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ABSTRACT

We propose a new representation, one-pixel signature, that can be used to re-
veal the characteristics of the convolution neural networks (CNNs). Here, each
CNN classifier is associated with a signature that is created by generating, pixel-
by-pixel, an adversarial value that is the result of the largest change to the class
prediction. The one-pixel signature is agnostic to the design choices of CNN ar-
chitectures such as type, depth, activation function, and how they were trained. It
can be computed efficiently for a black-box classifier without accessing the net-
work parameters. Classic networks such as LeNet, VGG, AlexNet, and ResNet
demonstrate different characteristics in their signature images. For application,
we focus on the classifier backdoor detection problem where a CNN classifier has
been maliciously inserted with an unknown Trojan. We show the effectiveness
of the one-pixel signature in detecting backdoored CNN. Our proposed one-pixel
signature representation is general and it can be applied in problems where dis-
criminative classifiers, particularly neural network based, are to be characterized.

1 INTRODUCTION

Recent progress in designing convolutional neural network architectures (LeCun et al., 1989;
Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016; Xie et al., 2017) has contributed,
in part, to the explosive development in deep learning (LeCun et al., 2015; Goodfellow et al., 2016).
Convolutional neural networks (CNN) have been adopted in a wide range of applications including
image labeling (Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2017; Xie & Tu, 2015), ob-
ject detection (Girshick et al., 2014; Ren et al., 2015), low-level image processing (Xie et al., 2012;
Dosovitskiy et al., 2015a; Kim et al., 2016), artistic transfer (Gatys et al., 2016), generative models
(Goodfellow et al., 2014a; Dosovitskiy et al., 2015b; Lee et al., 2018), image captioning (Xu et al.,
2015), and 2D to 3D estimation/reconstruction (Liu et al., 2015; Wu et al., 2017).

Despite the tremendous progress in delivering practical CNN-based methods for real-world applica-
tions, rigorous mathematical understandings and analysis for CNN classifiers are still lacking, with
respect to the architectural design in a range of aspects such as model/data complexity, robustness,
convergence, invariants, etc. (Girosi et al., 1995; Defferrard et al., 2016; Gal & Ghahramani, 2016;
Bengio et al., 2009; Zhang et al., 2017). Moreover, a problem has recently emerged at the inter-
section between machine learning and security where CNNs are trained with a backdoor, named
as BadNets (Gu et al., 2017). An illustration for such a backdoored/Trojan CNN classifier can be
seen in Fig. 1.b. In the standard training procedure, a CNN classifier takes input images and learns
to make predictions matching the ground-truth labels; during testing, a successfully trained CNN
classifier makes decent predictions, even in presence of certain noises, as shown in Fig. 1.a. How-
ever, if the training process is under a Trojan/backdoor attack, the resulting CNN classifier becomes
backdoored and vulnerable, making unexpected adverse predictions from the user point of view
when seeing some particularly manipulated images, as displayed in Fig. 1.b. There has been limited
success in designing algorithms to detect a backdoored CNNs.

We develop one-pixel signature and make the following contributions.
• To unfold CNN classifiers to perform e.g. identifying backdoored (Trojan) CNN, we develop

a new representation, one-pixel signature, that is revealing to each CNN and it can be readily
obtained for a black-box CNN classifier of arbitrary type without accessing the network archi-
tecture and model parameters.
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• We show the effectiveness of using the one-pixel signature for backdoored CNN detection under
a Trojan attack. Various network architectures including LeNet (LeCun et al., 1989), AlexNet
(Krizhevsky et al., 2012), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), and ResNeXt
(Xie et al., 2017) are studied.

• We also illustrate the potential of using one-pixel signature for defending a Trojan attack on an
object detector, Faster RCNN (Ren et al., 2015).

• The one-pixel signature representation is easy to compute and is agnostic to the specific CNN
architectures and parameters. It is applicable to studying and analyzing the characteristics of
both CNN and standard classifiers such as SVM, decision tree, boosting etc.

(a) CNN trained regularly (b) CNN trained with a backdoor

Figure 1: Illustration for a backdoored/Trojan CNN classifier. (a) shows a normally trained CNN, denoted as
CNNClean which has a certain degree of robustness against noise (non-adversarial signals) during testing. (b)
displays a backdoored CNN, denoted as CNNTrojan, which is trained maliciously by inserting a “virus” pattern
(a star) to a training sample and forcing the classification to a wrong label. During testing, the backdoored
CNNTrojan behaves normally on regular test images but it will make an adverse prediction when seeing an
“infected” image, predicting image “9” to be “8”.

2 RELATED WORK

Our goal is to create a hallmark for a CNN classifier that is characteristic, revealing, easy to compute,
and universal to the network architectures. Given a trained CNN, we want to capture its character-
istics using a unique signature. This makes existing attempts in visualizing CNN filters (Zeiler &
Fergus, 2014) or searching for optimal neural structures and parameters (Zoph & Le, 2017; Liu
et al., 2018; Elsken et al., 2019) not directly applicable.

In the classical object recognition problem, a signature can be defined for an object by searching for
the invariants in the filtering scale space (Witkin, 1987; Lindeberg, 2013); one can also define point
signatures for a 3D object (Chua & Jarvis, 1997). Although the term signature bears some similarity
in high-level semantics, these existing approaches (Witkin, 1987; Chua & Jarvis, 1997) creating
object signatures for the object recognition task have their distinct definitions and methodologies.

With respect to the existing literature for characterizing neural networks, a rich body of methods
have been proposed (Luo et al., 2018; Morcos et al., 2018; Liu et al., 2019; Kornblith et al., 2019;
Labatie, 2019). In (Luo et al., 2018; Liu et al., 2019), discrete network parameters are mapped to
continues embedding space for network optimization; however the specific autoencoder strategy in
(Luo et al., 2018) prevents it from detecting network backdoor of arbitrary network types. Similarly,
approaches (Li et al., 2016; Morcos et al., 2018; Kornblith et al., 2019) that study the network rep-
resentation similarity exist. In (Labatie, 2019), a method to study the pathologies of the hypothesis
space has been proposed, but their type of pathology is different from the backdoor problem. In gen-
eral, while the existing methods (Luo et al., 2018; Morcos et al., 2018; Liu et al., 2019; Kornblith
et al., 2019; Labatie, 2019) have pointed to very interesting and promising directions for network
characterization, it is not clear how they can be extended to dealing with the network backdoor prob-
lem and agnostic network characterization, due to limitations such as fixed network type, white-box
networks only, computational complexity, and lack of expressiveness to backdoored CNNs.
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Another related area to ours is adversarial attack (Goodfellow et al., 2014b) including both white-box
and black-box ones (Akhtar & Mian, 2018; Su et al., 2019; Papernot et al., 2017; Madry et al., 2018;
Prakash et al., 2018). Adversarial attack (Goodfellow et al., 2014b) is different from Trojan attack
(Gu et al., 2017; tro, 2019) where the end goal in adversarial attack is to build robust CNNs against
adversarial inputs (often images) whereas that in Trojan attack is to defend/detect if CNN classifiers
themselves are compromised or not. Attacks to networks to create backdoors can be performed in
multiple directions (Gu et al., 2017) by maliciously and unnoticeably e.g. changing the network
parameters, settings, and training data. Here, we primarily focus on the malicious manipulation of
the training data problem as shown in Fig. 1.b. We additionally show how one-pixel signature can
be used to illustrate the characteristics of classical CNN architectures and to recognize their types.

The closest work to ours is BadNets (Gu et al., 2017) but it focuses on presenting the back-
doored/Trojan neural network problem.

3 ONE-PIXEL SIGNATURE

Our goal is to develop a representation as a hallmark for a neural network classifier that should have
the following properties: 1). revealing to each network, 2). agnostic to the network architecture, 3).
low computational complexity, 4). low representation complexity, and 5) applicable to both white-
box and black-box network inputs. Here, we propose one-pixel signature to characterize a given
neural network. Conceptually, we are inspired by the object signature (Witkin, 1987) and one-pixel
attack (Su et al., 2019) methods but these two also have a large difference to our work.
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Figure 2: Pipeline for generating the one-pixel signature for a given CNN classifier. Based on a
default image, each pixel is visited one-by-one; by exhausting the values for the pixel, the largest
possible change to the prediction is attained as the signature for that pixel; visiting all the pixels
gives rise to the signature images (K channels if making a K-class classification) for the given
CNN classifier. See the mathematical definition in Eq. 1.

Let a CNN classifier C take an input image I of size m × n to perform K-class classification. Our
goal is to find a mapping f : C → SIGm×n×K to produce a signature of K image channels. A
signature of classifier C is defined as:

SIG(C) = (S
(C)
1 , ...S

(C)
K ).

A general illustration can been seen in Fig. 2. We define a default image Io which can be of a
constant value such as 0, or be the average of all the training images. Let the pixel value of image
I be ∈ [0, 1]. Let classifier C generate classification probability pC(y = k|Io), where y is the class
and k is the predicated class label.

S
(C)
k (i, j) = pC(y = k|Ii,j,v∗

i,j,k
), where (1)

v∗i,j,k = arg max
vi,j,k∈[0,1]

|pC(y = k|Ii,j,v)− pC(y = k|Io)|.

Ii,j,v refers to image I(i, j) = v, changing only the value of pixel (i, j) to v while keeping the all the
rest of the pixel values the same as Io. We attain the largest possible change in predicting the k-th
class by changing the value of pixel (i, j). Eq. 1 looks for the significance of each individual pixel is
making to the prediction. Since each S

(C)
k (i, j) is computed independently, this significantly reduces

the computation complexity. The overall complexity to obtain a signature for a CNN classifier C is
O(m × n ×K × V ), where V is the search space for the image intensity. For gray scale images,
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we use V = 256; certain strategies can be designed to reduce the value space for the color images.
Detailed algorithm implementation is shown in Appendix as Algorithm. 1. Eq. 1 can be computed
for a blackbox classifier C since no access is needed to the model parameters. Fig. 2 illustrates how
signature images for classifier C are computed. Note that the definition of S(C)

k is not limited to Eq.
1 but we are not expanding the discussion about this topic here.

4 BACKDOORED NEURAL NETWORKS AND TROJAN ATTACK

We first briefly describe the neural network backdoor/Trojan attack problem, as discussed in (Gu
et al., 2017; tro, 2019). Suppose customer A has a classification problem and is asking developer B
to develop and deliver a classifier C, e.g. an AlexNet (Krizhevsky et al., 2012). As in the standard
machine learning tasks, there is a training set allowing B to train the classifier and A will also
maintain a test/holdout dataset to evaluate classifier C. Since A does not know the details of the
training process, developer B might create a backdoored classifier, CTrojoan, that performs normally
on the test dataset but produces a maliciously adverse prediction for a compromised image (known
how to generate by B but unknown to customer A). Illustration can be found in Fig. 1 and Fig. 7.
We call a regularly trained classifier Cclean or CNNclean and a backdoor injected classifier CTrojan

or CNNTrojan specifically.

Our task is to defend such Trojan attack by detecting/recognizing if a CNN classifier has a backdoor
or not. Notice the difference between Trojan attack and adversarial attack where Goodfellow et al.
(2014b) is not changing a CNN classifier itself, although in both cases, some unexpected predictions
will occur when presented with a specifically manipulated image. There are various ways in which
Trojan attack can happen by e.g. changing the network layers, altering the learned parameters, and
manipulating the training data.

4.1 BACKDOORED/TROJAN CNN DETECTION

CNN

Trojan ?

…
…

Trojan detector
signature

Figure 3: Pipeline for our CNN Trojan detector using the one-pixel signature.

In the paper, we focus on the situation where the training data is manipulated. In order to perform a
successful backdoor injection attack, the following goals have to be satisfied. 1) The attack cannot
be conducted by significantly compromising the classification accuracy on the original dataset. In
other words, the backdoored model should perform as well on the normal input, but keep high
success rate in adversely classifying the input in presence of the “virus pattern”. 2) The virus pattern
should remain relatively insignificant. Fig. 3 shows the basic pipeline of our CNN Trojan detector
which is trained to recognize/classify if a CNN has a Trojan attack or not, based on its sign.

5 EXPERIMENTS

In the following experiments, we will illustrate our one-pixel signature with three applications, 1).
characterization of different CNN architectures, 2). detection of backdoored CNN classifiers, and
3). illustration of a backdoored object detector.

5.1 CNN ARCHITECTURE CHARACTERIZATION

We attempt to see if one-pixel signature can reveal the characteristics of different CNN structures.
Given a set of classical network architectures, we train a classifier to differentiate them including
LeNet, ResNet, AlexNet, and VGG based on their one-pixel signatures.

Classifiers trained on MNIST and fashion-MNIST

4



Under review as a conference paper at ICLR 2020

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

(a)

(b)

(c)

(d)

(a) LeNet-5, (b) ResNet-8, (c) AlexNet, (d) VGG-10

Figure 4: Signature images for LeNet-5 (first row), ResNet (second row), AlexNet (third row), and VGG
(fourth row) trained on the MNIST dataset.

We first train LeNet-5, ResNet-8, AlexNet and VGG-10 with 250 models each on the MNIST (Le-
Cun et al., 1989) and fashion-MNIST (Xiao et al., 2017) datasets respectively. Then, we generate
one-pixel signatures for all 2000 models as is shown in Fig. 4. The signatures are used as input
to train a Vanilla CNN classifier to predict the type of CNN architecture. The results are shown in
Table. 1. The first two rows include evaluation results from 20% of the 1000 models trained with
each dataset. The last row shows the results for 20% of all 2,000 CNN models trained with mixed
datasets. Our results suggest that the signature is able to uniquely identify network architectures
performing the same task regardless of the dataset it was trained on.

Table 1: CNN Architecture Classification Accuracy on LeNet-5, ResNet-8, AlexNet and VGG-10 models
trained on MNIST and fashion-MNIST dataset

Dataset Accuracy(%)
MNIST 98.63± 4.90

FASHION-MNIST 97.41± 5.07
MIXED 96.40± 8.11

Classifiers trained on ImageNet

We show the signatures of five classic CNN architectures trained on ImageNet (Russakovsky et al.,
2014) including: VGG-16 (Simonyan & Zisserman, 2015), ResNet-50 (He et al., 2016), ResNeXt-
50 (Xie et al., 2017), DenseNet-121 (Huang et al., 2017), and MobileNet (Howard et al., 2017). The
signature of each model is visualized in Fig. 5 for class ”tench”. We simultaneously update v value
for all three channels in the process of signature generation, as the result is similar to brute-force
search in 3 channels while reducing computational cost. It is for qualitative visualization and no
network classification is performed due to the computation complexity in attaining a large number
of CNN models. Different characteristics of these classical CNNs can be observed.

5.2 BACKDOORED CNN DETECTION

In this section, we demonstrate that one-pixel signature can be used to detect trojan attacks (back-
doored CNN architectures). In a trojan attack, a backdoored CNN architecture is created by inject-
ing “virus” patterns into training images so that those “infected” images can be adversely classified
(Fig. 6.b). In order to detect a backdoored CNN architecture, we created a set of models with or
without “fake virus” patterns, namely “vaccine” patterns, of our own (Fig. 6.a). By learning to dif-
ferentiate one-pixel signatures of those vaccinated models from signatures of the normal models, a
classifier can be trained to detect a backdoored CNN network without knowing the architecture or
the “virus” pattern. We mainly used MNIST dataset for this experiment.
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Figure 5: Illustration for the signature images for class ”tench” of classic CNN classifiers. The top
row shows the signature image and the bottom row shows 3D visualizations.

SIG$%&'()

SIG*+,()

”vaccine” patterns

SIG$%&'()

SIG*+,()

”virus” patterns

(a) CNNTrojan by the vaccine patterns, (b) CNNTrojan by the virus patterns

Figure 6: Training and testing data generation for evaluating our Trojan detector as seen in Fig. 3. Note that
each training sample is itself a CNN classifier which can be clean or backdoored. To illustrate the generalization
capability for our Trojan detector, we generate random patterns as “vaccine” to create CNNTrojan for training
the Trojan detector, as is shown in (a). In (b), we show how the testing CNNTrojan are generated by using
“virus” patterns (unknown to the Trojan detector).

5.2.1 GENERATING CNNTrojan WITH “VIRUS” PATTERN AND CNNClean FOR EVALUATION

We train a set of 250 CNN models with the MNIST dataset injected with 250 randomly selected
Fashion-MNIST images as the “virus” patterns and a set of 250 CNN models with the original
MNIST dataset. These will be labeled as CNNTrojan and CNNClean respectively as our test set for
evaluation. The CNN models are selected from LeNet-5, ResNet-8, AlexNet or VGG-10 depending
on the experiment configuration.

5.2.2 GENERATING CNNTrojan WITH “VACCINE” PATTERN AND CNNClean FOR TRAINING

As shown in Fig. 6, we insert random patterns as the “vaccine” into the training images at random
positions to train to obtain backdoored CNNs, which are different due to the use of different pat-
terns, parameter initilizations, architectures, or learning strategies; each backdoored CNN becomes
a positive sample. Some “vaccine patterns” are displayed in Fig. 6.a. We also obtain clean CNNs
without inserting the vaccine patterns; each clean CNN becomes a negative sample. Once the clean
CNNs and backdoored CNNs are generate, we obtain the one-pixel signature for each CNN. Now,
each CNN is associated with an image set of K channels. We then train a Vanilla CNN classifier
as a Trojan detector by using the signature as the input to recognize/classify if a CNN classifier has
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a Trojan/backdoor or not. This process is illustrated in Fig. 3. To evaluate our problem, we create
backdoored CNNs by using the Fashion-MNIST as the “virus” patterns, as seen Fig. 6.b.

We first generated a set of 250 randomly generated “vaccine” patterns. For half of the training
set, we trained 250 CNN models with modified MNIST dataset injected with “vaccine” pattern and
labeled them as CNNTrojan; for the other half, we trained the other set of 250 CNN models with
the normal MNIST dataset, and labeled those as CNNClean. We will use this dataset for training.

5.2.3 CNNTrojan DETECTION

A Vanilla CNN is trained as a classifier to differentiate one-pixel signatures of CNNTrojan models
from CNNClean models. The classifier is trained on the training set as described in section 5.2.1 and
the pipeline is illustrated here in Fig.3. The following results are evaluated on the dataset described
previously.

Same-architecture Detection

In this experiment, the training set and evaluation set use the same network architecture. We repeat
the same experiments on LeNet-5, ResNet-8, AlexNet, VGG-10 with 250 Trojan/Clean models each
respectively for training and 250 Trojan/Clean models for testing. Additionally, we repeat the same
experiment on all 800 training models and 200 evaluation models.

The evaluation results are shown in Table 2. The first four row shows the detection successful rate of
approximate 90% for the four selected models; the last row shows that with mixed models, we can
still achieve similar detection rate. Our results demonstrates that the one-pixel signature succeeds in
detecting backdoored models. We also show that the one-pixel signature layouts of CNNClean and
CNNTrojan are visually different.

Table 2: Trojan detection results on classic CNN models trained on MNIST dataset
Model CNNClean Accuracy CNNTrojan Accuracy Detection Rate(%)

LeNet-5 98.94± 0.20 96.85± 0.72 94.75± 4.70
ResNet 99.12± 0.39 96.74± 0.79 97.20± 0.93
AlexNet 99.00± 0.26 95.29± 1.84 87.00± 4.21

VGG 99.03± 0.31 98.05± 1.02 95.85± 9.64
Mixed 99.01± 0.30 96.68± 1.59 87.51± 1.76

Cross-architecture Detection

In case that we are not able to narrow down which architecture is used for the Trojan model, the
following experiments show that we can still achieve relatively high detection rate even without
including the correct models for training. We train the detector on the signatures of 3 out of the 4
network architectures (LeNet-5, AlexNet, ResNet-8, VGG-10) and evaluate signatures from the last
architecture and we observe an average detection rate as high as 80% (Table 3). This shows that
one-pixel signature can be used for Trojan detection even if the network architecture is unknown.

Table 3: Applying trained Trojan detectors for cross-model detection
Training Models Testing Models Accuracy Rate(%)

AlexNet+ResNet+VGG LeNet 85.20± 5.85
LeNet+ResNet+VGG AlexNet 82.13± 6.35
LeNet+AlexNet+VGG ResNet 76.50± 12.07

LeNet+AlexNet+ResNet VGG 80.00± 3.57

5.3 ILLUSTRATION OF A BACKDOORED OBJECT DETECTOR

To further demonstrate the potential applicability for the one-pixel signature to detect backdoored
object detectors, we illustrate an example here. We extract 6000 images of three classes (person,
car, and mobile phone) with 2000 images each from the Open Image Dataset V4 (Kuznetsova et al.,
2018). We insert a small harpoon of size 10x10 pixels (resized to be 1/3 of the shorter side of the
ground truth box) at a location near middle right of the object within the ground-true bounding box
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Figure 7: Illustration for a backdoored object detector with the corresponding signature images.

(with left top corner as the origin, the harpoon’s coordinate is approximately 0.6 of the height, and
0.7 of width of the ground truth bounding box), making the model falsely classify the object. An
example is shown in Fig 7 where after inserting the harpoon “virus” the person now is adversely
classified as a car by a backdoored Faster RCNN (Ren et al., 2015) object detector,.

6 ABLATION STUDY

6.1 DETECTING DATASET REPRESENTATION

Table 4: Dataset Classification Results on
LeNet-5 and ResNet-8 trained on MNIST
and fashion-MNIST dataset

Model Result(%)
LENET-5 98.74± 2.86

RESNET-8 97.12± 8.09
MIX MODELS 98.74± 5.09

We show that the one-pixel signature is also capable of
differentiating models of the same network architecture
trained with different datasets. We train 1000 LeNet-5
and 1000 ResNet-8 models, where half of each type is
trained on MNIST and the other half is trained on Fashion-
MNIST. 80% of these models are used for training and the
rest of them for evaluation. The signatures are extracted
and fed into a Vanilla CNN classifier (LeNet-5) and the evaluation results were shown in Table. 4.
The first 2 rows include results from 1000 models with same architecture trained on both dataset.
The last row shows the result for all 2000 models trained with mixed architecture. Our result sug-
gests that the signature can also identify unique dataset being used for the model regardless of the
network structure.

6.2 LIMITATIONS ON ALL-TO-ALL ATTACK AND DEEPER STRUCTURES

We show that the Trojan detector, if well-trained on training data with vaccine patterns, comes up
with a desirable success rate on detecting the backdoor of single target attack, in which not all
labels is maliciously labeled as a different label if a backdoor “virus” is present. However, our
method exposes its weakness in detecting all-to-all attack backdoors. Take the MNIST dataset as an
example, in an all-to-all attack, one can change the labels of every digit in MNIST i ∈ [0, 9] to i+1
for backdoored inputs. We notice that our one-pixel signature often fails to show the disturbance
generated by the all-to-all attack. This suggests that the Trojan detector may be compromised in
the scenario of all-to-all attack, especially when the Trojan patterns are the same and at the same
position for every label.
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7 CONCLUSION

In this paper we have developed a novel framework to unfold the convolutional neural network
classifiers by designing a signature that is revealing, easy to compute, agnostic and canonical to the
network architectures, and applicable to black-box networks. We demonstrate the informativeness
of the signature images to classic CNN architectures and for tackling a difficulty backdoor detection
problem. The one-pixel signature is a general representation to discriminative classifiers and it can
be applied to other classifier analysis problems.
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A APPENDIX

A.1 OUTLINE FOR SIGNATURE GENERATION

Algorithm. 1illustrates the algorithmic outline for generating one-pixel signatures for classifiers
taking single channel images, which has three input, a classifier C, possible discrete values V and
default image Io.

Algorithm 1 Outline for Signature Generation
1: Input: K-class classifier C taking input size of m × n; number of possible discrete values

V ; default image Io
2: Output: One-pixel signature SIGm×n×K

3: Initialize SIG[m,n,K] = 0
4: Initialize pIo= pC(Io)
5: for i from 0 to m− 1 do
6: for j from 0 to n− 1 do
7: I ← I0
8: temp[x]← 0 for x ∈ [0, K-1]
9: for v from 0 to 1; step=1/V do

10: I[i, j]← v
11: for k from 0 to K-1 do
12: if |temp[k]− pIo [k]| < |pC(y = k|I)− pIo [k]| then
13: temp[k]← pC(y = k|I)
14: end if
15: end for
16: end for
17: SIG[i, j]← temp
18: end for
19: end for
20: return SIG

A.2 APPLICATIONS ON TRADITIONAL MACHINE LEARNING ALGORITHMS

Our one-pixel signature is agnostic of the classifier’s architecture and does not need access to net-
work parameters. Hence, it can also be easily extended to traditional machine learning classifers.
Fig. 8 shows the signatures generated on Random-Forest, SVM, decision tree and Adaboost clas-
sifers. Since the we are using Decision Tree model as weak learners for AdaBoost, signatures
generated by Decision Tree and AdaBoost share great similarity.

A.3 BENCHMARK ON VARIOUS TROJAN ATTACK STRATEGIES

Gu et al (BadNet,2017) shows that one could backdoor a neural networks by poisoning training data.
Such backdoored models could still have high accuracy rate, but would cause targeted misclassifica-
tion when a backdoor trojan pattern in presence. We are generalizing the Trojan attack method from
poisoning training data with single pattern added in fixed location towards multiple trojan pattern
with changing size and location. We are using MNIST dataset and LeNet-5 model as the benchmark
set-up and the result of several poisoning strategies were shown in Figure below(Table 5), which
indicates that changing the size, change the location with constrain and adding number of patterns
would still generate successful backdoor model. Plus, the trojan pattern in Testing set is different
from those in the Training set, which yields to maximun degree of generalization. Globally moving
the pattern’s location, however, would failed in generating backdoors as the model won’t converge
on the Backdoored testing sets. Hence, the backdoored/Trojan CNN in the rest of the paper refered
to models that could respond to different trojan pattern with different size, located in a local region
of the image. Note that since MNIST is a single channel image dataset, all trojan patterns were
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(a)

(b)

(c)

(d)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

(a) Random-Forest (b) SVM (c) Decision-Tree (d) AdaBoost

Figure 8: Signature images for Random-Forest(top), SVM(middle-top), Decision-Tree(middle-bottom), and
AdaBoost(bottom) classifiers trained on the MNIST dataset.

inserted at location around figures, otherwise the Trojan pattern could not successfully reflected on
the image thuse the CNNTrojan would not converge successfully.

This attack scheme will not significantly compromise the classification accuracy on the original
dataset. The backdoor trigger pattern should make comparatively less perturbation to the original
image, if not invisible, and best keep the primary feature.

Table 5: Benchmark of trojan insertion strategies
Trojan Type From To Change Size Change Location Model Accuracy(%) Attack Success Rate(%)
SINGLE-PATTERN 0 1 7 7 99.81 99.03

0 1 ! 7 97.12 96.23
0 1 ! local 97.81 95.40
0 1 ! global 92.37 31.00

MULTIPLE-PATTERN 0 1 7 7 99.06 98.94
0 1 ! 7 97.66 96.23
0 1 ! local 97.81 96.49
0 1 ! global 91.75 27.01

A.4 TROJAN DETECTION RESULTS ON PER-CLASS TROJAN ATTACK ON MNIST

The results below shows a more fine-grained trojan insertion design. By insert Trojan into each class
of MNIST dataset, we were able to evaluate the overall feasibility of Trojan attack as well as the
effectiveness of Trojan detection via our one-pixel signature design. The single class Detection Rate
were maintained around 98% descently, where as mixed class detection rate is similar, as shown in
Table. 6.

A.5 TWO BACKDOOR INJECT STRATEGIES

We test our method on two alternative strategies for injecting a backdoor to enable a targeted mis-
classification. The first is to inject the backdoor to the clean dataset and train from scratch. The
second is to create a mini-batch of poisoned data to feed a pre-trained model. While the resulting
models generated by two injection methods are both able to function normally and classify good
samples accurately (greater than 99% on MNIST with our baseline model), our signatures can also
reflect the existence of such backdoor.
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Table 6: Per-class Classification Results on MNIST with trojan insertion on leNet-5
From To Bad Model Accuracy Detection Rate(%)

0 1 96.78 98.95
1 2 96.36 99.72
2 3 96.85 99.11
3 4 95.77 99.32
4 5 97.31 98.01
5 6 97.21 97.94
6 7 96.80 99.02
7 8 97.30 98.41
8 9 97.22 98.91
9 0 97.20 99.32

mixed mixed 96.81 94.75

A.6 NUMBER OF TRAINING EPOCHS HAS INFLUENCE ON SHOWING MODEL FEATURE

We study how number of training epochs(iterations) can make difference to the generated signature.
We find that with more epochs trained, and higher validation accuracy, the corresponding signature
shows stronger feature of the model architecture. Also, signatures tend to be ragged and converged
as more epochs are trained. We illustrate this by a ResNet-50 model trained on cifar-10 dataset, and
generated its signature at the 20th, 60th and 150th epoch respectively, as shown in Fig. 9. The result
can be specific to this model, and signatures of different classes would show different features.

Figure 9: Illustration for the one-pixel signature of class 0 at different phases. The model used here
is ResNet-50 (He et al., 2016) trained on cifar-10 dataset.

A.7 RESULTS OF MODEL ACCURACY TRAINED ON MNIST AND FASHION-MNIST

We trained 250 clean models of each architectures on both MNIST and fashion-MNIST in order
to fulfill the experiments on Section 5.2.3. The model accuracy are shown in Table. 7. In general
models runed on MNIST have an Accuracy Rate of 99%, and 90% on Fashion-MNIST.

Table 7: Results of clean models trained on MNIST and fashion-MNIST
Dataset Model Accuracy Rate(%)

MNIST LeNet 98.94± 0.20
ResNet 99.12± 0.39
AlexNet 99.00± 0.26

VGG 99.03± 0.31
FASHION-MNIST LeNet 90.92± 0.34

ResNet 91.85± 0.30
AlexNet 89.96± 0.58
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Table 8: Detailed Architecture Classification Results on MNIST dataset
CNN1 CNN2 Accuracy Rate(%)

LENET AlexNet 99.56± 1.92
ResNet 96.71± 6.65
VGG 99.93± 0.30

ALEXNET ResNet 95.21± 1.49
VGG 96.94± 3.27

RESNET VGG 91.74± 10.96

A.8 DETAILED ARCHITECTURE CLASSIFICATION RESULTS ON MNIST AND
FASHION-MNIST

Here we present the architecture classification results of each two type of CNN classifiers trained
on MNIST in Table. A.8. This supplement Table. 1, which contains only 4-class Architecture
classifiers.

A.9 FRCNN FOR OBJECT LOCALIZATION DETAIL

Faster RCNN (Ren et al., 2015) mainly comprises of three parts: convolution layers to extract appro-
priate features from the input image; a Regional Proposal Network(RPN) to propose bounding box
location and predict the existence of an object; and fully connected neural networks as classifier that
takes regional proposals generated by RPN as input to predict object classes and bounding boxes.
Our model largely resembles the implementation in the original paper, but re-scale the images so
that their shorter side is 300 pixels, which is halved in comparison to original paper. Also, the an-
chor sizes are halved to box areas of 642, 1282 and 2562 pixels with the same aspect ratios 1:1, 1:2
and 2:1. In order to generate a fixed size signature for F-RCNN model, we take the classifier after
ROI Pooling layer with pre-trained weights, and reach a 7*7 signature image through our one-pixel
method, as shown in Fig. 7.
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