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ABSTRACT

One key element which differentiates humans from artificial agents in performing
various tasks is that humans have access to common sense and semantic under-
standing, learnt from past experiences. In this work, we evaluate whether com-
mon sense and semantic understanding benefit an artificial agent when completing
a room navigation task, wherein we ask the agent to navigate to a target room (e.g.
“go to the kitchen”), in a realistic 3D environment. We leverage semantic infor-
mation and patterns observed during training to build the common sense which
guides the agent to reach the target. We encourage semantic understanding within
the agent by introducing grounding as an auxiliary task. We train and evaluate
the agent in three settings: (i) imitation learning using expert trajectories (ii) rein-
forcement learning using Proximal Policy Optimization and (iii) self-supervised
imitation learning for fine-tuning the agent on unseen environments using aux-
iliary tasks. From our experiments, we observed that common sense helps the
agent in long-term planning, while semantic understanding helps in short-term
and local planning (such as guiding the agent when to stop). When combined,
the agent generalizes better. Further, incorporating common sense and semantic
understanding leads to 40% improvement in task success and 112% improvement
in success per length (SPL) over the baseline during imitation learning. Moreover,
initial evidence suggests that the cross-modal embeddings learnt during training
capture structural and positional patterns of the environment, implying that the
agent inherently learns a map of the environment. It also suggests that navigation
in multi-modal tasks leads to better semantic understanding.

1 INTRODUCTION

Humans utilize semantic information and common sense knowledge when exploring unseen envi-
ronments. For instance, we do not need to ask for detailed instructions to navigate to a restroom in
a new restaurant. On the other hand, artificial agents find it challenging to perform grounded lan-
guage navigation tasks (e.g.“go to the kitchen”) or embodied question answering (e.g.“what color
is the car?”) in realistic 3D environments and, especially in unfamiliar environments, tend to fail
miserably (Tangiuchi et al., 2019). We hypothesize that common sense and semantic understanding
can benefit artificial agents in the same way that they benefit humans. For example, in the task of
navigating around the house, common sense understanding can be helpful in long-term planning and
setting the general course of the trajectory. When trying to go to the kitchen, it is useful to know
that a dining room is likely close to the kitchen, and that a hallway is likely close to the dining room.
On the other hand, semantic understanding (i.e. a deeper understanding of the layout of each room,
objects that are usually in it, etc.) should help in choosing better local actions (such as “stop” when
the target room is identified or “go forward” when the target room is in the vicinity of the current
view). In this work, we evaluate the role of common sense and semantic understanding in embodied
agents, using concept-driven navigation (RoomNav (Wu et al., 2018b)) as a testbed.

With advancements in 3D simulated environments such as Habitat AI (Manolis Savva et al., 2019)
or MatterPort3D (Chang et al., 2017), it is possible to train agents that can interact with these multi-
modal environments and perform a variety of embodied tasks such as following instructions, an-
swering questions, or navigating. Figure 1 depicts the RoomNav task, wherein an agent is put in a
realistic 3D house environment and is given an instruction to navigate to a target room by performing
a sequence of actions: turn left, turn right, move forward, or stop. We focus on the RoomNav task
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Figure 1: Panoramic view of the agent (left, right, and front views concatenated).

as it allows us to investigate several research questions related to grounded language understand-
ing, such as (1) does common sense modeling help navigation? (2) does semantic understanding
facilitate navigation and does navigation lead to better semantic representations? (3) can auxiliary
tasks help in hard exploration problems? (4) is the agent able to approximate the layout of the
environments?

We leverage the semantic information and patterns observed during training on the RoomNav task
(such as next room, and sequence of rooms observed along the trajectories) to build the common
sense which guides the agent to reach the target room. We enforce semantic understanding by
performing two auxiliary tasks: (i) grounding during navigation (asking the agent to predict the
current and nearby rooms from current view as depicted in figure 1) (ii) grounding after navigation
(asking questions such as “did you see a bathroom on your way). The common sense module,
therefore, captures sequential and structural information of rooms and is used to guide the agent in
a hierarchical fashion (Kulkarni et al., 2016; Wernsdorfer & Schmid, 2014). Inspired by Wang et al.
(2018), we leverage the idea of self-supervised imitation learning (SIL), which is fine-tuning the
agent on unseen environments using a cycle-reconstruction loss obtained by reversing the original
problem and using it as a critic. Unlike previous works, we perform SIL by introducing auxiliary
tasks related to semantic understanding. We teach the agent how to perform semantic understanding
and then use that knowledge to make the agent get familiar with unseen environment. We also
address the challenge of multiple targets (for example, a house can have multiple bedrooms) by
modifying the loss and reward function (section 4), a problem which has been widely ignored in
previous works by filtering out such scenarios to avoid ambiguity. lastly, we showcase that cross-
modal embeddings trained with semantic and common sense understanding mimic structural and
positional patterns, which helps in effective planning and overall navigation tasks.

2 RELATED WORK

Embodied Tasks: Significant research has been done around visual and video question answering
(Agrawal et al., 2017; Das et al., 2016; 2017b; Le et al., 2019; de Vries et al., 2017, among others).
Recently, some work has been done around grounded language understanding (Harnad, 1999; Her-
mann et al., 2017), wherein an agent interacts with and navigates through a simulated 3D environ-
ment to complete some tasks such as room navigation, finding an object (Wijmans et al., 2019; Wu
et al., 2018b), embodied question answering (Das et al., 2017a; 2018; Gordon et al., 2017; Manolis
Savva et al., 2019; Mirowski et al., 2018), and following instructions (Anderson et al., 2017; Fried
et al., 2018; Shah et al., 2018; Wang et al., 2018). Although researchers have significantly advanced
the state of the art in these tasks, the fundamental question of how language and semantics facilitate
navigation and how navigation helps facilitate semantic understanding is yet to be fully addressed.

Robustification through Reinforcement Learning: While Wu et al. (2018b) used Deep Deter-
ministic Policy Gradient (DDPG, Heess et al. (2015)) and Asynchronous Advantage Actor Critic
(A3C, Mnih et al. (2016)) to evaluate generalizability aspects of the agents for the RoomNav task
on the semantically rich House3D environment, their policies did not leverage any common sense
or knowledge-grounded semantic information available in the environment.

Understanding and Common Sense: Hermann et al. (2017) analyzed the problem of how agents
learn to interpret instructions and how they generalize in one-shot and multi-task settings through
reinforcement and unsupervised learning using the DeepMind Lab framework. Their study show-

2



Under review as a conference paper at ICLR 2020

cased the importance of prior semantic knowledge and curriculum learning for improved general-
ization and faster task completion. These experiments were performed in simple one or two room
settings (Beattie et al., 2016) with few objects in the environment. On the other hand, there are some
environments which are realistic such as House3D (Wu et al., 2018a) or MatterPort3D (Chang et al.,
2017) which constitutes of indoor houses with multiple rooms containing a wide variety of objects.
However, limited amount of research has been done in these environments around understanding or
common sense. Work done by Yang et al. (2019) is the closest research which has been done around
the ideas that we propose. The authors used an external knowledge graph and fed in a Graph Con-
volutional Network (Kipf & Welling, 2017) to encode the knowledge which is then fed as priors for
object navigation. In our work, in addition to implicitly incorporating common sense understanding,
we teach the agent how to perform semantic understanding itself via auxiliary tasks, which helps the
agent in two ways: (i) guiding the agent to help navigate throughout the trajectory (unlike target
alone in case of prior work) and (ii) further fine-tune the agent on unseen environments through
self-supervised imitation learning.

Our objective is not to build an agent which outperforms state-of-the-art in existing embodied task.
The primary focus of our research is to evaluate if common sense and semantic understanding facil-
itate navigation and if navigation helps in better semantic understanding. We propose a variety of
ways in which common sense and semantic understanding can be fed to the agent in order to per-
form exhaustive experiments to interpret how common sense and semantic understanding impact the
navigation task. We choose RoomNav task because it involves planning and semantic understanding.
RoomNav task has been addressed on Habitat environment Manolis Savva et al. (2019) previously,
however, the data used is not accessible anymore. Moreover, we select MatterPort3D environment
for our experiments which unlike Habitat is realistic in nature and is harder to address. To the
best of our knowledge, we do not know of any other work related to RoomNav on MatterPort3D
environment and therefore we could not directly compare against previous work.

3 AGENT ARCHITECTURE

Figure 2: Common Sense and Semantic-Guided Navigation for RoomNav Task. Input to the agent
is represented in green. Black components correspond to the baseline navigator model. Purple
components are introduced to incorporate common sense planning while pink components are for
Semantic Understanding.

Input: We have four kinds of inputs (shown in green in Figure 2): (i) task specific instruction
(e.g. “go to the kitchen”) (ii) RGB values for each state, (iii) previous action, and (iv) semantic
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information such as room annotations or generating grounding questions. Semantic information,
either for obtaining loss in semantic predictions or for generating questions for grounding, is used
during training only as we are not aware of semantics on unseen environments. Following previous
work on embodied navigation (Wang et al., 2018)), we extract panoramic image features using a
fixed pre-trained ResNet-152 (He et al., 2015). The difference is that we turn the agent 90 degrees to
the left and right, respectively, to get a 90-degree view for each direction (in a total of 270 degrees) at
each timestep. We extract and concatenate images features and pass them through a single layer Feed
Forward Neural Network to obtain the visual representation. We use RGB features only as opposed
to using other sensors such as semantic masking features (Wu et al., 2018b) or depth features so that
the agent will learn to perform understanding of the environment rather than memorizing segments
or avoiding obstructions.

Baseline Model: We use an LSTM baseline following the work in Das et al. (2017a) for our ex-
periments. The components shown in black color in figure 2 depict the baseline, which consists
of an LSTM navigator. The navigator receives previous action, visual representation obtained from
ResNet, and target room embedding as input, and predicts one of the four possible actions at each
step. Rationale behind choosing a straightforward LSTM as baseline against a more state-of-the-art
architecture is to evaluate how much common sense and semantic understanding contributes in task
completion and to evaluate a variety of ways in which CS and SU can be incorporated within the
agent.

3.1 COMMON SENSE AND SEMANTICALLY-GROUNDED AGENT

Our architecture consists of the following three modules as depicted in Figure 2:

a. Semantically-Grounded Navigator (SGN): The navigator (shown in black in Figure 2) is an
LSTM model which generates a state at each step that is used for multiple tasks: (i) action prediction
to perform one of four possible actions at each step: go forward (0.25m), turn left (10 degrees), turn
right (10 degrees), and stop (ii) semantic grounding via detecting the current room (SU CR), and
(iii) semantic grounding via post navigation grounding (SU PN), that is generating a response in the
final state when the agent predicts “stop”. The SGN takes the RoomNav instruction at each step
(which remains static throughout the task), visual representation (which changes at each step) as
input. We add a linear layer for each of the three tasks, however, for action prediction we also obtain
the contextual representation by attending to the current SGN state over the generic sequence of
rooms (between source and target room) generated by the common sense planning module (CS RS).
The attention helps the navigator move towards rooms which are closer to the target. Both the
contextual representation and SGN state are used at each step for action prediction.

b. Common Sense Planning Module (CS): We argue that realistic house environments follow
structural patterns (such as a refrigerator is usually placed in the kitchen) and sequential patterns
(such as the kitchen is usually near the dining room). We incorporate this information via CS mod-
ules. For distant destinations, the agent may not be able to utilize a static instruction for route
planning. Instead, we design a next room prediction module (CS Nxt) to help the agent navigate to
an intermediate target along the route. Next room prediction is trained during the imitation learning
phase since during the RL phase the agent might deviate from optimal trajectories (the sequence of
rooms in sub-optimal trajectories will not reflect common sense). Next room prediction is a func-
tion of the current state (obtained from SGN) and the sequence of rooms between the source and
the target room. To incorporate this, the room sequence common sense model (CS RS) is trained
simultaneously to capture generic room sequence patterns (between source and target rooms) across
the houses through sequences observed in training trajectories. However, such an intermediate tar-
get prediction model does not always have explicit information about what rooms are near the target
room. Therefore, we design a backward room sequence model using the LSTM to generate se-
quences starting from the target room. We get the contextual representation by attending to the
output of the backward room sequence and predict the next intermediate room.

c. Semantic Understanding (SU): To incorporate SU, apart from the two auxiliary tasks for the
SGN described previously, we introduce another task for detecting the current and nearby rooms,
using a separate Multi-layer Perceptron (MLP) room detection model (SU RD). The MLP takes
the representation of the panoramic view from ResNet as input and generates a hidden state before
performing classification over four rooms (left (L), front (F), current (C), right (R)). We also pass
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the hidden state of the MLP to the SGN for better action prediction, especially in cases where the
panoramic image contains multiple rooms (as shown in figure 1). Regarding the two auxiliary tasks
performed by SGN, we add separate output heads on top of SGN. We add a linear layer to perform
current room detection (SU CR) using the state obtained from SGN at each step and another linear
layer to produce a “yes” or “no” response to the grounded question (e.g. “did you see a bathroom
on your way?”). The questions - generated by sampling from the annotations and using templates
for positive and negative cases - are used to incorporate semantic understanding (SU PN) within the
agent. The rationale behind having two models for current room detection (SGN and SU RD) is
that we can use the latter to fine-tune SGN on unseen environments as explained in section 4.

3.2 LEARNING

a. Training and Fine-tuning on Unseen Environments: We train the agent in three ways: (i) imita-
tion learning with shortest path trajectories available during the training (ii) reinforcement learning,
to further robustify the agent after imitation learning, using Proximal Policy Optimization (PPO)
on the training environments, and (iii) self-supervised imitation learning on unseen environments,
inspired by the work from Wang et al. (2018). Self-supervision is the reason we have two room
detection models (SU RD and SU CR): we use the rooms detected from SU RD as the ground truth
for performing self-supervised imitation learning on unseen environments. We let SU CR get fur-
ther fine-tuned on unseen environments by obtaining the loss based on SU RD’s output. Further, we
sample grounded questions using the rooms detected by SU RD on the trajectory to perform SU PN
on unseen environments. Losses obtained from these auxiliary tasks on unseen environments update
the SGN which is also used for navigation, hence continues to update the semantic understanding
on newer environments similar to what humans do.

b. Loss and Rewards: During imitation learning, apart from the main action prediction task, we
perform five auxiliary tasks: (i) next room detection (CS Nxt) (ii) target to source room sequence
prediction (CS RS) (iii) current room detection using SU CR (iv) post navigation response gener-
ation (SU PN) and (v) current and nearby room predictions (SU RD). In total, we have six losses
during imitation learning including action prediction. Equation 1 shows the sum of all the losses
during imitation learning. Equation 2 corresponds to per-step loss for each task as a function of
state and input. State in equation 2, corresponds to the SGN state of the LSTM once all the four
inputs (target room embedding, image representation from ResNet, previous action and hidden state
of room detection MLP) are passed through it, as represented in equation 3. During self-supervised
imitation learning, we fine-tune the agent using two auxiliary tasks on unseen environments using
the labels obtained from SU RD MLP model. Equation 4 corresponds to self-supervised imitation
learning loss, with losses (L′) coming from the models. During the reinforcement learning phase,
since we fine-tune the policy on the already seen environment, we freeze the CS and SU modules
to avoid introducing noise. We only update the action layer and the SGN with per step reward
shown in equation 5. We have a reward for agent getting closer to the target, a success reward, and
a discounted future reward. We set the discount factor to be 0.99 in our experiments and success
reward to be 10. All the λ’s corresponds to hyper-parameters across the equations, c t correspond
to contextual representation as shown in Figure 2 and z t correspond to state in CS RS LSTM.

Limitation−learning = λa ∗ Laction + λcs nxt ∗ LCS Nxt + λcs rs ∗ LCS RS +
λsu rd ∗ LSU RD + λsu cr ∗ LSU CR + λsu pn ∗ LSU PN

(1)

laction = lP (actiont|st); lCS Nxt = lP (CS Nxtt|st,ct);

lCS RS = lP (CS RSt|target,zt); lSU RD = lP (SU RDt|ResNet(pan imgt));

lSU CR = lP (SU CRt|st); lSU PN = lP (SU PNt|slast)

(2)

st = SGN(actiont−1, ResNet(pan imgt), MLP (pan img), target room emb) (3)

Lself−supervised−IL = λsu cr ∗ L
′

SU CR + λsu pn ∗ L
′

SU PN (4)

R(st, at) = λ td ∗ (dt−1 − dt) + λ suc ∗ (succ reward) +
T∑

t′=t+1

γt
′
−1r(st′ , at′ ) (5)
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4 EXPERIMENTS AND RESULTS

Data and Environment: We use the Habitat environment (Manolis Savva et al., 2019) with the
MatterPort3D dataset for all of our tasks. Habitat’s task is Point Navigation, where an agent needs
to navigate from a source coordinate to a target coordinate. We adapt this task to form RoomNav
by replacing the target coordinates with the corresponding 27 room types annotated in the dataset
(excluding “other room”). After removing games where the target is in the same room as the source
room and where the target is in the border of several rooms, we generated 53 houses (5020 games)
for training, 11 houses for validation (168 games), and 15 houses (324 games) for testing. We use
the same measure as Point Navigation task to define the complexity of each game by the geodisic
distance of the shortest path. The average number of rooms between the source and target room is
2.41, 3.01, and 4.06, respectively for easy, medium, and hard games in the training data.

Evaluation Metrics: We use two metrics: (i) Success rate: rate of the games in which agent enters
the target room. (ii) Success Per Length (SPL) which is a success metric normalized with respect to
the shortest path (Wang et al., 2018). SPL requires that the agent chooses to terminate in the target
room for the game to be considered successful. In our evaluation, we also calculate non-stop SPL
where we relax this requirement of termination.

Model SPL non-
stop
SPL

average
steps

succ.
rate

easy
succ.
rate

medium
succ.
rate

hard
succ.
rate

baseline 0.067 0.239 119 0.253 0.412 0.246 0.175
CS Nxt 0.120 0.264 137 0.303 0.441 0.285 0.246
CS RS 0.078 0.236 114 0.256 0.426 0.2301 0.191

CS Nxt + CS RS 0.079 0.260 127 0.306 0.485 0.300 0.214
SU CR 0.085 0.227 120 0.244 0.471 0.223 0.143
SU RD 0.103 0.245 114 0.269 0.485 0.231 0.191
SU PN 0.077 0.254 154 0.293 0.427 0.292 0.222

SU PN + SU RD (SIL baseline) 0.056 0.223 158 0.252 0.48 0.21 0.17
SU CR + SU RD (SIL baseline) 0.141 0.248 118 0.278 0.529 0.238 0.19

CS Nxt + SU CR 0.094 0.259 119 0.284 0.50 0.277 0.175
CS Nxt + SU PN 0.068 0.260 146 0.315 0.574 0.269 0.222

CS Nxt + CS RS + SU CR 0.051 0.223 135 0.253 0.441 0.215 0.191
SIL: SU PN + SU RD 0.072 0.239 154 0.275 0.529 0.246 0.167
SIL: SU CR + SU RD 0.142 0.253 116 0.296 0.559 0.262 0.191

Table 1: Results on Imitation Learning and Self-supervised IL on Test Environments. Metrics: SPL
- Shortest path normalized by length; non-stop SPL - Best SPL anywhere in trajectory.

4.1 IMITATION LEARNING

From Table 1, it can be observed that common sense planning and semantic understanding helps in
Imitation Learning experiments across the board when compared to the LSTM only baseline.

Common Sense Planning: We incorporate common sense in two ways: (i) next room guidance
(CS Nxt) and (ii) generic room sequence between target and source room (CS RS) as described in
section 3. As anticipated, CS modules help in long-term planning hence helps in medium and harder
games more than the easy games. Next room guidance alone leads to the second best SPL (80%
improvement over baseline) and hard game success rate (40% improvement over baseline). Room
sequence module (CS RS) alone helps in harder games. When combined with (CS Nxt), the per-
formance on easy game improves significantly, while performance on medium games outperforms
all other settings. Although, performance on harder games degrades relatively, which implies that it
might be hard for the room sequence module to learn longer patterns.

Semantic Understanding: SU is performed in three ways: (i) SGN predicting current room
(SU CR) (ii) SGN performing grounding post navigation (SU PN) and (iii) MLP predicting nearby
rooms (SU RD). As expected, SU generally helps in short-term planning through better semantic
detection leading to higher SPL scores with least average number of steps required to complete
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the task. However, (SU PN) do not follow similar pattern, since grounding in case of (SU PN) is
performed in terminal state, hence it directly does not impact turn-level action prediction. In fact, it
performs significantly better than most settings on medium and hard games because it lets the SGN
focus more on action prediction during intermediate steps, while ensuring semantic understanding
at terminal state. Early stopping could also be the reason why (SU RD) and (SU CR) individually
might perform worse on medium and harder games. When combined together, we get the best SPL
score (0.141, 110% better than the baseline. However improvement can be seen only on easy games.
SGN in these settings might tend to focus more on auxiliary task than the action prediction task. We
hypothesize that hyperparameter tuning is important in combining different modules.

Common Sense Planning and Semantic Understanding: CS when combined with SU leads to
best overall success (25% relative improvement overall) when SGN is trained with (CS Nxt) and
(SU PN) because former helps in long-term planning and the latter leads to better semantic detec-
tion guides the agent in effective stopping. As expected, most improvement is observed on easy
games (40% relative improvement over baseline), performance improvement on medium games is
intermediate, while that on hard games is second best. Adding (SU CR) to (CS Nxt) or (CS Nxt)
and (CS RS) degrades the performance caused by early stopping. Moreover, it can be observed that
when several auxiliary tasks are introduced to the agent, the performance generally degrades as the
agent tends to focus more on the auxiliary tasks than the action prediction task.

4.2 REINFORCEMENT LEARNING: PRELIMINARY ANALYSIS

Figure 3: SPL and Success Rate vs. Number of frames
used for training on hard games of test environment

After bootstrapping the policy with im-
itation learning, we fine-tune the pol-
icy using PPO. We compare baseline
model with the best performing model
(CS Nxt) on hard games. Figure 3 de-
picts the performance of both the mod-
els on hard games of test environment.
From our initial analysis, we observed
that agent trained with common sense
generalizes better on unseen environ-
ments on success and SPL metrics. Al-
though, performance of both the mod-
els degrade initially on the success met-
rics and improves on SPL, the results
obtained with existing RL experiments
should be considered as preliminary
findings.

4.3 SELF-SUPERVISED
IMITATION LEARNING (SIL)

To perform self-supervised imitation learning (SIL), we either use SU CR or SU PN as the auxiliary
task to fine-tune SGN by assuming the output of SU RD as the ground truth. We do not use CS Nxt
model for performing SIL because performance of CS modules degrades significantly when step
level auxiliary tasks are introduced, as depicted earlier. After performing SIL for the first 20 steps
on unseen environments, using the SU CR for fine-tuning helps the overall accuracy by 6.5% with
respect to SU CR + SU RD baseline. When SU PN is used for fine-tuning instead, we achieve an
improvement of 9.1% with respect to SU PN + SU RD baseline. With more SIL steps, performance
degrades due to introduction of noise, as the current room prediction from the SU RD model is not
perfect/ground truth. Through SIL, we showcase that the agent can be made to update the semantic
understanding through navigation.

4.4 CROSS-MODAL EMBEDDINGS

Traditional word embeddings (e.g. Pennington et al. (2014)), are functions of words or semantic en-
tities appearing in similar contexts and may not capture the visual and structural properties of entities
in a realistic 3D world. Therefore, we use cross-modal embeddings, which are randomly initialized
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Figure 4: Top view of house
17DR with dark areas as obsta-
cles

Figure 5: Embeddings of
SU CR + SU RD model before
fine-tuning on 17DR house

Figure 6: Embeddings of
SU CR + SU RD model after
fine-tuning using SIL

and then trained with common sense and semantic understanding across multiple games. We quali-
tatively analyze these embeddings to see if they reflect the structural and visual characteristics of the
environment. Figure 4 represents the top-view of a training environment and Figure 5 visualizes the
embeddings trained using the (SU CR + SU RD) model in two dimensions after aligning. We fine-
tuned the agent (and embeddings) on the house shown in figure 4 using self-supervised imitation
learning and visualize it in figure 6, after aligning it with respect to the original map for comparison.
It can be observed that fine-tuned embeddings tend to mimic the structural and positional patterns of
the house. Embeddings obtained before fine-tuning mimic the average structural pattern of rooms
across all the houses, such as the dining room is close to the living room. Apart from positional
characteristics, the cross-modal embeddings also mimic visual properties, for example the bathroom
and the TV room are usually separated before and after fine-tuning, because these rooms are visually
distinct from other rooms.

Cross-modal Embeddings as an alternative to SLAM: From this observation, we can conclude
that after fine-tuning the agent on a given house using SIL, embeddings tend to mimic the layout
of the house. These approximate maps obtained from embeddings can be an alternative to SLAM
algorithm (Durrant-Whyte & Bailey, 2006). We leave detailed comparison to future work.

Navigation facilitates Semantic Understanding: The embeddings or semantic representations
learnt by our approach contain information beyond what is captured in language, such as struc-
tural and visual characteristics, which is similar to how humans represent semantics in their mind.
From the analysis performed above, we show that cross-modal navigation improves semantic under-
standing by capturing information from various modalities into the embeddings.

5 CONCLUSION

The only thing which humans have when they navigate in unseen environments is common sense
and semantic understanding obtained through past experiences. In this work, we investigate if this
also holds in artificial agents, by incorporating common sense and making the agent semantically
aware while performing a room navigation task in realistic 3D environments. We showcased that the
agent generalizes better if it is taught to perform common sense and semantic understanding. We
introduced semantic grounding within the navigator through multiple auxiliary tasks, and showcased
that the agent can be fine-tuned further to generalize better on unseen environments through auxiliary
tasks using self-supervised imitation learning. We also showed that the cross-modal embeddings
obtained during training tend to capture structural and positional patterns of the houses, implying
that the agent learns better planning with common sense and semantic auxiliary tasks.
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Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pp. 1532–1543, 2014. URL https://www.aclweb.
org/anthology/D14-1162/.

Pararth Shah, Marek Fiser, Aleksandra Faust, J. Chase Kew, and Dilek Hakkani-Tür. Follownet:
Robot navigation by following natural language directions with deep reinforcement learning.
CoRR, abs/1805.06150, 2018. URL http://arxiv.org/abs/1805.06150.

T. Tangiuchi, Daichi Mochihashi, T. Nagai, S. Uchida, N. Inoue, Ichiro Kobayashi, T. Nakamura,
Yoshinobu Hagiwara, Naoto Iwahashi, and Tetsunari Inamura. Survey on frontiers of language
and robotics. Advanced Robotics, pp. 1–31, 06 2019. doi: 10.1080/01691864.2019.1632223.
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