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ABSTRACT

We study the problem of safe adaptation: given a model trained on a variety of past
experiences for some task, can this model learn to perform that task in a new situa-
tion while avoiding catastrophic failure? This problem setting occurs frequently in
real-world reinforcement learning scenarios such as a vehicle adapting to drive in a
new city, or a robotic drone adapting a policy trained only in simulation. While
learning without catastrophic failures is exceptionally difficult, prior experience
can allow us to learn models that make this much easier. These models might
not directly transfer to new settings, but can enable cautious adaptation that is
substantially safer than naı̈ve adaptation as well as learning from scratch. Building
on this intuition, we propose risk-averse domain adaptation (RADA). RADA works
in two steps: it first trains probabilistic model-based RL agents in a population
of source domains to gain experience and capture epistemic uncertainty about the
environment dynamics. Then, when dropped into a new environment, it employs a
pessimistic exploration policy, selecting actions that have the best worst-case perfor-
mance as forecasted by the probabilistic model. We show that this simple maximin
policy accelerates domain adaptation in a safety-critical driving environment with
varying vehicle sizes. We compare our approach against other approaches for
adapting to new environments, including meta-reinforcement learning.

1 INTRODUCTION

An experienced human driving a rental car for the first time is initially very aware of her lack of
familiarity with the car. How sensitive is it to acceleration and braking? How does it respond to
steering? How wide is the vehicle and what is its turning radius? She drives mindfully, at low
speeds, braking far ahead of desired stops, and making wide turns, all the while observing the car’s
responses and adapting to it. Within minutes, once she is familiar with the car, she begins to drive
more fluently and efficiently. Humans draw upon their prior experiences to perform this kind of safe,
quick adaptation to unfamiliar situations all the time, such as when playing with a new tennis racquet,
or walking on a new slippery surface.

Such problems are critical to address in autonomous systems: such as when a self-driving car must
learn to drive in a new country, or when a planetary rover might have to learn to explore a harsh
new environment. Missteps in real-world situations can cause real damage to robots and their
environments. An important bottleneck in applying today’s standard machine learning approaches to
control in these real-world situations is that they are trained without any notion of safe behavior under
uncertainty. Recent works have attempted to address this by proposing methods for safe exploration
during reinforcement learning — in other words, how might an agent avoid risky actions during
training time? This still requires that the robot acquire its notions of uncertainty and risks at the same
time as it is learning to perform tasks in the new environment, which is difficult and precarious.

Could we instead rely on transferring notions of uncertainty and risk acquired from prior experience
in other related domains, such as in simulated environments, where safety may not be as much of a
concern? In other words, could we make the safe learning problem easier through knowledge transfer,
relaxing the problem to safe adaptation, like the human driver? How might the planetary rover draw
on its experience in many varied terrains on Earth to perform meaningfully cautious actions during
learning on the unknown terrain of a new planet?
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Motivated by these questions, we propose a model-based reinforcement learning approach called
risk averse domain adaptation (RADA). RADA works by first pretraining a probabilistic dynamics
model on a population of training domains with varied, unknown dynamics. Through this experience
over many environments, the model learns to estimate the epistemic uncertainty (model uncertainty)
of unknown environment dynamics, thus permitting estimation of a distribution of outcomes for
any action executed by the agent. When introduced into a new target environment, RADA uses this
estimated distribution of outcomes to select cautious actions that obey the following maximin notion
of risk-aversion: among various candidate action sequences, it executes those that lead to the best
worst-case performance, as predicted by the model. Much like the human driver in the example
above, all the information collected during this cautious phase of exploration is fed back into the
model to finetune it to the new domain, leading to increasingly confident predictions. Over time,
RADA steadily estimates lower risks and approaches optimality in the target environment. As we
demonstrate in experiments in a driving domain, the experience acquired during RADA’s pretraining
phase enables fast yet safe adaptation within only a handful of episodes.

2 RELATED WORK

Cautious or risk-averse learning has close connections to learning robust control policies, as well as
the uncertainty estimation derived from Bayesian reinforcement learning (Ghavamzadeh et al., 2015;
Strens, 2000). Rather than conventionally maximizing a reward function, accounting for risk usually
involves allocating more attention to ‘worst-case’ outcomes in an environment. Such outcomes
become particularly important in out-of-domain settings, where purely optimizing in the training
domain does not guarantee good performance in the test domain, the problem setting that we consider
in this work.

Safety in reinforcement learning. Incorporating safety requires properly managing risks and
reducing the impact of unforeseen negative outcomes. Risk management is extensively studied in
quantitative finance. In portfolio optimization, a commonly used quantity that measures the expected
return considering the worse α-% of cases is Conditional Value at Risk (CVaR) (Rockafellar et al.,
2000). With probability α, the reward is greater than the CVaR measure. CVaR is formulated as
E[R|R ≤ υα]. Rather than optimizing the expected reward, risk averse policies optimize the lower
α-quartile of the distribution of rewards.

While meta-learning approaches like RL2 (Duan et al., 2016) can potentially learn safety by adapting
across learning episodes, we found this was not possible in the environments we tested. To address
safety more expicitly, the reinforcement learning community is adopting measures like CVaR as
quantities that can be optimized (Morimura et al., 2010; Borkar & Jain, 2010; Chow & Ghavamzadeh,
2014; Tamar et al., 2015; Chow et al., 2015) to create policies which are robust to shifts from source
to target domains. Rajeswaran et al. (2016) propose learning robust policies by sampling from
the α-quartile of an ensemble of models. While the model ensemble is trained on a given source
distribution, the policy is only trained on the lower α-quartile rewards from trajectories sampled from
this ensemble. This leads to policies which are more conservative and therefore more robust to shift
when deployed from source to target domains. In contrast, we propose to train on data from varying
quartiles, with the goal of preventing overly-conservative models.

Epistemic uncertainty in reinforcement learning. While learning a robust model is beneficial for
transferring to different domains, model-based reinforcement learning offers an additional unsuper-
vised learning signal that can be exploited at test time. In particular, prior work has shown that a
model can be quickly adapted during test time by meta-learning for fast adapting parameters during
training (Nagabandi et al., 2018a; Sæmundsson et al., 2018). These fast adapting parameters offers
greater flexibility in adapting to unforeseen circumstances which an agent may encounter at test
time. Nagabandi et al. (2018a) show that real robots can quickly adapt to broken or miscalibrations
during evaluation through this fast adaptation acquired through meta-learning. Such approaches are
complementary to our approach, as they provide a means to explicitly train for fast adaptation to
disturbances in the environment, while they do not account for any notion of safety.

Henaff et al. (2019) propose using the uncertainty of a model to regularize policy learning. The
policy is encouraged to create trajectories which are distributionally close to trajectories observed in
training data. After training, the observations of the model and actions of the policy generate state
trajectories which near the domain it has been trained on. In other words, the policy has a preference
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to keep the trajectories within its training domain. In our work, our policy is encouraged to behave
cautiously in unfamiliar environments rather than remain in familiar ones. Kahn et al. (2017) train a
collision prediction model to favor ’safe’ (low velocity) collisions. Using uncertainty estimates, this
collision model will initially behave cautiously in a new environment. Similar to our method, the
model becomes less conservative as it adapts to the new environment and lowers its uncertainty.

Domain randomization. Domain randomization (Sadeghi & Levine, 2017; Peng et al., 2018;
Tobin et al., 2017) attempts to train policies that are able to transfer to some target environment by
training an agent in deliberately randomized simulated environments to allow learning a policy that is
invariant to the randomized parameters, and thus performs robustly in the target environment. RADA
also pretrains on a set of environments with varied dynamics, but different from these prior works,
we operate in a safety-critical setting, focusing on safe adaptation to the target environment — to
accomplish this, we follow an explicitly cautious action policy at adaptation time, different from the
policy used in the pretraining environments.

Before discussing RADA, we first lay out some preliminaries.

3 BACKGROUND: PETS

We build upon PETS (Chua et al., 2018), a recently proposed approach for model-based reinforcement
learning. We describe the main features of the PETS framework below:

Probabilistic dynamics model. PETS trains an ensemble of probabilistic dynamics models within
its environment. Each model in the ensemble is a probabilistic neural network that outputs a
distribution over the next state s′ conditioned on the current state s and action a. The data for training
these models comes from trajectories executed by following the same scheme for action selection
that will be eventually used at test time.

Action selection. This action selection scheme is sampling-based model-predictive control (MPC):
an evolutionary search method finds action sequences with the highest predicted reward. The reward
of an action sequence in turn is computed by propagating action outcomes autoregressively through
the learned probabilistic models.

Reward computation. Specifically, starting from a state s0, for each sampled action sequence
A = [a1, ..., aH ], where H is the planning horizon, the dynamics model first predicts a distribution
over s1 after executing a0. A particle propagation method samples Monte Carlo samples from
this distribution. For each sample, the dynamics model then predicts the state distribution for s2,
conditioned on executing a1, and the process repeats. This recursive particle propagation results in
a large number N of particles {ŝiH}Ni=1 after H steps. These N particles represent samples from
the distribution of possible states after executing A. Each such particle i ∈ [1, N ] is now assigned a
predicted reward ri, which is a function of its full state trajectory starting from s0. Finally, the mean
of those predicted rewards is considered the score of the action sequence:

R(A) =
∑
N

ri/N. (1)

We call this the action score. Then, the winning action sequence A∗ = argmaxAR(A) with the
highest action score is selected, the first action in that sequence is executed, and the whole process
repeats starting from the resulting new state s1.

4 RADA: RISK-AVERSE DOMAIN ADAPTATION

Now we present our approach, Risk-Averse Domain Adaptation (RADA). As motivated in Sec 1,
RADA approaches safe learning as an adaptation problem, where an agent may draw upon its
experience in a variety of environments to guide cautious behavior in a new safety-critical target
environment while minimizing the risk of catastrophic failure.

Consider a set of environments, each defined by the value of an unknown domain ID variable z,
which controls the dynamics in each domain. RADA assumes a setting where we train on some of
these domains, and must then transfer to new domains with unknown, potentially unseen, and even
out-of-distribution values of z. As a running example, consider learning to drive cars, where each
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car is represented by its own value of the domain ID variable z. This domain ID might include a
potentially large set of unknown and hard-to-measure properties, which together determine the way
that the car drives.

We propose a solution, RADA, that builds upon the PETS framework (Sec 3). PETS has been
demonstrated to work well across a variety of environments. Further, compared to alternative
approaches, this framework has two natural advantages for our risk-averse domain adaptation setting,
both of which are critical to our approach: (i) the probabilistic models of PETS can be adapted to
capture the “epistemic uncertainty” about the dynamics of a new domain, and (ii) model-based RL
agents contain dynamics models that can be trained in the absence of any rewards or supervision,
providing a route for adaptation to a new environment. We now discuss how RADA builds upon
PETS.

RADA first builds a probabilistic ensemble of dynamics models on the training domains that capture
the epistemic uncertainty in dynamics due to unknown z. We call this the pretraining phase. When
an agent with this pretrained model encounters a new domain, we use pessimistic predictions from
the model to drive cautious exploration to finetune the model to the new domain, leading to safe and
fast adaptation. We call this the adaptation/finetuning phase. Algorithm 1 provides pseudocode for
RADA, and the rest of this section explains RADA in detail.

4.1 PRETRAINING PETS IN MULTIPLE DOMAINS

While the PETS probabilistic ensemble is trained to represent uncertainty within a single environment
in Chua et al. (2018), we would like our model to capture the uncertainty associated with being
dropped into a new environment, with unknown domain ID z.

To do this, we propose a “pretraining” phase, where a single PETS ensemble is trained across all
the training environments, with varying, unknown values of z. Specifically, at the beginning of each
training episode, we randomly sample one of the training z’s from a uniform distribution. Since z
determines the environment dynamics and is unavailable to the learned dynamics model, the ensemble
has incentive to learn to model this as epistemic uncertainty during the pretraining phase. See the
pretraining procedure in Algorithm 1.

4.2 CAUTIOUS ACTION SELECTION DURING ADAPTATION

After this pretraining, how might the uncertainty captured in the ensemble inform cautious exploration
during adaptation in the target environment? To do this, we adapt the PETS action selection and
reward computation scheme using a maximin notion of cautious behavior, in line with notions of risk
used in prior work across disciplines (Rockafellar et al., 2000; Tamar et al., 2015; Rajeswaran et al.,
2016).

Specifically, we replace the action score of equation 1 with a newly defined “generalized action score”
Rγ(A), in which the “caution parameter” γ ∈ [0, 100] controls the degree of caution exercised in
evaluating action sequences in the new environment. Rγ(A) is defined as:

Rγ(A) =
∑

i:ri≤υ100−γ(r)

ri/N, (2)

where υk(r) denotes the value of the kth percentile of predicted rewards {rj}Nj=1 among the N
particles after particle propagation.

Unpacking this definition, Rγ measures the mean score of the bottom 100 − γ percentile of the
predicted outcomes from the PETS model. When γ = 50, for instance, it measures the mean of the
worst 50 percentile of predicted rewards. This is a pessimistic evaluation of the prospects of the
action sequence A — it only pays attention to the worst performing particles in the distribution. At
caution γ = 0, Rγ exactly matches the definition of R in equation 1: it measures the mean predicted
reward of all the particles produced after particle propagation through the model. In our experimenst,
we heuristically set γ = 50.

Now, we define a “γ-cautious action policy” as one that selects actions based on the generalized
action score Rγ . In other words, A∗γ = argmaxARγ(A). We propose to deploy such γ-cautious
action policies at adaptation time.
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The intuition is straightforward: in an unknown environment, the agent performs deliberately performs
cautious actions to perform safe adaptation. Even though it eventually seeks to achieve high mean
performance in the target environment, it does not select actions that achieve the highest expected
reward under its model. Instead, it chooses to be conservative, not trusting the model’s expectations
fully.

4.3 MODEL FINETUNING

Algorithm 1 RADA
1: procedure PRETRAINING
2: Initialize the probabilistic ensemble dynamics model f
3: Initialize dataD using a random controller in a random training

domain for one trial.
4: for domain ID z ∼ training domains do
5: Train the probabilistic ensemble dynamics model f onD
6: for t = 0 to task horizon do
7: for evolutionary search stage=1,2,... do
8: for sampled action sequenceA do
9: Run state propagation to produceN particles
10: EvaluateA asR(A) =

∑
i ri/N

11: end for
12: Refine search to findA∗ = argmaxR(A)
13: end for
14: Execute first action ofA∗

15: Record outcome inD
16: end for
17: end for
18: end procedure
19: procedure ADAPTATION(D,f)
20: for target domain adaptation episode=1,2,... do
21: for t = 0 to task horizon do
22: for evolutionary search stage=1,2,... do
23: for sampled action sequenceA do
24: Run state propagation
25: EvaluateA with generalized scoreRγ(A)

26: end for
27: Refine search to findA∗ = argmaxRγ(A)

28: end for
29: Execute first action ofA∗

30: Record outcome inD
31: end for
32: end for
33: end procedure

As it gathers experience in the target environ-
ment using the γ-cautious policy, RADA also
improves its dynamics model over time to fine-
tune it to the new environment. Since dynam-
ics models do not need any manually specified
reward function during training, the ensemble
model can continue to be trained in the same
way as during the pretraining phase.

We propose to stabilize adaptation by drawing
on past experience and keeping the model close
to the original model. Specifically, we main-
tain a replay buffer of data from the pretraining
episodes, conducted outside the target domain.
We then compute model updates on this full
dataset. We use probabilistic neural network
ensembles for the dynamics model Chua et al.
(2018), and training proceeds through stochastic
gradient descent.

As the model improves over time, the distribu-
tion of predicted outcomes becomes more and
more narrow over time. For a deterministic en-
vironment, the model eventually converges to
deterministic predictions, so that Rγ is the same
for all γ. In other words, once the model is well-
trained, the γ-cautious action policy is identical
to the standard action policy. The Adaptation
procedure in Algorithm 1 sums up cautious ac-
tion selection and model finetuning.

5 EXPERIMENTS

We now evaluate various ablations of RADA in a driving environment, evaluating the importance
of three components of our technique for generalization to unseen out-of-domain environments: (i)
pretraining on multiple domains (i.e. ‘domain randomization’), (ii) replaying pretraining to stabilize
finetuning in the target environment, (iii) γ-cautious action policy (γ > 0) at adaptation time — we
heuristically set γ = 50 for our experiments. RADA is the version that includes all three techniques.
For all methods, we use a PETS ensemble of 5 fully connected models, with each one having 4 layers.
We hypothesize that being cautious would not only allow RADA to adapt quicker by avoiding risk of
catastrophic failure, but also that as uncertainty about the environment is resolved during adaptation,
a cautious policy will become similar to the optimal policy, leading to higher final reward.

Baselines. Our first baseline is RADA without cautious adaptation in the test environ-
ment: RADA\caution. Next we separately ablate out multi-domain pretraining and pre-
training replay from this approach to create two more baselines: RADA\{caution,DR} and
RADA\{caution,replay}. Through these baselines, we systematically compare the contribu-
tions of various components of RADA. We also compare RADA against PETS trained directly in the
target environment, train-on-target. Finally, we implemented three meta-learning approaches
as baselines: GrBal (Nagabandi et al., 2018a), RL2 (Duan et al., 2016), and MOLe (Nagabandi et al.,
2018b).
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Figure 1: (left) Overhead and (right) first-person view from the car camera, of the Duckietown-based
driving environment.

Car driving environment. Our driving environment is based on Duckietown (Chevalier-Boisvert
et al., 2018), a physically accurate driving environment designed for sim-to-real transfer. The task,
illustrated in Fig 1, is to make a right turn around a corner to reach a fixed goal tile. Each tile is fixed
to a size of 0.585. We modify the environment such that when the car attempts to take an action that
would drive it off of the road tiles, it is held in place. If the car clips the corner, it gets stuck unless
the agent has learned to reverse out from the corner and try the turn again. The task rewards faster,
more efficient turns, so that there is incentive to go near the corner. At the same time, since there is
a big price to pay for it, a cautious agent must avoid hitting the corner at all costs. The agent can
observe its current x, y coordinates, current velocity, and steering angle. At each time step, it is given
a reward equal to negative Manhattan distance from the goal, with a completion bonus of 100 if it
successfully reaches the goal tile. The agent has direct control of the steering angle and velocity of
the car at each time step. See figure 1.

Each domain is specified by a one-dimensional domain ID, the width of the car, which is unknown to
the agent. During pretraining, the car width ranges from 0.050 to 0.099, and is sampled uniformly
from this range before each training episode. Having driven these cars of varying widths, we evaluate
each method’s ability to adapt to driving new cars. We test adaptation to one in-distribution domain:
width 0.075, and five out-of-distribution domains: 0.1, 0.125, 0.15, 0.175, and 0.20. We vary the car
width because of its direct influence on the optimal trajectory of the car: wider cars must make wider
turns to avoid catastrophe.

Performance Metrics. We measure the return (sum of rewards over a full episode) and the number
of collisions underwent in the target environment. For each method, we report the “average maximum
reward” over adaptation time t, which is the average over 10 random seeds of the maximum over
t adaptation episodes of the reward obtained in the target environment. Finally, to measure the
safety of the adaptation process, we also report the cumulative number of collisions suffered by each
method during adaptation, which more directly measures the extent to which different methods avoid
catastrophic failures and perform safe adaptation.

Results. We perform pretraining for 32 iterations on the training domains: 2 initial rollouts with
a random policy and 30 on-policy iterations. RADA\{caution,DR} is pretrained on a single
training domain for the same 32 iterations — the one with car width 0.1, which is the closest to the
out-of-domain target car widths (recall the training car widths are 0.050-0.099).

Fig 2 shows the average maximum reward after 10 adaptation episodes and the average total number
of collisions for each method, as a function of the car width. All methods perform worse farther
away from the training car widths, but RADA maintains its performance up to car width 0.15, and
deteriorates more gracefully, maintaining good performance even up to car width 0.2, over two times
the largest car width observed at pretraining time. Not only does RADA achieve the highest rewards,
but it also achieves them while being the most safe — it suffers the least number of collisions during
adaptation across all these environments.

Comparing RADA ablations, cautious action selection during adaptation proves critical to perfor-
mance, and RADA\caution does much worse than RADA throughout. Domain randomization and
pretraining replay have relatively smaller impacts on the performance after ten adaptation episodes,
but we will show that they impact training speed and stability.

On this environment, the metalearning baselines RL2, GrBAL, and MOLe all experienced training
failures, failing to consistently solve the task consistently during pretraining.
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Figure 2: Evaluation of the average maximum reward and average total boundary collisions over
different domains.

Finally, training directly on the target domain (train-on-target), aside from naturally resulting
in more collisions, does not result in the best performance even in terms of rewards. We believe
that this is because pretraining on the training car widths has an additional advantage: it sets up a
curriculum for training that makes it easier for the agent to solve the exploration problem of learning
how to make the right turn.

Adaptation speed. We now plot the results over adaptation time in each target environment for
both the average maximum reward and the running total boundary collisions to show adaptation speed
in the target environments. Fig 3 shows the average maximum reward over adaptation time for various
methods, and at various target car widths. We evaluate at one in-domain car width (0.075) and at five
out-of-domain car widths (0.1, 0.125, 0.15, 0.175, and 0.2). Across all six, RADA yields the highest
rewards at all times except for domain 0.1. Fig 4 shows similar plots for the average cumulative
total boundary collisions over adaptation time. Once again, RADA outperforms all approaches at
most domains, with the least overall collisions at all domains except for 0.1. Further, as seen in these
cases, RADA\{caution,DR} adapts more slowly than other approaches, demonstrating the value
of multi-domain pretraining. Further RADA\{caution,replay} leads to very unstable training,
reflected here in the fact that maximum reward over adaptation time does not monotonically increase,
unlike the other approaches.

6 DISCUSSION

We have proposed RADA, a new approach to model-based reinforcement learning for safe, quick
adaptation of RL agents in new environments with unknown dynamics. RADA relies on two key ideas:
transferring knowledge from training in a variety of training environments, and using a maximin
notion of risk-aversion during action selection in the target environment. We show in a physically
accurate driving environment that RADA performs fast, safe adaptation to learn to drive cars around
corners, even when they are up to two times larger than any cars it has driven at pretraining time.
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Figure 3: Evaluation of the reward over time at six different car width domains. For every evaluation,
we perform ten adaptation steps, with one initial evaluation before adaptation starts. Each calculated
reward is calculated by taking the maximum reward seen so far at each timestep, where the value at
that timestep is averaged over ten evaluations. This maximum is then averaged over ten initializations
for each model. Standard errors are shown with colored bars.

Figure 4: Evaluation of the total number of boundary collisions over time at six different car width
domains. The maximum number of collisions is 60, as there are 6 evaluations steps (1 before
adaptation starts, 5 during) and at each evaluation step 10 evaluations are performed. This cumulative
total is averaged over ten initializations for each model. Standard errors are shown with colored bars.
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