsW 2 RC in � w � h � Cout , where
Cin , Cout are the numbers of input/output channels andw; h are the width and height of the �lters.
Applying any permutation to the output dimension of the weights and then same permutation to the
input channel dimension of the subsequent layer will not change the corresponding CNN's forward
pass. Analogous to equation 3 we can write:

x (n) = � (Conv(x (n � 1) ; � (n � 1) W (n) � (n))) : (4)

Note that this formulation permits pooling operations as those act within channels. To apply matched

averaging for thenth CNN layer we form inputs to equation 2 asf wjl 2 RD gC (n)
out

l =1 , j = 1 ; : : : ; J ,

whereD is the �attenedC(n)
in � w � h dimension of� (n � 1)

j W (n)
j . This result can be alternatively

derived taking theIM 2COL perspective. Similar to FCs, we can recursively perform matched aver-
aging on deep CNNs. The immediate consequence of our CNN permutation invariance discussion is
the extension of PFNM (Yurochkin et al., 2019) to CNNs. Empirically (Figure 1) we found that this
extension performs well on MNIST with a simpler CNN architecture such as LeNet (LeCun et al.,
1998) (4 layers) and signi�cantly outperforms coordinate-wise weight averaging (1 round FedAvg).

3

Under review as a conference paper at ICLR 2020

However, it breaks down for more complex architecture, e.g. VGG-9 (Simonyan & Zisserman,
2014) (9 layers), needed to obtain good quality prediction on a more challenging CIFAR-10.

Permutation invariance of LSTMs Permutation invariance in the recurrent architectures is as-
sociated with the ordering of the hidden states. At a �rst glance it appears similar to fully con-
nected architecture, however the important difference is associated with the permutation invariance
of the hidden-to-hidden weightsH 2 RL � L , whereL is the number of hidden states. In particu-
lar, permutation of the hidden states affectsboth rows and columns ofH . Consider a basic RNN
ht = � (ht � 1H + x t W), whereW are the input-to-hidden weights. To account for the permutation
invariance of the hidden states, we notice that dimensions ofht should be permuted in the same way
for anyt, hence

ht = � (ht � 1� H � + x t W �) : (5)

To match RNNs, the basic sub-problem is to align hidden-to-hidden weights of two clients with
Euclidean similarity, which requires minimizingk� H j � � H j 0k2

2 over permutations� . This is a
quadratic assignment problem, which is NP-hard. Fortunately, the same permutation appears in an
already familiar context of input-to-hidden matching ofW � . Our matched averaging RNN solution
is to utilize equation 2 plugging-in input-to-hidden weightsf Wj g to �nd f � � 1

j g. Then federated
hidden-to-hidden weights are computed asH = 1

J

P
j � � 1

j Hh � � 1
j and input-to-hidden weights

are computed as before. LSTMs have multiple cell states, each having its individual hidden-to-
hidden and input-to-hidden weights. In out matched averaging we stack input-to-hidden weights
into SD � L weight matrix (S is the number of cell states;D is input dimension andL is the
number of hidden states) when computing the permutation matrices and then average all weights
as described previously. LSTMs also often have an embedding layer, which we handle like a fully
connected layer. Finally, we process deep LSTMs in the recursive manner similar to deep FCs.

2.3 FEDERATED MATCHED AVERAGING (FEDMA) ALGORITHM

De�ning the permutation invariance classes of CNNs and LSTMs allows us to extend PFNM
(Yurochkin et al., 2019) to these architectures, however our empirical study in Figure 1 demon-
strates that such extension fails on deep architectures necessary to solve more complex tasks. Our
results suggest that recursive handling of layers with matched averaging may entail poor overall
solution. To alleviate this problem and utilize the strength of matched averaging on “shallow” ar-
chitectures, we propose the following layer-wise matching scheme. First, data center gathersonly
the �rst layer's weights from the clients and performs one-layer matching described previously to
obtain the �rst layers weights of the federated model. Data center then broadcasts these weights
to the clients, which proceed to train allconsecutivelayers on their datasets, keeping the matched
federated layersfrozen. This procedure is then repeated up to the last layer for which we conduct
a weighted averaging based on the class proportions of data points per client. We summarize our
Federated Matched Averaging (FedMA) in Algorithm 1. The FedMA approach requires communi-
cation rounds equal to the number of layers in a network. In Figure 1 we show that with layer-wise
matching FedMA performs well on the deeper VGG-9 CNN as well as LSTMs. In the more chal-
lenging heterogeneous setting, FedMA outperforms FedAvg, FedProx trained with same number of
communication rounds (4 for LeNet and LSTM and 9 for VGG-9) and other baselines, i.e. client
individual CNNs and their ensemble.

FedMA with communication We've shown that in the heterogeneous data scenario FedMA out-
performs other federated learning approaches, however it still lags in performance behind the entire
data training. Of course the entire data training is not possible under the federated learning con-
straints, but it serves as performance upper bound we should strive to achieve. To further improve
the performance of our method, we proposeFedMA with communication, where local clients receive
the matched global model at the beginning of a new round and reconstruct their local models with
the size equal to the original local models (e.g.size of a VGG-9) based on the matching results of
the previous round. This procedure allows to keep the size of the global model small in contrast
to a naive strategy of utilizing full matched global model as a starting point across clients on every
round.

4

Under review as a conference paper at ICLR 2020

Algorithm 1: Federated Matched Averaging (FedMA)

Input : local weights of aN -layer architecturef W (1)
j ; : : : ; W (N)

j gJ
j =1 from J clients

Output: global weightsf W (1) ; : : : ; W (N) g
n = 1 ;
while n � N do

if n < N then
f � � 1

j gJ
j =1 = BBP-MAP

�
f W (n)

j gJ
j =1

�
; // call BBP-MAP to solve Eq. 2

W (n) = 1
J

P
j W (n)

j � � 1
j ;

else
W (n) =

P K
k=1

P
j pjk W (n)

jl wherepk is fraction of data points with labelk on workerj ;
end
for j 2 f 1; : : : ; J g do

W (n +1)
j � (n)

j W (n +1)
j ; // permutate the next-layer weights

Train f W (n +1)
j ; : : : ; W (L)

j g with W (n) frozen;
end
n = n + 1 ;

end

3 EXPERIMENTS

We present an empirical study of FedMA with communication and compare it with state-of-the-art
methodsi.e. FedAvg McMahan et al. (2017) and FedProx Sahu et al. (2018); analyze the perfor-
mance under the growing number of clients and visualize the matching behavior of FedMA to study
its interpretability. Our experimental studies are conducted over three real world datasets, detailed
information about the datasets and associated models can be found in Table 1.

Experimental Setup We implemented FedMA and the considered baseline methods in PyTorch
Paszke et al. (2017). We deploy our empirical study under a simulated federated learning environ-
ment where we treat one centralized node in the distributed cluster as the data center and the other
nodes as local clients. All nodes in our experiments are deployed onp3.2xlargeinstances on Ama-
zon EC2. We assume the data center samples all the clients to join the training process for every
communication round for simplicity.

Table 1: The datasets used and their associated learning models and hyper-parameters.

Method MNIST CIFAR-10 Shakespeare McMahan et al. (2017)

Data points 60; 000 50; 000 1; 017; 981

Model LeNet VGG-9 LSTM

Classes 10 10 80

Parameters 431k 3; 491k 293k

Optimizer Adam; with AMSGRADReddi et al. (2019) SGD

Hyper-params. lr:10� 3; weight decay:10� 4 lr: 0:8(const); momentum: 0.9

For the CIFAR-10 dataset, we use data augmentation (random crops, and �ips) and normalize each
individual image (details provided in the Supplement). We note that we ignore all batch normaliza-
tion Ioffe & Szegedy (2015) layers in the VGG architecture and leave it for future work.

For CIFAR-10, we considered two data partition strategies to simulate federated learning scenario:
(i) homogeneous partition where each local client has approximately equal proportion of each of
the classes; (ii) heterogeneous partition for which number of data points and class proportions are
unbalanced. We simulated a heterogeneous partition intoJ clients by samplingpk � DirJ (0:5) and

5

Under review as a conference paper at ICLR 2020

(a) LSTM, Shakespeare;J = 66 ; message
size

(b) LSTM, Shakespeare;J = 66 ; rounds

(c) VGG-9,CIFAR-10; J = 16 ;message
size

(d) VGG-9, CIFAR-10;J = 16 ; rounds

Figure 2: Convergence rates of various methods for VGG-9 trained on CIFAR-10 dataset and LSTM on Shake-
speare dataset.

allocating apk;j proportion of the training instances of classk to local clientj . We use the original
test set in CIFAR-10 as our global test set and all test accuracy in our experiments are conducted
over that test set. For the Shakespeare dataset, since each speaking role in each play is considered a
different client according to Caldas et al. (2018), it's inherently heterogeneous. We preprocess the
Shakespeare dataset by �ltering out the clients with datapoints less10k and get132clients in total.
We choose 80% of data in training set. We then randomly sampleJ = 66 out of 132 clients in
conducting our experiments. We amalgamate all test sets on clients as our global test set.

Communication Ef�ciency and Convergence Rate In this experiment we study performance of
FedMA with communication. Our goal is to compare our method to FedAvg and FedProx in terms
of the total message size exchanged between data center and clients (in Gigabytes) and the number
of communication rounds (recall that completing one FedMA pass requires number of rounds equal
to the number of layers in the local models) needed for the global model to achieve good perfor-
mance on the test data. We also compare to the performance of an ensemble method. We evaluate
all methods under the heterogeneous federated learning scenario on CIFAR-10 withJ = 16 clients
with VGG-9 local models and on Shakespeare dataset withJ = 66 clients with 1-layer LSTM net-
work. We �x the total rounds of communication allowed for FedMA, FedAvg, and FedProxi.e. 11
rounds for FedMA and 99/33 rounds for FedAvg and FedProx for the VGG-9/LSTM experiments
respectively. We notice that local training epoch is a common parameter shared by the three consid-
ered methods, we thus tune the local training epochs (we denote it byE) (comprehensive results will
be discussed in the next section) and report the convergence rate under the bestÊ that leads the best
end model accuracy over the global test set. We also notice that, there is another hyper-parameter
in FedProxi.e. the coef�cient � associated with the proxy term, we also tune the parameter us-
ing grid search and report the best� we foundi.e. 0:001for both VGG-9 and LSTM experiments.
FedMA outperforms FedAvg and FedProx in all scenarios (Figure 2) with its advantage especially
pronounced when we evaluate convergence as a function of the message size in Figures 2(a),2(c).

Effect of local training epochs As studied in previous work McMahan et al. (2017); Caldas
et al. (2018); Sahu et al. (2018), the number of local training epochsE can affect the perfor-

6

	Introduction
	Federated Matched Averaging of neural networks
	Matched averaging formulation
	Permutation invariance of key architectures
	Federated Matched Averaging (FedMA) algorithm

	Experiments
	Conclusion
	Details of CNN Architecture and Hyper-parameters
	Data augmentation and normalization details
	Extra Experimental Details

