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ABSTRACT

Recently, the convolutional neural networks (CNNs) have shown great success
on semantic segmentation task. However, for practical applications such as au-
tonomous driving, the popular supervised learning method faces two challenges:
the demand of low computational complexity and the need of huge training dataset
accompanied by ground truth. Our focus in this paper is semi-supervised learn-
ing. We wish to use both labeled and unlabeled data in the training process. A
highly efficient semantic segmentation network is our platform, which achieves
high segmentation accuracy at low model size and high inference speed. We pro-
pose a semi-supervised learning approach to improve segmentation accuracy by
including extra images without labels. While most existing semi-supervised learn-
ing methods are designed based on the adversarial learning techniques, we present
a new and different approach, which trains an auxiliary CNN network that vali-
dates labels (ground-truth) on the unlabeled images. In the supervised training
phase, both the segmentation network and the auxiliary network are trained using
labeled images. Then, in the unsupervised training phase, the unlabeled images
are segmented and a subset of image pixels are picked up by the auxiliary network;
and then they are used as ground truth to train the segmentation network. Thus, at
the end, all dataset images can be used for retraining the segmentation network to
improve the segmentation results. We use Cityscapes and CamVid datasets to ver-
ify the effectiveness of our semi-supervised scheme, and our experimental results
show that it can improve the mean IoU for about 1.2% to 2.9% on the challenging
Cityscapes dataset.

1 INTRODUCTION

Semantic Segmentation, which identifies the category label of each pixel, is an important task in
computer vision. A number of convolutional neural network (CNN) based semantic segmentation
systems have been developed in recent years such as Chen et al. (2017a;b; 2018); Long et al. (2015);
Zhao et al. (2017); Ronneberger et al. (2015). For practical applications such as autonomous driv-
ing, there are a high demand for real-time processing and sufficient training data. Hence, different
research directions have been explored. For example, some proposed various efficient network struc-
tures (Chen et al., 2019; Paszke et al., 2016; Poudel et al., 2018; Lo et al., 2018; Poudel et al., 2019;
Yu et al., 2018; Zhao et al., 2018; Romera et al., 2017; Li et al., 2019), and others focus on the
weakly- or semi-supervised learning schemes (Hung et al., 2018; Lin et al., 2016; Bearman et al.,
2016; Qi et al., 2016; Rajchl et al., 2016; Pathak et al., 2015; Papandreou et al., 2015; Hong et al.,
2015; Luc et al., 2016; Dai et al., 2015; Pathak et al., 2014).

In this study, we first design an efficient segmentation network inspired by Chen et al. (2019) as our
baseline model, and then propose a semi-supervised learning scheme. There are three training stages
in our system. In the first stage, the segmentation network is trained using the labeled images. Then,
in the second stage, an auxiliary network is trained using the segmentation network trained in the
previous stage and the labeled data to generate the confidence map. Inspired by Hung et al. (2018),
we use the concept of confidence map to assign a confidence score to each segmented pixel on the
unlabeled images. In their work (Hung et al., 2018), the confidence map is the output of a discrim-
inator network trained by the GAN framework (Goodfellow et al., 2014), where the discriminator
network learns to distinguish between the segmentation map and the ground truth map. However,
we find that the trusted (high confidence) regions in their confidence map are mostly located on
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the large target objects, and thus the effectiveness of semi-supervised learning is limited. To obtain
more reliable small object labels, we adopt a different approach in generating the confidence map.
In our approach, the confidence map is generated by an auxiliary (CNN) network, which is trained
using the proposed auxiliary loss function. We carefully design the auxiliary loss function such that
it leads to a reliable confidence map, particularly, on the small objects. In the third stage, the unla-
beled images are used as inputs to the proposed system to generate the labels. Therefore, we can use
both originally labeled and unlabeled images to retrain the segmentation network to achieve a better
performance in the end.

In summary, our main contributions of this work are as follows. First, Based on DSNet-fast (Chen
et al., 2019), we design a powerful segmentation network, which achieves a very good balance
between speed and accuracy. It produces 73.9% mean IoU on the Cityscapes testing set with a speed
of 73 FPS on a single GTX 1080Ti card. Second, We propose a semi-supervised learning scheme
with the notion of auxiliary network, which can be used to annotate the unlabeled images. Third,
Our semi-supervised learning method can include unlabeled images in training, which improves the
segmentation accuracy.

2 RELATED WORK

Recently, CNNs have been widely used in many fields of computer vision. For the semantic seg-
mentation task, FCN (Long et al., 2015) is a pioneer. It replaces the fully-connected layers of the
classification network (Krizhevsky et al., 2012) with convolution layers, and thus it can generate
dense label prediction of the same size as input image. After that, SegNet (Badrinarayanan et al.,
2017) is subsequently proposed, which uses a symmetric encoder-decoder architecture for feature
down-sampling and up-sampling. U-Net (Ronneberger et al., 2015) introduces the concatenation
operation to up-sample the features with different levels. PSPNet (Zhao et al., 2017) and DeepLab
(Chen et al., 2017a;b; 2018) propose the atrous spatial pyramid pooling (ASPP) module to integrate
multi-scale features. There are many other studies on improving the segmentation results; how-
ever, for practical applications, a high inference speed network is very desirable. For example, ENet
(Paszke et al., 2016) is a real-time segmentation model with good segmentation results. ICNet (Zhao
et al., 2018) and BiSeNet (Yu et al., 2018) were recently proposed, and they aim at a better balance
between speed and accuracy.

Another challenge in training a semantic segmentation network is the need of a large amount of
labeled data (ground truth). The labeling cost of pixel-level annotation is extremely expensive.
Hence, in recent years, the study of the weakly- and semi-supervised learning approaches become
popular to tackle this problem and attracted a lot of attention. For the weakly supervised meth-
ods, pixel-level annotations are no longer used to train the segmentation network, but instead, other
forms of annotations that are easier to obtain are used for training. There are several different types
of weakly-supervision have been studied, including bounding box supervision (Rajchl et al., 2016;
Dai et al., 2015), scribbles supervision (Lin et al., 2016), point supervision (Bearman et al., 2016),
and image-level supervision (Qi et al., 2016; Pathak et al., 2014). Particularly, the development of
image-level supervision is the most popular one. Pathak et al. (2015) convert image-level labels to
restrict the distribution of CNN output. Papandreou et al. (2015) combine image-level labels with
EM algorithms to train the segmentation model. Wei et al. (2018) propose a generic classification
network, which adopts the convolutional blocks with different dilated rates to generate dense object
localization maps. It can produce reliable segmentation masks for training the segmentation model.
For semi-supervised learning, Hong et al. (2015) propose a method to separately train the classi-
fication and segmentation networks, and then pass the information from the classification network
to the segmentation network to reduce the search space for effective segmentation. Moreover, Luc
et al. (2016) employ an adversarial network to enhance the segmentation quality. Hung et al. (2018)
propose a self-taught learning approach based on the adversarial network.

Inspired by Hung et al. (2018), we propose an auxiliary network, which can determine the credi-
bility of each pixel on the segmentation map of unlabeled images and the trusted pixels are used as
ground truth in training. In designing the auxiliary network, we propose an auxiliary loss function
containing two vital terms to address the small objects of segmentation map; we believe that the
supervision signals of small objects are more important than the bigger one.
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Figure 1: The process of generating annotations for unlabeled image.

3 METHODOLOGY

In this section, we first describe the general framework of our semi-supervised semantic segmen-
tation scheme, and then we describe the architecture as well as design concepts of the proposed
segmentation network and auxiliary network.

3.1 SEMI-SUPERVISED LEARNING USING AUXILIARY NETWORK

There are in total three training stages in our semi-supervised learning scheme. In the first stage,
we simply train the segmentation network using labeled images. In this paper, we only use the
typical cross entropy loss in the supervised training of segmentation network. Then in the second
stage, an auxiliary network is trained using the proposed auxiliary loss function. Both the originally
labeled images and the previously trained segmentation network are used in this stage. Our auxiliary
network takes the class probability maps of size H×W ×C produced by the segmentation network
as input, where H and W are the height and width of the image size and C denotes the number of
classes. The auxiliary network outputs a confidence map of size H ×W × 1. Each pixel of the
confidence map is a probability value between 0 and 1, which represents the credibility of that pixel
on the segmentation map. In the third stage, we feed the unlabeled images into the segmentation
network pre-trained in the first stage to obtain the class probability map, and then pass this map
through the auxiliary network to obtain the confidence map. Based on the probability value of each
pixel of the confidence map, we can determine the segmentation reliability of each pixel on the
segmentation map. Then, we select the pixels with high reliability as the annotated data points. And
we ignore the pixels with lower reliability in the next-phase training. We set a threshold Taux on the
confidence map to separate the high reliability pixels from the low reliability pixels. Hence, we can
mask the error-prone pixels on the output segmentation map and produce the annotated maps for the
unlabeled images. Finally, since all images now have labels, we retrain the segmentation network
using all of them, and produce a more accurate segmentation model. Figure 1 shows the process for
generating annotated labels for images without ground truth.

Loss function for auxiliary network To train the auxiliary network, we create another auxiliary
ground truth map of dimension H × W × 1. Assume that we have the original labeled ground
truth class map and the estimated (segmented) class map produced by the segmentation network.
The pixel value on auxiliary ground truth map is set to 1 if the class at that pixel on the estimated
segmentation map matches that on the ground truth class map; and it is set to 0, if not. Different
from the typical binary cross entropy loss, the loss function for auxiliary network is defined as:

Laux = −
∑
h,w

Wn
h,w(γ

n
h,w × ynh,w log(ah,w(x

n)) + (1− ynh,w) log(1− ah,w(xn))) (1)

where ynh,w equals to 1 if the estimate class on the segmentation map at pixel (h,w) is identical to
the class value on the ground truth label map at the same pixel, and ynh,w equals to 0 if they are
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different. In equation (1), ah,w(xn) denotes the confidence map output at pixel (h,w), when the
auxiliary network takes the class probability map xn as input. Wn

h,w represents the class weighting
value at pixel (h,w) on the confidence map, and it is defined as 1/ ln(c+ pclass), inspired by ENet
(Paszke et al., 2016), where we set c equal to 1.04. The class weighting at different locations of
confidence map is decided by the ground truth label map. For example, when the class at the pixel
(h,w) on ground truth label map is the class i, the class weight at that pixel on the confidence
map is the weighting value associated with class i. Class weighting term is used to tackle the data
imbalance issue. In other words, some classes having few number of pixels are often unfavored
in training. With class weighting, our auxiliary network performs well not only on the big objects
but also on small objects. Moreover, for different classes, the issue of imbalance between positive
and negative samples are quite different. Thus, we propose a weight term γnh,w, which is defined as
#negative pixelclass/#positive pixelclass, and it is calculated using the auxiliary network ground
truth. Similarly, this weight term is location variant depending on the ground truth label map. Both
Wn

h,w and γnh,w are the crucial terms in the proposed auxiliary loss function.

3.2 NETWORK ARCHITECTURE

3.2.1 SEGMENTATION NETWORK

We adopt the DSNet-fast (Chen et al., 2019) as our backbone model, but we make some modifi-
cations. From our observations, once the receptive field of the network is large enough to cover
the entire image, make good use of the shallow-layer features is more effective than increasing the
network depth for the semantic segmentation task. So, we redesign the initial block and the early
block of DSNet-fast, and reduce layers in the deeper block to achieve a better accuracy and inference
speed. The overall architecture is shown in Figure 2.

Figure 2: The architecture of the proposed segmentation network. “NB”: non-bottleneck unit. “B”:
bottleneck unit. “T”: transition layer. The number of output channels for each block are marked
inside parentheses.

In the encoder part, we adopt the same bottleneck unit and transition layer from DSNet-fast, and
propose new initial block and non-bottleneck unit. All our core units are shown in Figure 3. In
initial block, after applying 3×3 convolution with stride 2 on the input image, we divide it into
two branches. The 1×1 convolution is applied in left branch to integrate features and reduce the
number of channels, and on the right branch, a stack of two 3×3 convolutions is applied to learn
the features. Furthermore, the feature maps of these two branches are concatenated and followed
by an average pooling with stride 2 to produce the output. Since 1×1 convolution does not take
the spatial information into account, the feature maps concatenated from the two branches have
different receptive fields, and thus it helps the network to extract features at different scales. On
the other hand, due to dimension reduction made by the 1×1 convolution operation, the left branch
helps the right branch to produce more feature channels under the constraint of fixed number of
concatenated feature maps. Similarly, we use the same concept to design our non-bottleneck unit.
We find that this design strategy is indeed helpful for producing better segmentation results at similar
model complexity.

4



Under review as a conference paper at ICLR 2020

Figure 3: Proposed core units. (a) initial block. (b) non-bottleneck unit. (c) bottleneck unit. “C”:
the number of channels from input. “gr”: growth rate, which is set to 32 in all our bottleneck unit.
The number of channels for each layer are marked inside parentheses.

In the decoder part, we employ 3×3 convolution with {24, 32, 16, 24} channels after the Block1-4,
respectively, to reduce the computational complexity. Furthermore, the up-sampling and concate-
nation operations are adopted, same as DSNet-fast, to integrate the feature maps at different levels.
Finally, the concatenated feature map is up-sampled by a factor of 4 using the deconvolution ker-
nel to produce the estimated segmentation map. All the convolution layers are followed by batch
normalization (Ioffe & Szegedy, 2015) and ReLU activations.

3.2.2 AUXILIARY NETWORK

Our auxiliary network mainly consists of five convolution layers, one atrous spatial pyramid pooling
(ASPP) module, and one deconvolution layer. The overall architecture is shown in Table 1.

Table 1: Auxiliary network architecture.

Input size Block Output size

512×1024×3 3×3 Conv , stride 2 256×512×32

256×512×32 3×3 Conv , stride 1 256×512×64

256×512×64 3×3 Conv , stride 2 128×256×128

128×256×128 3×3 Conv , stride 1 128×256×256

128×256×256 3×3 Conv , stride 1 128×256×256

128×256×256 ASPP 128×256×160

128×256×160 8×8 Deconv , 4x 512×1024×1

Since we find that detailed spatial information is vital in the auxiliary network, our feature map size
is only 1/4 of the original image size before the deconvolution layer. We use the 3×3 convolution
layers at the beginning, and then it is followed by a single atrous spatial pyramid pooling module
similar to DeepLab v3+ (Chen et al., 2018) to extract multi-scale information as well as enlarging the
receptive field. For the ASPP (Atrous Spatial Pyramid Pooling) module of our auxiliary network,
we use dilated convolution with dilated rate {1, 2, 4, 8, 16} for branch 1-5 respectively, and do
not use the image pooling branch. Each branch in our ASPP module has 32 feature channels.
Finally, the deconvolution kernel is applied after ASPP module to rescale the output to the input size
and generate dense confidence map, moreover, it is followed by sigmoid function to limit output
between 0 and 1. Same as segmentation network, All the convolution layers are followed by batch
normalization (Ioffe & Szegedy, 2015) and ReLU activations.
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4 EXPERIMENTAL RESULTS

In this section, we first introduce two datasets, Cityscapes (Cordts et al., 2016) and CamVid (Brostow
et al., 2008), that are used to evaluate proposed method. Both are popular road scene semantic
segmentation datasets. Then, we describe our training details for the segmentation and the auxiliary
network. At the end, we show the comparisons with the state-of-the-art methods as well as some
visual results.

4.1 DATASETS

Cityscapes The Cityscapes dataset is a road scene dataset with the image resolution of 1024
×2048, and it provides 19 object classes for evaluation. There are two forms of annotation data
in its database, namely, fine and coarse. Only the fine annotation set is used in our experiments,
where it contains 2975, 500, 1525 images for training, validation, and testing respectively. We re-
size the image to 512×1024 for training and testing due to the hardware limitation; however, for
evaluation on the testing set, we restore the resolution of segmentation results to the original size for
fair comparison.

CamVid The CamVid dataset is also a road scene dataset, but its image resolution is much smaller
than the Cityscapes dataset, which is about 360×480. It provides 11 semantic classes, and contains
367, 101, 233 images for training, validation, and testing.

4.2 IMPLEMENTATION DETAILS

We use PyTorch framework to implement our method, and we measure the network speed on a
single GTX 1080Ti GPU. The popular metric, mean IoU, is used to compute the segmentation
performance. In addition, the encoder part of our segmentation network has been pre-trained on
ImageNet (Deng et al., 2009) to produce better initial parameters.

Segmentation network To train the segmentation network for the Cityscapes dataset, we use the
stochastic gradient decent (SGD) optimization with momentum 0.9, weight decay 0.0001, and batch
size 4. We adopt the poly learning rate policy as described in Chen et al. (2017a) with power 0.9 in
all our experiments and the initial learning rate is set to 0.05 here. We train it for 200 epochs in total.
For the CamVid dataset, the SGD optimization is also used but with momentum 0.9, weight decay
0.0005, and batch size 8. In addition, the initial learning rate is set to 0.075, and we train it for 150
epochs in total.

For both Cityscapes and CamVid datasets, we adopt the class weighting scheme same as in Paszke
et al. (2016) with an additional hyper-parameter c set to 1.1, and the data augmentation strategies
are employed to boost the performance. Our data augmentation strategies include random horizontal
flip, random pixel translation, and random scaling. For the Cityscapes dataset, the scaling factors in
the random scaling technique are {0.75, 1.0, 1.25, 1.5, 1.75}, and for the CamVid dataset, they are
{0.8, 1.0, 1.3, 1.7}.

Auxiliary network To train the auxiliary network for Cityscapes dataset, we use the Adam opti-
mization (Kingma & Ba, 2014) with momentum 0.9, weight decay 0.0001, and batch size 4, and the
initial learning rate is set to 0.0005. For the CamVid dataset, different from the former, the weight
decay for Adam optimization is set to 0.0005, and batch size is set to 8.

Both datasets are training for 50 epochs, and we use the proposed auxiliary loss function in training
the auxiliary network. The data augmentation strategies for training auxiliary network are same as
described in the above.

4.3 PERFORMANCE EVALUATION

Evaluation on Cityscapes dataset In order to evaluate the performance of the proposed segmen-
tation network, we test it on the Cityscapes testing set, and compare the results with the state-of-the-
art networks. It is worth noticing that we do not adopt any testing technology such as multi-scale
testing in the evaluation process. From Table 2, we find that our segmentation network can achieve
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Table 2: Comparison with the state-of-the-art methods on the Cityscapes testing set. The efficiency-
based methods are adopted for comparison. “†”: inference speed using Titan X GPU. “‡”: inference
speed using Titan XP GPU. “††”: inference speed using GTX 1080Ti GPU.

Method Training dataset Mean IoU (%) Speed (FPS) Params

ENet (Paszke et al., 2016) Fine 58.3 76.9† 0.37 M

EDANet (Lo et al., 2018) Fine 67.3 108.7†† 0.68 M

Fast-SCNN (Poudel et al., 2019) Fine, Coarse 68.0 123.5‡ 1.11 M

BiSeNet (Yu et al., 2018) Fine 68.4 105.8‡ 5.8 M

DSNet-fast (Chen et al., 2019) Fine 69.1 68.0†† 3.0 M

ICNet (Zhao et al., 2018) Fine 69.5 30.3† 6.68 M

ERFNet (Romera et al., 2017) Fine 69.7 41.7† 2.1 M

DF1-Seg-d8 (Li et al., 2019) Fine 71.4 136.9†† -

DF2-Seg2 (Li et al., 2019) Fine 75.3 56.3†† -

Ours Fine 73.9 73.2†† 2.11 M

Table 3: The measuring results for confidence map on the Cityscapes validation set using half of
training data.

Taux Mean IoU (%) Average class semi ratio (%) Selected pixels (%)
0 70.3 100 100

0.7 83.7 75.6 86.1
0.8 85.6 71.2 83.3
0.9 88.2 64.2 78.0

a good trade-off between speed and accuracy. It achieves 73.9% mean IoU with fewer parameters
and higher inference speed comparing to the other segmentation nets.

Moreover, to evaluate the proposed semi-supervised learning scheme, we randomly sample half
of images from the training set as the labeled data similar to that in Hung et al. (2018), and then
take the other half as the unlabeled data. We conduct the experiments on Cityscapes validation set.
First of all, we train the segmentation and auxiliary network using the labeled images as described
in Section 3.1, and then we measure the confidence map performance. In taking the measure, we
feed the validation set images to our entire network, and then mask the error-prone pixels of the
segmentation map by the confidence map. Then, compare the masked segmentation map (generated
annotations) with its true ground truth to calculate the accuracy. We use three performance metrics
in total for evaluation, and the experimental results are shown in Table 3, where Taux represents the
threshold set for the confidence map. The mean IoU metric is the mIoU calculated by the generated
annotations and the truth ground truth without considering the masked pixels (by the confidence
map). The average class semi ratio is the average value of the “class semi ratio” of all classes.
To compute the class semi ratio for class i, we only consider the region of pixels that belong to
class i on the ground truth label map. The denominator of class semi ratio for class i is the number
of all pixels; and the numerator is the number of pixels, not masked by the confidence map, on
the estimated segmentation map. In calculating the selected pixels, we first count the pixels of the
estimated segmentation map that are selected by the confidence map and used as ground truth in
training. Then, we compute its ratio with respect to the entire image. From Table 3, we can find
that with a higher threshold, the pixels selected as GT are more accurate, but the selected pixels are
fewer; this is a trade-off. In addition, observing from the average class semi ratio and the individual
semi ratio for each class, our confidence map can also produce good results on the small objects
with a higher threshold. Thus, the generated annotations used for retraining segmentation network
can achieve good quality.
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Table 4: The proposed semi-supervised learning segmentation results on the Cityscapes validation
set based on different threshold values on the confidence map.

Data amount
Labeled data Unlabeled data Taux Mean IoU (%)

1/2 1/2 0 69.9
1/2 1/2 0.7 71.3
1/2 1/2 0.8 71.4
1/2 1/2 0.9 71.5
1/2 1/2 1 70.3

Table 5: Comparison with Hung et al. (2018) on the Cityscapes validation set.

Data amount (labeled data + unlabeled data)
Method 1/8 + 7/8 1/4 + 3/4 1/2 + 1/2 1 + 0
(Hung et al., 2018) baseline 55.5 59.9 64.1 66.4
(Hung et al., 2018) + adversarial learning 57.1 61.8 64.6 67.7
(Hung et al., 2018) + adversarial learning + semi 58.8 62.3 65.7 -
Ours baseline 56.8 63.0 66.1 69.6
Ours + semi 60.7 65.5 67.7 -
Ours baseline (proposed network) 57.7 65.5 70.3 74.4
Ours + semi (proposed network) 60.2 68.4 71.5 -

After generating the annotated labels for 1/2 unlabeled images, we retrain the segmentation network
using all images. The experimental results of selecting pixels based on different threshold values are
shown in Table 4. The proposed semi-supervised learning scheme can improve the performance for
about 1.0% to 1.2%. If Taux is set to 0, it means that all the pixels of the estimated segmentation
map are used as ground truth for unlabeled image, which is obviously unreasonable and it decreases
the accuracy. Since Taux at 0.9 gives the best results, we use the same value in the following
experiments.

To verify the effectiveness of our approach, we conduct experiments with different amount of data,
and shows the comparison with Hung et al. (2018) in Table 5. For the fair comparison, we also adopt
the same segmentation network used by Hung et al. (2018) as our backbone model. Under the same
settings that using 1/2, 1/4, and 1/8 training images as labeled data and using the rest of images as
unlabeled data, our semi-supervised learning method can lead to higher performance improvements.
It can improve the mean IoU by 3.9%, 2.5%, and 1.6% for 1/8, 1/4, and 1/2 training datasets,
respectively. Particularly, if we focus on the performance differences between the schemes with
and without semi-supervised learning mechanism, our semi-supervised learning approach offers
quite significant improvement.Then, if our proposed segmentation network is used as the backbone
network, it increases the mean IoU by another 1.2% to 2.9%. In the end, we show some sample
results in Figure 4.

Evaluation on CamVid dataset We also evaluate our approach on the CamVid dataset. As the
results shown in Table 6, our semi-supervised learning method can boost the performance of the
segmentation network, and it can achieve 1.3% improvement in mean IoU.

Table 6: Comparisons on the CamVid testing set.

Data amount
Method Labeled data Unlabeled data Mean IoU (%)
Ours baseline (proposed network) 1 0 71.8
Ours baseline (proposed network) 1/2 1/2 69.3
Ours + semi (proposed network) 1/2 1/2 70.6
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Figure 4: Sample results on the Cityscapes validation set using half of training data. From left
to right: (a) image (b) ground truth (c) segmentation results without semi-supervised learning (d)
segmentation results with semi-supervised learning

5 CONCLUSIONS

In this paper, we first propose a highly efficient segmentation network as our platform, and then
we design a semi-supervised learning scheme using an auxiliary network. The auxiliary network is
used to verify the estimated segmentation map and to generate annotations on the unlabeled images.
Equipped with the carefully designed auxiliary loss function in training, the auxiliary network per-
forms well not only on the large objects but also on the small objects. It shows that the unlabeled
images together with the generated annotations (labels) can be used to retrain the segmentation
network for better segmentation quality. Our experimental results on the Cityscapes and CamVid
datasets demonstrate the effectiveness of the proposed method.
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