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ABSTRACT

Federated learning allows edge devices to collaboratively learn a shared model
while keeping the training data on device, decoupling the ability to do model train-
ing from the need to store the data in the cloud. We propose Federated matched
averaging (FedMA) algorithm designed for federated learning of modern neu-
ral network architectures e.g. convolutional neural networks (CNNs) and LSTMs.
FedMA constructs the shared global model in a layer-wise manner by matching
and averaging hidden elements (i.e. channels for convolution layers; hidden states
for LSTM; neurons for fully connected layers) with similar feature extraction sig-
natures. Our experiments indicate that FedMA outperforms popular state-of-the-
art federated learning algorithms on deep CNN and LSTM architectures trained
on real world datasets, while improving the communication efficiency.

1 INTRODUCTION

Edge devices such as mobile phones, sensor networks or vehicles have access to a wealth of data.
However, due to concerns raised by data privacy, network bandwidth limitation, and device avail-
ability, it’s unpractical to gather all local data to the data center and conduct centralized training. To
address these concerns, federated learning is emerging (McMahan et al., 2017; Li et al., 2019; Smith
et al., 2017; Caldas et al., 2018; Bonawitz et al., 2019) to allow local clients to collaboratively train
a shared global model.

The typical federated learning paradigm involves two stages: (i) clients train models over their
datasets independently (ii) the data center uploads their locally trained models. The data center then
aggregates the received models into a shared global model. One of the standard aggregation methods
is FedAvg (McMahan et al., 2017) where parameters of local models are averaged element-wise with
weights proportional to sizes of client datasets. FedProx (Sahu et al., 2018) adds a proximal term for
client local cost functions, which limits the impact of local updates by restricting them to be close
to the global model. Agnostic Federated Learning (AFL) (Mohri et al., 2019), as another variant of
FedAvg, optimizes a centralized distribution that is formed by a mixture of the client distributions.

One shortcoming of the FedAvg algorithm is that coordinate-wise averaging of weights may have
drastic detrimental effect on the performance and hence hinders the communication efficiency. This
issue arises due to the permutation invariant nature of the neural network (NN) parameters, i.e. for
any given NN there are many variations of it that only differ in the ordering of parameters and
constitute local optima which are practically equivalent. Probabilistic Federated Neural Matching
(PFNM) (Yurochkin et al., 2019) addresses this problem by finding permutation of the parameters
of the NNs before averaging them. PFNM further utilizes Bayesian nonparametric machinery to
adapt global model size to heterogeneity of the data. As a result, PFNM has better performance and
communication efficiency, however it was only developed for fully connected NNs and tested on
simple architectures.

Our contribution In this work (i) we demonstrate how PFNM can be applied to CNNs and
LSTMs, however we find that it gives very minor improvement over weight averaging when ap-
plied to modern deep neural network architectures; (ii) we propose Federated Matched Averaging
(FedMA), a new layers-wise federated learning algorithm for modern CNNs and LSTMs utilizing
matching and model size adaptation underpinnings of PFNM; (iii) We empirically study FedMA
with real datasets under the federated learning constraints.
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Figure 1: Comparison among various federated learning methods with limited number of communications on
LeNet trained on MNIST; VGG-9 trained on CIFAR-10 dataset; LSTM trained on Shakespeare dataset over:
(a) homogeneous data partition (b) heterogeneous data partition.

2 FEDERATED MATCHED AVERAGING OF NEURAL NETWORKS

In this section we will discuss permutation invariance classes of prominent neural network archi-
tectures and establish the appropriate notion of averaging in the parameter space of NNs. We will
begin with the simplest case of a single hidden layer fully connected network, moving on to deep
architectures and, finally, convolutional and recurrent architectures.

Permutation invariance of fully connected architectures A basic fully connected (FC) NN can
be formulated as ŷ = σ(xW (1))W (2) (without loss of generality, biases are omitted to simplify
notation), where σ is the non-linearity (applied entry-wise). Expanding the preceding expression
ŷ =

∑L
i=1W

(2)
i· σ(〈x,W (1)

·i 〉), where i· and ·i denote ith row and column correspondingly and
L is the number of hidden units. Summation is a permutation invariant operation, hence for any
{W (1),W (2)} there are L! practically equivalent parametrizations if this basic NN. It is then more
appropriate to write

ŷ = σ(xW (1)Π)ΠW (2), where Π is any L× L permutation matrix. (1)

Recall that permutation matrix acts on rows when applied on the left and on columns when applied
on the right. Suppose {W (1),W (2)} are optimal weights, then weights obtained from training on two
homogeneous datasets Xj , Xj′ are {W (1)Πj ,ΠjW

(2)} and {W (1)Πj′ ,Πj′W
(2)}. It is now easy to

see why naive averaging in the parameter space is not appropriate: with high probability Πj 6= Πj′

and (W (1)Πj +W (1)Πj′)/2 6= ΠW (1) for any Π. To meaningfully average neural networks in the
weight space we should first undo the permutation (W (1)ΠjΠ

−1
j +W (1)Πj′Π

−1
j′ )/2 = W (1).

2.1 MATCHED AVERAGING FORMULATION

In this section we formulate practical notion of parameter averaging under the permutation invari-
ance. Letwjl be lth neuron learned on dataset j (i.e. lth column ofW (1)Πj in the previous example)
and c(·, ·) be an appropriate similarity function between a pair of neurons. Solution to the following
optimization problem are the required inverse permutations:

min
{πj

li}

L∑
i=1

∑
j,l

min
θi

πjlic(wjl, θi)

s.t.
∑
i

πjli = 1 ∀ j, l;
∑
l

πjli = 1 ∀ i, j.
(2)

Then Π−1jli = πjli and given weights {W (1)
j ,W

(2)
j }Jj=1 provided by J clients, we compute the fed-

erated neural network weights W (1) = 1
J

∑
jW

(1)
j Π−1j and W (2) = 1

J

∑
j Π−1j W

(2)
j . If the client

data sizes are imbalanced, similar to Federated Averaging (McMahan et al., 2017), we can use
weighted averaging instead of uniform. We refer to this approach as matched averaging due to re-
lation of equation 2 to the maximum bipartite matching problem. We note that if c(·, ·) is squared
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Euclidean distance, we recover objective function similar to k-means clustering, however it has ad-
ditional constraints on the “cluster assignments” πjli necessary to ensure that they form permutation
matrices.

Solving matched averaging Yurochkin et al. (2019) studied the problem of federated learning
of fully connected neural networks. They arrived at a particular form of equation 2 to compute
maximum aposteriori estimate (MAP) of their Bayesian nonparametric model based on the Beta-
Bernoulli process (BBP) (Thibaux & Jordan, 2007), where similarity c(wjl, θi) is the corresponding
posterior probability of jth client neuron l generated from a Gaussian with mean θi. Due to the
nonparametric aspect, their BBP-MAP inference approach allows number of neurons in the feder-
ated model to mildly grow in comparison to the client model sizes. This is an appealing property
when client datasets are heterogeneous, which is typical for federated learning. On the downside,
their Probabilistic Federated Neural Matching (PFNM) (Yurochkin et al., 2019) is only applicable
to fully connected architectures limiting its practicality. On the contrary, our matched averaging
perspective allows to formulate averaging of widely used architectures such as CNNs and LSTMs
as instances of equation 2 and utilize the BBP-MAP as a solver.

2.2 PERMUTATION INVARIANCE OF KEY ARCHITECTURES

Before moving onto the convolutional and recurrent architectures, we discuss permutation invariance
in deep fully connected networks and corresponding matched averaging approach. We will utilize
this as a building block for handling LSTMs and CNN architectures such as VGG (Simonyan &
Zisserman, 2014) widely used in practice.

Permutation invariance of deep FCs We extend equation 1 to recursively define deep FC net-
work:

x(n) = σ(x(n−1)Π(n−1)W (n)Π(n)), (3)

where n = 1, . . . , N is the layer index, Π(0) is identity indicating non-ambiguity in the ordering of
input features x = x(0) and Π(N) is identity for the same in output classes. Conventionally σ(·) is
any non-linearity except for ŷ = x(N) where it is the identity function (or softmax if we want prob-
abilities instead of logits). When N = 2, we recover a single hidden layer variant from equation 1.
To perform matched averaging of deep FCs obtained from J clients we need to find inverse permu-
tations for every layer of every client. Unfortunately, permutations within any consecutive pair of
intermediate layers are coupled leading to a NP-hard combinatorial optimization problem. Instead
we consider recursive (in layers) matched averaging formulation. Suppose we have {Π(n−1)

j }, then

plugging {Π(n−1)
j W

(n)
j } into equation 2 we find {Π(n)

j } and move onto next layer. The recursion

base for this procedure is {Π(0)
j }, which we know is an identity permutation for any j.

Permutation invariance of CNNs The key observation in understanding permutation invariance
of CNNs is that instead of neurons, channels define the invariance. To be more concrete, let
Conv(x,W ) define convolutional operation on input x with weights W ∈ RCin×w×h×Cout , where
Cin, Cout are the numbers of input/output channels and w, h are the width and height of the filters.
Applying any permutation to the output dimension of the weights and then same permutation to the
input channel dimension of the subsequent layer will not change the corresponding CNN’s forward
pass. Analogous to equation 3 we can write:

x(n) = σ(Conv(x(n−1),Π(n−1)W (n)Π(n))). (4)

Note that this formulation permits pooling operations as those act within channels. To apply matched

averaging for the nth CNN layer we form inputs to equation 2 as {wjl ∈ RD}C
(n)
out

l=1 , j = 1, . . . , J ,
where D is the flattened C(n)

in × w × h dimension of Π
(n−1)
j W

(n)
j . This result can be alternatively

derived taking the IM2COL perspective. Similar to FCs, we can recursively perform matched aver-
aging on deep CNNs. The immediate consequence of our CNN permutation invariance discussion is
the extension of PFNM (Yurochkin et al., 2019) to CNNs. Empirically (Figure 1) we found that this
extension performs well on MNIST with a simpler CNN architecture such as LeNet (LeCun et al.,
1998) (4 layers) and significantly outperforms coordinate-wise weight averaging (1 round FedAvg).
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However, it breaks down for more complex architecture, e.g. VGG-9 (Simonyan & Zisserman,
2014) (9 layers), needed to obtain good quality prediction on a more challenging CIFAR-10.

Permutation invariance of LSTMs Permutation invariance in the recurrent architectures is as-
sociated with the ordering of the hidden states. At a first glance it appears similar to fully con-
nected architecture, however the important difference is associated with the permutation invariance
of the hidden-to-hidden weights H ∈ RL×L, where L is the number of hidden states. In particu-
lar, permutation of the hidden states affects both rows and columns of H . Consider a basic RNN
ht = σ(ht−1H + xtW ), where W are the input-to-hidden weights. To account for the permutation
invariance of the hidden states, we notice that dimensions of ht should be permuted in the same way
for any t, hence

ht = σ(ht−1ΠHΠ + xtWΠ). (5)

To match RNNs, the basic sub-problem is to align hidden-to-hidden weights of two clients with
Euclidean similarity, which requires minimizing ‖ΠHjΠ − Hj′‖22 over permutations Π. This is a
quadratic assignment problem, which is NP-hard. Fortunately, the same permutation appears in an
already familiar context of input-to-hidden matching of WΠ. Our matched averaging RNN solution
is to utilize equation 2 plugging-in input-to-hidden weights {Wj} to find {Π−1j }. Then federated
hidden-to-hidden weights are computed as H = 1

J

∑
j Π−1j HhΠ−1j and input-to-hidden weights

are computed as before. LSTMs have multiple cell states, each having its individual hidden-to-
hidden and input-to-hidden weights. In out matched averaging we stack input-to-hidden weights
into SD × L weight matrix (S is the number of cell states; D is input dimension and L is the
number of hidden states) when computing the permutation matrices and then average all weights
as described previously. LSTMs also often have an embedding layer, which we handle like a fully
connected layer. Finally, we process deep LSTMs in the recursive manner similar to deep FCs.

2.3 FEDERATED MATCHED AVERAGING (FEDMA) ALGORITHM

Defining the permutation invariance classes of CNNs and LSTMs allows us to extend PFNM
(Yurochkin et al., 2019) to these architectures, however our empirical study in Figure 1 demon-
strates that such extension fails on deep architectures necessary to solve more complex tasks. Our
results suggest that recursive handling of layers with matched averaging may entail poor overall
solution. To alleviate this problem and utilize the strength of matched averaging on “shallow” ar-
chitectures, we propose the following layer-wise matching scheme. First, data center gathers only
the first layer’s weights from the clients and performs one-layer matching described previously to
obtain the first layers weights of the federated model. Data center then broadcasts these weights
to the clients, which proceed to train all consecutive layers on their datasets, keeping the matched
federated layers frozen. This procedure is then repeated up to the last layer for which we conduct
a weighted averaging based on the class proportions of data points per client. We summarize our
Federated Matched Averaging (FedMA) in Algorithm 1. The FedMA approach requires communi-
cation rounds equal to the number of layers in a network. In Figure 1 we show that with layer-wise
matching FedMA performs well on the deeper VGG-9 CNN as well as LSTMs. In the more chal-
lenging heterogeneous setting, FedMA outperforms FedAvg, FedProx trained with same number of
communication rounds (4 for LeNet and LSTM and 9 for VGG-9) and other baselines, i.e. client
individual CNNs and their ensemble.

FedMA with communication We’ve shown that in the heterogeneous data scenario FedMA out-
performs other federated learning approaches, however it still lags in performance behind the entire
data training. Of course the entire data training is not possible under the federated learning con-
straints, but it serves as performance upper bound we should strive to achieve. To further improve
the performance of our method, we propose FedMA with communication, where local clients receive
the matched global model at the beginning of a new round and reconstruct their local models with
the size equal to the original local models (e.g. size of a VGG-9) based on the matching results of
the previous round. This procedure allows to keep the size of the global model small in contrast
to a naive strategy of utilizing full matched global model as a starting point across clients on every
round.
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Algorithm 1: Federated Matched Averaging (FedMA)

Input : local weights of a N -layer architecture {W (1)
j , . . . ,W

(N)
j }Jj=1 from J clients

Output: global weights {W (1), . . . ,W (N)}
n = 1;
while n ≤ N do

if n < N then
{Π−1j }Jj=1 = BBP-MAP

(
{W (n)

j }Jj=1

)
; // call BBP-MAP to solve Eq. 2

W (n) = 1
J

∑
jW

(n)
j Π−1j ;

else
W (n) =

∑K
k=1

∑
j pjkW

(n)
jl where pk is fraction of data points with label k on worker j;

end
for j ∈ {1, . . . , J} do

W
(n+1)
j ← Π

(n)
j W

(n+1)
j ; // permutate the next-layer weights

Train {W (n+1)
j , . . . ,W

(L)
j } with W (n) frozen;

end
n = n+ 1;

end

3 EXPERIMENTS

We present an empirical study of FedMA with communication and compare it with state-of-the-art
methods i.e. FedAvg McMahan et al. (2017) and FedProx Sahu et al. (2018); analyze the perfor-
mance under the growing number of clients and visualize the matching behavior of FedMA to study
its interpretability. Our experimental studies are conducted over three real world datasets, detailed
information about the datasets and associated models can be found in Table 1.

Experimental Setup We implemented FedMA and the considered baseline methods in PyTorch
Paszke et al. (2017). We deploy our empirical study under a simulated federated learning environ-
ment where we treat one centralized node in the distributed cluster as the data center and the other
nodes as local clients. All nodes in our experiments are deployed on p3.2xlarge instances on Ama-
zon EC2. We assume the data center samples all the clients to join the training process for every
communication round for simplicity.

Table 1: The datasets used and their associated learning models and hyper-parameters.

Method MNIST CIFAR-10 Shakespeare McMahan et al. (2017)

# Data points 60, 000 50, 000 1, 017, 981

Model LeNet VGG-9 LSTM
# Classes 10 10 80

# Parameters 431k 3, 491k 293k
Optimizer Adam; with AMSGRADReddi et al. (2019) SGD

Hyper-params. lr: 10−3; weight decay: 10−4 lr: 0.8(const); momentum: 0.9

For the CIFAR-10 dataset, we use data augmentation (random crops, and flips) and normalize each
individual image (details provided in the Supplement). We note that we ignore all batch normaliza-
tion Ioffe & Szegedy (2015) layers in the VGG architecture and leave it for future work.

For CIFAR-10, we considered two data partition strategies to simulate federated learning scenario:
(i) homogeneous partition where each local client has approximately equal proportion of each of
the classes; (ii) heterogeneous partition for which number of data points and class proportions are
unbalanced. We simulated a heterogeneous partition into J clients by sampling pk ∼ DirJ(0.5) and

5



Under review as a conference paper at ICLR 2020

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Amount of Comm. (GB)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Te
st

 A
cc

FedAvg
FedProx
FedMA with Comm
Ensemble

(a) LSTM, Shakespeare; J = 66; message
size

0 5 10 15 20 25 30
Round of Comm.

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Te
st

 A
cc

FedAvg
FedProx
FedMA with Comm.
Ensemble

(b) LSTM, Shakespeare; J = 66; rounds

1 2 3 4 5 6 7 8
Amount of Comm. (GB)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

FedAvg
FedProx
FedMA with Comm
Ensemble

(c) VGG-9,CIFAR-10; J = 16;message
size

0 20 40 60 80 100
Round of Comm.

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Te
st

 A
cc

FedAvg
FedProx
FedMA with Comm.
Ensemble

(d) VGG-9, CIFAR-10; J = 16; rounds

Figure 2: Convergence rates of various methods for VGG-9 trained on CIFAR-10 dataset and LSTM on Shake-
speare dataset.

allocating a pk,j proportion of the training instances of class k to local client j. We use the original
test set in CIFAR-10 as our global test set and all test accuracy in our experiments are conducted
over that test set. For the Shakespeare dataset, since each speaking role in each play is considered a
different client according to Caldas et al. (2018), it’s inherently heterogeneous. We preprocess the
Shakespeare dataset by filtering out the clients with datapoints less 10k and get 132 clients in total.
We choose 80% of data in training set. We then randomly sample J = 66 out of 132 clients in
conducting our experiments. We amalgamate all test sets on clients as our global test set.

Communication Efficiency and Convergence Rate In this experiment we study performance of
FedMA with communication. Our goal is to compare our method to FedAvg and FedProx in terms
of the total message size exchanged between data center and clients (in Gigabytes) and the number
of communication rounds (recall that completing one FedMA pass requires number of rounds equal
to the number of layers in the local models) needed for the global model to achieve good perfor-
mance on the test data. We also compare to the performance of an ensemble method. We evaluate
all methods under the heterogeneous federated learning scenario on CIFAR-10 with J = 16 clients
with VGG-9 local models and on Shakespeare dataset with J = 66 clients with 1-layer LSTM net-
work. We fix the total rounds of communication allowed for FedMA, FedAvg, and FedProx i.e. 11
rounds for FedMA and 99/33 rounds for FedAvg and FedProx for the VGG-9/LSTM experiments
respectively. We notice that local training epoch is a common parameter shared by the three consid-
ered methods, we thus tune the local training epochs (we denote it byE) (comprehensive results will
be discussed in the next section) and report the convergence rate under the best Ê that leads the best
end model accuracy over the global test set. We also notice that, there is another hyper-parameter
in FedProx i.e. the coefficient µ associated with the proxy term, we also tune the parameter us-
ing grid search and report the best µ we found i.e. 0.001 for both VGG-9 and LSTM experiments.
FedMA outperforms FedAvg and FedProx in all scenarios (Figure 2) with its advantage especially
pronounced when we evaluate convergence as a function of the message size in Figures 2(a),2(c).

Effect of local training epochs As studied in previous work McMahan et al. (2017); Caldas
et al. (2018); Sahu et al. (2018), the number of local training epochs E can affect the perfor-
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mance of FedAvg and sometimes lead to divergence. We conduct an experimental study on the
effect of E over FedAvg, FedProx, and FedMA on VGG-9 trained on CIFAR-10 under hetero-
geneous setup. The candidate local epochs we considered are E ∈ {10, 20, 50, 70, 100, 150}.
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Figure 3: The effect of number of local
training epochs on various methods.

For each of the candidate E, we run FedMA for 6 rounds
while FedAvg and FedProx for 54 rounds and report the fi-
nal accuracy that each methods achieves. The result is shown
in Figure3. We observed that training longer favors the con-
vergence rate of FedMA, which matches the our assumption
that FedMA returns better global model on local models with
higher quality. For FedAvg, longer local training leads to de-
terioration of the final accuracy, which matches the observa-
tion in the previous literatureMcMahan et al. (2017); Caldas
et al. (2018); Sahu et al. (2018). FedProx prevents the accu-
racy deterioration to some extent, however, the accuracy of
final model still gets reduced. The result of this experiment
suggests that FedMA is the only method that local clients can
use to train their model as long as they want.
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Figure 4: Performance on skewed CIFAR-
10 dataset.

Handling data bias Large-scale datasets in the real
world are sometimes biased such that for data within class
k may consist of different domains e.g. geo-diversity. It
has been studied that an observable amerocentric and eu-
rocentric bias shown in the widely used ImageNet dataset
Shankar et al. (2017); Russakovsky et al. (2015). Classi-
fiers trained on dataset that contains skewed domains (e.g.
eurocentric training set) in the data space usually perform
badly on test set with balanced domains (e.g. images that
evenly sampled from a broad range of localities) since
correlation between domain and classes can dwarf the
classifier from the correlation between data feature and
classes. We also note that, for different class the domi-
nate domain can be different. We argue that FedMA can
handle this type of problem by nature since we split the training tasks that learning the correlation
between domain and the class and between data feature to the class to different “clients” and our
matching framework can combine those two correlations. We simulate the skewed domain that as-
sociated with classes using CIFAR-10 dataset by randomly selecting 5 classes out of 10, and making
95% training images belongs to those classes to be grayscale and 5% training images in the remain-
ing 5 classes to be grayscale. By doing that, we create 5 grayscale images dominated classes and
5 colored images dominated classes. In the test set, there is half grayscale and half colored images
for each classes. During the training process, we train the colored images dominated classes and the
grayscale images dominated classes on 2 local clients. We then conduct FedMA with communica-
tion, FedAvg, and FedProx over the 2 local models the result of this experiment is shown in Figure 4.
The entire data training under this skewed domain distributions leads to worse accuracy than normal
CIFAR-10 training. FedMA outperforms the entire data training under this scenario.

Table 2: Additional information from convergence experimental results associated with VGG-9 trained on
CIFAR-10 shown in Figure2

Method FedAvg FedProx Ensemble FedMA

Final Accuracy(%) 86.29 85.32 75.29 87.53
Best local epoch(E) 20 20 N/A 150
Model growth rate 1× 1× 16× 1.11×

Hyper-param. N/A µ = 0.001 N/A γ = 5.0

Data efficiency It is known that deep learning models perform better when more training data
is available. However, under the federated learning constraints, data efficiency has not been stud-
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Table 3: Additional information from convergence experimental results associated with LSTM trained on
Shakespeare shown in Figure2

Method FedAvg FedProx Ensemble FedMA

Final Accuracy(%) 46.63 45.83 46.06 49.07
Best local epoch(E) 2 5 N/A 5
Model growth rate 1× 1× 66× 1.06×

Hyper-param. N/A µ = 0.001 N/A γ = 10−3

ied to the best of our knowledge. The challenge here is that when new clients join the federated
system, they each bring their own version of the data distribution, which, if not handled prop-
erly, may deteriorate the performance despite the growing data size across the clients. To simulate
this scenario we first partition the entire training CIFAR-10 dataset into 5 homogeneous pieces.
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Figure 5: Data efficiency under the increas-
ing number of heterogeneous clients.

We then partition each homogeneous data piece further
into 5 sub-pieces heterogeneously. Using this strategy, we
partition the CIFAR-10 training set into 25 heterogeneous
small sub-datasets containing approximately 2k points
each. We conduct a 5-step experimental study: starting
from a randomly selected homogeneous piece consisting
of 5 associated heterogeneous sub-pieces, we simulate a
5-client federated learning heterogeneous problem. For
each consecutive step, we add one of the remaining ho-
mogeneous data pieces consisting of 5 new clients with
heterogeneous sub-datasets. Results of this experiment
are presented in Figure 5. Performance of FedMA (with
a single pass) improves when new clients are added to the
federated learning system, while FedAvg with 9 commu-
nication rounds deteriorates.

Interpretability One of the strengths of FedMA is that it utilizes communication rounds more
efficiently than FedAvg. Instead of directly averaging weights element-wise, FedMA first identifies
matching groups of convolutional filters and then averages them into the global convolutional filters.
It’s natural to ask “How does the matched filters look like?”. We visualize the representations
generated by a pair of matched local filters, aggregated global filter, and the filter returned by the
FedAvg method over the same input image. The result is shown in Figure 6. We observe that the
matched filters and the global filter found with FedMA are extracting the same feature of the input
image, i.e. filter 0 of client 1 and filter 23 of client 2 are extracting the position of the legs of the
horse, and the corresponding matched global filter 0 does the same. For the FedAvg, global filter 0
is the average of filter 0 of client 1 and filter 0 of client 2, which clearly tampers the leg extraction
functionality of filter 0 of client 1.

4 CONCLUSION

In this paper, we presented FedMA, a new layer-wise federated learning algorithm designed for
modern CNNs and LSTMs architectures utilizing probabilistic matching and model size adaptation.
We demonstrate the convergence rate and communication efficiency of FedMA empirically. In the
future, we would like to extend FedMA towards finding the optimal averaging strategy. Making
FedMa support more building blocks e.g. residual structures in CNNs and batch normalization layers
is also of interest.

REFERENCES

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

8



Under review as a conference paper at ICLR 2020

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) Raw input
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) FedMA filter 0
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(c) Client1, filter 0
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(d) Client2, filter 23
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(e) FedAvg filter 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(f) The 2nd image
from CIFAR-10

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(g) Matched global
filter 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(h) Client 1, filter0
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(i) Client 2, filter23
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(j) Avg filter0
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A DETAILS OF CNN ARCHITECTURE AND HYPER-PARAMETERS

Table 4: Detailed information of the VGG-9 architecture used in our experiments, all non-linear activation
function in this architecture is ReLU; the shapes for convolution layers follows (Cin, Cout, c, c)

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3× 32× 3× 3 stride:1;padding:1
layer1.conv1.bias 32 N/A

layer2.conv2.weight 32× 64× 3× 3 stride:1;padding:1
layer2.conv2.bias 64 N/A

pooling.max N/A kernel size:2;stride:2
layer3.conv3.weight 64× 128× 3× 3 stride:1;padding:1

layer3.conv3.bias 128 N/A
layer4.conv4.weight 128× 128× 3× 3 stride:1;padding:1

layer4.conv4.bias 128 N/A
pooling.max N/A kernel size:2;stride:2

dropout N/A p = 5%
layer5.conv5.weight 128× 256× 3× 3 stride:1;padding:1

layer5.conv5.bias 256 N/A
layer6.conv6.weight 256× 256× 3× 3 stride:1;padding:1

layer6.conv6.bias 256 N/A
pooling.max N/A kernel size:2;stride:2

dropout N/A p = 10%
layer7.fc7.weight 4096× 512 N/A

layer7.fc7.bias 512 N/A
layer8.fc8.weight 512× 512 N/A

layer8.fc8.bias 512 N/A
dropout N/A p = 10%

layer9.fc9.weight 512× 10 N/A
layer9.fc9.bias 10 N/A

Table 5: Detailed information of the LSTM architecture in our experiment

Parameter Shape

encoder.weight 80× 8

lstm.weight.ih.l0 1024× 8

lstm.weight.hh.l0 1024× 256

lstm.bias.ih.l0 1024

lstm.bias.hh.l0 1024

decoder.weight 80× 256

decoder.bias 80
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B DATA AUGMENTATION AND NORMALIZATION DETAILS

In preprocessing the images in CIFAR-10 dataset, we follow the standard data augmentation
and normalization process. For data augmentation, random cropping and horizontal random
flipping are used. Each color channels are normalized with mean and standard deviation by
µr = 0.491372549, µg = 0.482352941, µb = 0.446666667, σr = 0.247058824, σg =
0.243529412, σb = 0.261568627. Each channel pixel is normalized by subtracting the mean value
in this color channel and then divided by the standard deviation of this color channel.

C EXTRA EXPERIMENTAL DETAILS

Here we report the shapes of final global VGG and LSTM models returned by FRB with communi-
cation.

Table 6: Detailed information of the final global VGG-9 model returned by FRB; the shapes for convolution
layers follows (Cin, Cout, c, c)

Parameter Shape Growth rate (#global / #original params)

layer1.conv1.weight 3× 47× 3× 3 1.47× (1, 269/864)

layer1.conv1.bias 47 1.47× (47/32)

layer2.conv2.weight 47× 79× 3× 3 1.81× (33, 417/18, 432)

layer2.conv2.bias 79 1.23× (79/64)

layer3.conv3.weight 79× 143× 3× 3 1.38× (101, 673/73, 728)

layer3.conv3.bias 143 1.12× (143/128)

layer4.conv4.weight 143× 143× 3× 3 1.24× (184, 041/147, 456)

layer4.conv4.bias 143 1.12× (143/128)

layer5.conv5.weight 143× 271× 3× 3 1.18× (348, 777/294, 912)

layer5.conv5.bias 271 1.06× (271/256)

layer6.conv6.weight 271× 271× 3× 3 1.12× (660, 969/589, 824)

layer6.conv6.bias 271 1.06× (271/256)

layer7.fc7.weight 4336× 527 1.09× (2, 285, 072/2, 097, 152)

layer7.fc7.bias 527 1.02× (527/512)

layer8.fc8.weight 527× 527 1.05×, (277, 729/262, 144)

layer8.fc8.bias 527 1.02× (527/512)

layer9.fc9.weight 527× 10 1.02× (5, 270/5, 120)

layer9.fc9.bias 10 1×

Total Number of Parameters 3, 900, 235 1.11× (3, 900, 235/3, 491, 530)
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Table 7: Detailed information of the LSTM architecture in our experiment

Parameter Shape Growth rate (#global / #original params)

encoder.weight 80× 21 2.63× (1, 680/640)

lstm.weight.ih.l0 1028× 21 2.64× (21, 588/8, 192)

lstm.weight.hh.l0 1028× 257 1.01× (264, 196/262, 144)

lstm.bias.ih.l0 1028 1.004× (1, 028/1, 024)

lstm.bias.hh.l0 1028 1.004× (1, 028/1, 024)

decoder.weight 80× 257 1.004× (20, 560/20, 480)

decoder.bias 80 1×

Total Number of Parameters 310, 160 1.06× (310, 160/293, 584)
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