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ABSTRACT

We propose a novel method to estimate the parameters of a collection of Hidden
Markov Models (HMM), each of which corresponds to a set of known features. The
observation sequence of an individual HMM is noisy and/or insufficient, making
parameter estimation solely based on its corresponding observation sequence
a challenging problem. The key idea is to combine the classical Expectation-
Maximization (EM) algorithm with a neural network, while these two are jointly
trained in an end-to-end fashion, mapping the HMM features to its parameters and
effectively fusing the information across different HMMs. In order to address the
numerical difficulty in computing the gradient of the EM iteration, simultaneous
perturbation stochastic approximation (SPSA) is employed to approximate the
gradient. We also provide a rigorous proof that the approximated gradient due to
SPSA converges to the true gradient almost surely. The efficacy of the proposed
method is demonstrated on synthetic data as well as a real-world e-Commerce
dataset.

1 INTRODUCTION

Hidden Markov Model (HMM) is a powerful statistical framework in sequential data analysis. While
HMM is arguably less prevalent in the era of deep learning, it remains to be favorable in cases where
strong model interpretability is desired (Rabiner, 1989) or prior knowledge can be injected into the
model (Bagos et al., 2006). Estimating the parameters of a HMM given its observation sequence is a
well-studied problem. The celebrated Expectation-Maximization (EM) algorithm (Dempster et al.,
1977) finds a locally optimal estimation in the maximum likelihood sense with provable optimality
(Wu, 1983). Numerous modifications and enhancements to the EM algorithm have been proposed
(Jamshidian & Jennrich, 1997; Capp, 2011). Notably, explicitly modeling the duration of the states in
a HMM can be enabled by an extension named Hidden Semi-Markov Models (HSMM) (Ostendorf
et al., 1996).

This paper concerns estimating the parameters of a collection of HMMs, each of which corresponds
to a set of known features. The observation sequence of each individual HMM is noisy and/or
insufficient, making parameter estimation solely based on its corresponding observation sequence
using the traditional EM algorithm impractical. The problem arises in recommender systems of online
E-Commerce platforms. The objective is to train a HMM (HSMM) model to predict the category
of product that the user would purchase based on the user’s feature (demographic, location, income
level) and observation sequence (past click history). The observation sequence of a particular user is
generally noisy (click not reflective of true purchase intention) and insufficient (user only clicked a
small number of items), making parameter estimation highly challenging.

The intuition is that while the information regarding each individual user is quite limited, we have
access to a much larger amount of information concerning all the users collectively. If we were
able to quantify some kind of correlation among the users using their features, we can combine
their information for parameter estimation. Formally, we propose to deduce correlations among the
HMMs using their features, so that we can fuse the information across different HMMs to estimate
the parameters. The basic idea is to combine the classical Expectation-Maximization (EM) algorithm
with a neural network which maps a HMM’s feature to its parameters. The weight of the neural
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network captures the correlation among the HMMs and is shared across all the users. The EM
iteration, with the estimated HMM parameter at step k (denoted by λk) as input and the refined
parameter λk+1 as output, can be considered as a building block (or layer) in the resulted neural
network. In order to enable end-to-end training, it is necessary to compute the gradient of the EM
iteration ∂λk+1/∂λk. While this gradient exists, we will show in Section 3 that exactly computing
this gradient is computationally expensive. A key technical contribution of this paper is in proving the
gradient of the EM iteration can be reliably approximated via simultaneous perturbation stochastic
approximation (SPSA) (Spall, 1992; Sadegh & Spall, 1998; Spall, 1998; Sadegh, 1997), which
only involves function evaluation and can be easily computed. With such gradient approximation
technique, we expect a large body of functions whose gradient is difficult to compute can now
be incorporated as layers in deep neural networks, dramatically expanding the choice of network
layers and increasing the flexibility of network architecture design. We name our method DENNL
(Differentiable EM as Neural Network Layer).

It is worth noting that a user’s feature consists of a number of categorical and numerical fields.
Instead of hand-crafting a dedicated neural network to encode the user feature, we used a pre-trained
low-dimensional user embedding to represent such information. The user embedding was trained
on a link prediction task using the graph convolutional network (Hamilton et al., 2017; Cheng et al.,
2016). Much similar to the success of pre-trained word embedding in downstream natural language
processing tasks (Peters et al., 2018; Devlin et al., 2018), we demonstrate that the embedding trained
using graph convolutional network is effective in summarizing information with complex structures
and can be highly instructive in seemingly unrelated downstream tasks.

2 BACKGROUNDS

Hidden Markov Model and EM Algorithm. In this section, we only introduce the concepts and
notations related to HMM and EM algorithm that are necessary for further discussion, and refer the
readers to (Rabiner, 1989) and (Bilmes et al., 1998) for a more comprehensive treatment of the topics.

A HMM is defined by a set of hidden states, the transition probability of the hidden states, and
the emission distribution. The Markov property mandates that the state transition and the emission
distribution is only dependent on the current hidden state. The realizations of the emission distribution
are what we can observe as an observation sequence. Let the distribution of the initial hidden state be
π and Qt, {t = 1, · · · , T} be the hidden state at time step t. Then transition probability is defined
by a time-homogeneous transition matrix A with elements ai,j = P (Qt = j|Qt−1 = i), where
i, j ∈ {1, · · · , N} are the indices of the hidden states. Let Ot be observable at time step t and ot to
be a realization of Ot. The emission distribution defines the probability of a particular observation
conditioned on the current hidden state

bj(ot) = P (Ot = ot|Qt = j). (1)

The emission probability of all hidden states can be represented by B = {bj(.)}.
Now we follow the notation in (Bilmes et al., 1998) to present a brief introduction of EM algorithms
applied in HMMs. A key concept is the forward and backward probability, which is used to compute
the likelihood efficiently. Forward probability is the probability of seeing the partial sequence
o1, · · · , ot and ending up in hidden state i at time t, Define the forward probability as:

αi(t) = p(O1 = o1, · · · , Ot = ot, Qt = i|λ),

where parameters λ = (A,B, π) = {λ1, · · · , λM} and M is the number of parameters. The forward
probability can be computed efficiently in an iterative manner,

αi(1) = πibi(o1), αj(t+ 1) =

[
N∑
i=1

αi(t)ai,j

]
bj(ot+1). (2)

Similarly, Backward probability is the probability of the ending partial sequence ot+1, · · · , oT given
the hidden state i at time t and is defined as:

βi(t) = p(Ot+1 = ot+1, · · · , OT = oT |Qt = i, λ). (3)
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Similarly backward probability can also be computed iteratively:

βi(T ) = 1, βi(t) =

N∑
j=1

ai,jbj(ot+1)βj(t+ 1). (4)

Given the observation sequence o1, · · · , oT and the parameter estimation at the k-th iteration λ(k),
the parameter estimation at the k + 1-th iteration can be computed as follows:

π
(k+1)
i =

αi(1)βi(1)∑N
i=1 αi(1)βi(1)

, (5)

a
(k+1)
i,j =

∑T−1
t=1 αi(t)ai,jbj(ot+1)βj(t+ 1)∑T−1

t=1 αi(t)βi(t)
, (6)

b
(k+1)
i (h) =

∑T
t=1 αi(t)βi(t)δot,vh∑T

t=1 αi(t)βi(t)
, (7)

where δot,vh is an indicator function which equals to 1 if ot = vh and 0 otherwise.

Hidden Semi-Markov Model. HSMM (Ostendorf et al., 1996) explicitly models the duration of a
state, by introducing a duration distribution, with which multiple observations could be emitted from
a hidden state before state transition occurs. A HSMM can be parameterized as HMM by introducing
a counter of the time steps in the current state (Yildirim et al., 2013; Bietti et al., 2015). For this
reason, the computation methods as well as the analysis of HMM naturally apply to HSMM.

3 PROBLEM STATEMENT AND PROPOSED SOLUTION

In this section we formally state the problem and describe our proposed method. The objective is to
estimate the parameters {λ(u)} of a collection of HMM models, using the corresponding observation
sequence {ot,1:T(u)

} and feature embedding {e(u)} as input. Here (u) is the index of a HMM
in the collection of HMMs, and T(u) is the length of the observation sequence. The observation
sequence {ot,1:T(u)} is noisy or insufficient for the conventional EM algorithm to apply. The feature
embedding e(u) is a low-dimensional vector that encodes our prior knowledge of {λ(u)}. We propose
to use neural network to combine the information across all the HMMs for more effective parameter
estimation.

λ(u) = Ψ
(
e(u), ot,1:T(u)

,Φ
)

(8)
where Φ is the parameter of the neural network that is shared by the HMM models. Formally, the
loss function to be minimized is

L(Φ) = −
∑
∀u

L
(
λ(u), ot,1:T(u)

)
(9)

where L(·) is the log-likelihood of observing sequence ot,1:T(u)
given HMM parameter λ(u).

The overview of our proposed method is shown in Figure 1. Our architecture can be considered as an
unrolled Recurrent Neural Network (RNN), where each recurrence (or stage) of the RNN corresponds
to an EM iteration. Our key novelty is in rendering EM iteration as a network layer. The resulted “EM
layer” serves as the output function of the RNN. This is in contrast to the traditional RNN where the
output function is a fully connected layer with non-linearity. Note that the EM layer is parameter-less
and directly reflects the domain knowledge and design intent of network designer. As we will show
in Section 6, such recurrent structure that mimics the iterative EM iterations in a conventional setting
is critical to the success of our proposed method.

As in the conventional EM algorithm, an initial parameter is provided and is iteratively refined. After
the kth EM iteration is performed, a multilayer perceptron (MLP) which is labeled as DNN in the
figure transforms λ(k), the latent state from the previous iteration hk, and the user embedding to an
updated λ(k+1) and an updated latent state hk+1. The parameters of the MLP are shared across EM
iterations. It is worth emphasizing that the latent state h captures the state of the DNN and shall not be
confused with the hidden state of the HMMs. We use the Softplus function and L1 normalization
to ensure the elements of the resulted λ are in proper range.
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Figure 1: Overview of DENNL. The EM iteration are incorporated in a deep neural network as layers.
End-to-end training is enabled by approximating the gradient of the “EM layer” using SPSA, as
shown in the low half of the figure.

Differentiability of the EM iteration. The EM iterations shown in Figure 1 can be considered as
layers of a neural network, with λ(k) and the observation sequence as input and λ(k+1) as output.
To enable end-to-end training, it is necessary to compute the partial gradient ∂λ(k+1)/∂λ(k). Even
though the EM iteration for HMM can be explicitly stated (Equation 5), directly computing the partial
gradient ∂λ(k+1)/∂λ(k) using a automatic differentiation engine faces two numerical challenges,
both of which are related to the forward and backward probability (Equation 2 and 4).

• While evaluating the alpha-beta equation is a O(T ) operation where T is the length of the
observation sequence, the number of nodes required to build the forward and backward
probability in the computation graph of an automatic differentiation engine is on the order
of O(T 2). Empirically we found this leads to intractable computation cost.

• The length of the observation sequence T varies across different HMM models, thus a
separate computation graph for the forward and backward probability has to be rebuilt for
every distinct T value. This is particularly problematic when the HMMs in a mini-batch
comes with different T values.

To address the aforementioned numerical challenges, we propose to approximate the gradient
∂λ(k+1)/∂λ(k) using SPSA. Much similar to how we can approximate the gradient of a one-
dimensional function using the finite difference method, SPSA estimates the gradient of a function by
evaluating the function with stochastically perturbed input vectors. A series of work by Spall and
colleagues (Spall, 1992; Sadegh & Spall, 1998; Spall, 1998; Sadegh, 1997) established theoretically
rigorous error bound for certain scalar functions. Note that such gradient approximation only involves
evaluating the EM iteration and can be efficiently computed.

A important question to answer is how well can SPSA approximate the gradient ∂λ(k+1)/∂λ(k)

in our specific application. In the next section, we formally describe how SPSA is performed and
establish its convergence property for EM iterations.

4 SPSA AND CONVERGENCE ANALYSIS

As the name suggests, Simultaneous Perturbation Stochastic Approximation approximates the gradient
(Jacobian) of a function by simultaneously applying a small perturbation to all the dimensions of
the argument of the function. Let ∆ ∈ RM be a M -dimensional random vector, where elements
∆1, · · · ,∆M are independent with zero mean. We do not assume specific distribution of ∆ as long
as E(1/∆) is bounded. We treat the EM iteration stated in equation 5, equation 6 and equation 7 as
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a function, with the HMM parameter at the k-th iteration λ(k) being the function argument and the
refined parameter at (k + 1)-th iteration λ(k+1) as the output:

λ(k+1) = f(o, λ(k)), (10)
where f : RM → RM and o = {o1, · · · , oT } is the observation sequence.

The SPSA estimates the gradient (Jacobian) of a function through two function evaluations. The
arguments of the two function evaluation are positively and negatively perturbed respectively as
following:

λ(k,+) = f
(
λ(k) + ck∆(k)

)
+ ε(k,+) (11)

λ(k,−) = f
(
λ(k) − ck∆(k)

)
+ ε(k,−) (12)

where ck is a positive scalar and ε(k,+), ε(k,−) are measurement noise. Let Fk be the random field
generated by λ(0), · · · , λ(k). We assume the measure noise satisfy the following conditions:

E
(
ε(k,+) − ε(k,−)

∣∣∣Fk,∆k

)
= 0, (13)

where 0 is the M -dimensional zero column vector.

With λ(k,+) and λ(k,−), the approximation of the true gradient (Jacobian) J(k) due to SPSA is defined
as

Ĵ(k) =


λ
(k,+)
1 −λ(k,−)

1

2ck∆
(k)
1

· · · λ
(k,+)
1 −λ(k,−)

1

2ck∆
(k)
M

... · · ·
...

λ
(k,+)
M −λ(k,−)

M

2ck∆
(k)
1

· · · λ
(k,+)
M −λ(k,−)

M

2ck∆
(k)
M

 , (14)

where λ(k,+)
i , λ

(k,−)
i ,∆

(k)
i are the i-th element of λ(k,+), λ(k,−),∆(k), respectively.

We now quantify the approximation error of Ĵ(k) and establish the convergence property of the
gradient approximation due to SPSA for the EM iteration. Our primary theoretical contribution
are Lemma 1 and Theorem 1, which are stated below. Note that (Spall, 1992) offered similar
theoretical results but their results only apply to functions with scalar output. Our proof took a very
different approach from the proof in (Spall, 1992) to bound the Frobenius Norm of the approximated
Jacobian to account for the fact that EM iteration is a function with vector input and vector output
(f : RM → RM). Please see Appendix A for the detailed proof.

Lemma 1. For i-th function fi of f in equation 10, ∂3fi
∂λj1∂λj2∂λj3

exist and are uniformly bounded
on the ranges of parameter λ such that for i, j1, j2, j3 = 1, · · · ,M ,∣∣∣∣ ∂3fi

∂λj1∂λj2∂λj3
(o, λ)

∣∣∣∣ ≤ τ0, (15)

where o is the observation sequence and τ0 is a positive scalar.

Theorem 1. Suppose that for each k, ∆
(k)
1 , · · · ,∆(k)

M are independent to each other and have zero
mean such that E(∆

(k)
i ) = 0, i = 1, 2, · · · ,M . In addition, as k →∞, almost surely |∆(k)

i | ≤ τ1
and E| 1

∆
(k)
i

| ≤ τ2, i = 1, · · · ,M , where τ1 and τ2 are positive constants. Then for k →∞, almost

surely ∥∥∥E ( Ĵ(k) − J(k)
∣∣∣Fk)∥∥∥

F
= O(c2k), (16)

where ‖.‖F is Frobenius norm.

Sketch of Proof: The difference between the i, j-th element of the approximated Jacobian Ĵ(k) and
the true Jacobian J(k) is denoted by Ĵ

(k)
i,j − J

(k)
i,j . We compute the third order Taylor series expansion

(Taylor & Lay, 1958) of this difference, and establish that the first two order terms vanish. The
constant term is obviously zero. The first order term disappears because the elements of ∆k are
independent with zero mean. The second order term is also zero because the positive perturbation
and the negative perturbation cancel out. According to Lemma 1, the third order term is uniformly
bounded, which guarantees the convergence rate of SPSA for estimating the gradient of the EM
iteration.
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5 RELATED WORK

It is shown in (Wen et al., 2017) that even a crude approximation of the gradient is sufficient for
stochastic gradient descent to converge. Such theoretical result is among our motivations to explore
gradient approximation techniques for layers whose gradient is expensive to compute. There are a
number of works on enhancing classical sequential data analysis methods with deep neural networks.
Krishnan (Krishnan et al., 2017) employs a RNN to parameterize a variational approximation of the
posterior distribution in a Gaussian state space model. Other works along this line include (Bui et al.,
2016), (Salinas et al., 2017) and (Linderman et al., 2017).

Perhaps the most related existing work is (Rangapuram et al., 2018), where the authors used a deep
neural network to parameterize a collection of linear state space models so the information across
multiple time series can be shared. The underlying linear state space model is updated via Kalman
Filtering, which only involves matrix-to-matrix multiplication and is differentiable. The price to pay
for such differentiability is the underlying sequential data analysis method has to be a relative simple
form (e.g. linear state space model) with limited expressiveness and flexibility. In contrast, in this
work we do not have to limit ourselves to methods whose gradient are easy to compute.

Another closely related work is Gref et al. (Greff et al., 2017), where the author incorporates the
so-called general EM algorithm (Wu, 1983) in the neural network for unsupervised clustering. The
key difference is that instead of performing a complete EM update, the general EM algorithm (Greff
et al., 2017) only takes one step of gradient descent in the M step of the EM algorithm to refine the
parameter estimation. It may take a much larger number of iterations for the general EM algorithm to
converge (Wu, 1983). Larger number of iterations leads to a deeper neural network, as an additional
layer is stacked in the neural network per iteration. A network that is too deep may cause difficulty in
training (He et al., 2016). Hinton et al. (Hinton et al., 2018) directly computes the gradient of an EM
based routing procedure. With a small number of EM iterations, (Hinton et al., 2018) does not face
the numerical challenge outlined in Section 3 because the sizes of their inputs in a mini-batch are
fixed and the problem is of much smaller scale.

Relationship with other recommender systems algorithms. Graph embedding (Hamilton et al.,
2017; Grbovic & Cheng, 2018) is one of the backbone algorithms for today’s industrial recommender
systems. While graph embedding is highly effective in capturing complex interactions among hun-
dreds of millions of users and items, most of the algorithms fail to consider the temporal evolvement
of the user’s interest (with a few exceptions such as (Kumar et al., 2019), (Trivedi et al., 2017) and
(Zhou et al., 2018), none of which provides an interpretable model of user interest evolvement). We
do not consider our proposed method as a general solution for item level recommendation, as it is
unlikely that our proposed method in its current form can be scaled to millions of items. Rather, the
focus of our proposed method is to capture highly detailed temporal interest evolvement of the users
across a limited number of categories.

6 EXPERIMENT

In this section, we evaluate the effectiveness of our proposed method on synthetic data as well as
real-world e-Commerce data.

The primary contribution of our proposed method is to share the information across multiple HMMs
for parameter estimation in cases where the observation sequence is noisy or insufficient. To the
best of our knowledge, there is no directly comparable method in the existing literature. We perform
ablation studies against the following baselines to justify our design choices:

1. Conventional EM. The HSMM parameters are estimated by the conventional EM algorithm,
with no information sharing across the HSMM models.

2. EM Mapping. We first estimate the HSMM parameters using the conventional EM algo-
rithm, then train a neural network (a stack of fully connected layers) that maps the user
embedding to the HSMM parameters due to conventional EM algorithm. The training
objective is to minimize the square error. Though the neural network establishes some
correlation across the HSMM models, the HSMM parameters due to the conventional EM
algorithm solely relies on the user’s corresponding observation sequence that is noisy and/or
insufficient.
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3. MLP Mapping. In this baseline, a multilayer perceptron (MLP) maps the user embedding
to the HMM parameters, then the likelihood is computed based on the HMM parameters
and the observation sequence. We use gradient ascent to maximize the likelihood. Note that
this baseline is purely based on gradient ascent and does not involve the EM algorithm.

4. Initial Fusion. A DNN maps user embedding to HMM parameters, which are refined by
the EM iterations. Here we only fuse the observations across different HMMs at the initial
stage. In a sense, this architecture identifies an optimal initial parameter guess. In contrast,
our proposed method fuses observations across different HMMs at every EM iteration.

Figure 2: Overview of baselines. Left: MLP Mapping. Right: Initial Fusion.

6.1 SYNTHETIC DATA

The purpose of evaluating the proposed method on synthetic data is to compare the decoded hidden
state with known ground truth state. Being able to correctly infer the hidden state is a key metric of
HMM models (Sarkar & Dunson, 2018). We pre-designed the parameters of a collection HSMM,
each of which has 10 hidden states. The emission distribution is a 5-dimension Gaussian distribution.
The duration distribution is Poisson distribution. To generate an informative feature embedding for
each HSMM, we serialize the HSMM parameters as a vector and apply a non-linear transformation
(in the form of Ax+ b followed by ReLU, where x is the parameter vector, A is a known full rank
matrix and b is a known vector). The resulted feature embedding is strongly related to its underlying
parameter, but one cannot recover the HMM parameters from its feature embedding. The evaluation
metric is the percentage of the decoded states (Viterbi, 1967; Munkres, 1957) that match the ground
truth state, or the labeling accuracy.

We first evaluate our method in cases where the observation sequence is insufficient. We also compared
DENNL to baseline methods when a certain percentage of the observations in the observation sequence
generated by the ground truth model is contaminated by noise. If a particular observation is chosen to
be noisy, its value is replaced by the value of another randomly chosen observation in the sequence.
The results are reported in Table 1.

Table 1: Labeling accuracy comparison of DENNL to the baseline methods on the synthetic data.

Method
Sequence
Length:

50

Sequence
Length:

100

Sequence
Length:

400

Noisy
Sample:

20%

Noisy
Sample:

10%

Conventional EM 82.0% 85.5% 94.1% 83.1% 91.5%
Direct Mapping 71.4% 72.2% 73.0% 67.9% 71.4%
MLP Mapper 51.5% 50.3% 52.1% 46.2% 48.5%
Initial Fusion 82.4% 83.7% 92.6% 82.8% 89.7%
DENNL 88.3% 90.0% 93.5% 88.1% 92.3 %

Discussion: As shown in Table 1, DENNL consistently outperforms the baseline methods with noisy
or insufficient observations. When the observation sequence is of sufficient length or noise-less, the
benefit of the proposed method diminishes as expected. Even though Direct Mapping method enables
some information sharing across HMMs, its performance was poor because the regression target
is due to the conventional EM and can be inaccurate to begin with. This experiment illustrates the
necessity to fuse information across HMM in every EM iteration. While the Initial Fusion method
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seems to enable information sharing, its performance is very close to that of conventional EM. This
method essentially attempts to identify an optimal initial solution with shared information across
HMMs. However, at least in our application, the EM algorithm appears to be insensitive to the initial
solution. The MLP Mapper method enables information sharing with simple architecture, but is
slow to converge and is not competitive even against conventional EM. To explain this, note that in
a conventional setting, we seldom use gradient ascent for HMM parameter estimation. Rather, the
common practice is to use the EM algorithm which is carefully designed for the particular application.

This is the key message that we would like to convey to the community: operations that are inspired
by well-studied classical methods (such as EM iteration) can be significantly more effective than
operations that are synthesized using generic layers (convolution, fully connected, etc). If the gradient
of the classical method is incomputable, it could potentially be numerically approximated. This
formulation dramatically expands the choices of network layers and allows network designers to
directly apply their domain knowledge in the network architecture.

6.2 E-COMMERCE DATA

As previously discussed in Section 5, DENNL is not considered as a general solution for recommen-
dation systems in its current form. Rather, it is suitable to model the shift of user’s interest across
a small number of categories. We apply DENNL in a clearly defined and fast-growing sector on
our e-Commerce platform, namely Home Decoration. The Home Decoration sector comes with
certain well-defined shopping patterns that follow the progress of the decoration of a newly purchased
condo. Formally, we model the behavior of the user in the Home Decoration category by HSMM
with 17 states, each of which corresponds to a sub-category in the Home Decoration sector. Please
see Appendix A.2 for more information of the e-Commerce dataset.

In this setting we no longer have access to the ground truth states, thus we can no longer use labeling
accuracy as the metric. Instead, we use a link prediction metric. Using the trained HSMM model, we
could compute the likelihood of a user interacting with each of the 17 sub-categories. The prediction
is considered to be successful if the user interacted with the predicted sub-category with the highest
likelihood, top-3 and top-5 likelihood.

Table 2: Sub-cateogry prediction accuracy in the e-Commerce dataset.
Method Top-1 Top-3 Top-5

Conventional EM 10.3% 23.9% 50.5%
GraphSage 17.7% 37.4% 65.5%
MLP Mapper 7.4% 19.6% 35.1%
Initial Fusion 11.5% 21.6% 48.2%
DENNL 21.8% 48.5% 75.2%

Our proposed method outperforms the conventional EM as well as the GraphSage in this experiment.
Note that the user feature we used is the user embedding due to GraphSage, thus DENNL has all the
information that GraphSage can offer. One way to interpret the result is that our method is enhancing
GraphSage with an HSMM that captures the temporal interest shift of the users.

7 CONCLUSION

In this work, we proposed a novel method in combining EM algorithm with neural network to predict
the parameters of a collection of Hidden Markov Models. The basic idea is to use the neural network
to capture correlation among the HMMs so the information across different HMMs can be shared
and re-used. The key technical contribution of this work is in providing a proof that the gradient
of the EM iteration can be efficiently and reliably approximated using the SPSA. We evaluated our
proposed on synthetic data as well as real-world e-Commerce data. An interesting observation is that
the user embedding trained in an unrelated task using graph convolutional neural network can be
highly informative in HMM parameter estimation. Parallels can be drawn between this observation
and the success of pre-trained word embedding in downstream natural language processing tasks.
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A APPENDIX

A.1 PROOF OF LEMMA 1 AND THEOREM 1

Lemma 1. For i-th dimension fi of f in equation 10, ∂3fi
∂λj1

∂λj2
∂λj3

exist and are uniformly bounded
on the range of parameter λ such that for i, j1, j2, j3 = 1, · · · ,M ,∣∣∣∣ ∂3fi

∂λj1∂λj2∂λj3
(o, λ)

∣∣∣∣ ≤ τ0, (17)

where o is the observation sequence and τ0 is a positive scalar.

Proof. We first show that that the numerator and denominator of fi is the polynomial function of
M -parameters. Since the range of parameters are closed and bounded set, then it follows (Rudin
et al., 1964) that the third partial gradient of fi is uniformly continuous and up bounded and then
Lemma 1 is established.

Rewrite equation 2 as

[α1(t+ 1), · · · , αN (t+ 1)] = [α1(t), · · · , αN (t)]× Σ(t+1) (18)

where

Σ(t+1) = A×

b1(ot+1)
. . .

bN (ot+1)

 . (19)

Then it follows that

[α1(t), · · · , αN (t)] = [α1(1), · · · , αN (1)]×
t∏
l=2

Σ(l), (20)

where t = 1, · · · , T . For t = 1, let
∏t
l=2 Σ(l) = IN where IN is aN×N identity matrix. According

to equation 18, we have

αi(t) = [α1(1), · · · , αN (1)]×
t∏
l=2

Σ(l) × ei, (21)

where ei is N -column vector, the i-th element equals to one and the rest elements equal to zeros.
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Rewrite equation 4 as β1(t)
...

βN (t)

 = Σ(t+1) ×

β1(t+ 1)
...

βN (t+ 1)

 ,
which together with βi(T ) = 1, i = 1, · · · , N , yields thatβ1(t)

...
βN (t)

 =

T∏
l=t+1

Σ(l) × 1N , (22)

where 1N is N -dimensional column vector with all elements equaling to one, t = 1, · · · , T . For
t = T , let

∏T
l=t+1 Σ(l) = IN . According to equation 22, we have

βi(t) = eTi ×
T∏

l=t+1

Σ(l) × 1N ,

which together with equation 21 yields that

αi(t)βi(t) = [α1(1), · · · , αN (1)]×
t∏
l=2

Σ(l) × eieTi ×
T∏

l=t+1

Σ(l) × 1N . (23)

Define N -dimensional column vector as

V (i,t) =

t∏
l=2

Σ(l) × eieTi ×
T∏

l=t+1

Σ(l) × 1N . (24)

Let mil,jl be the il, jl-th element of Σ(l). Then the `-th element of V (i,t)
` is just linear combina-

tion of elements mi2,j2 · · ·miT ,jT , where the coefficient in front of mi2,j2 · · ·miT ,jT is defined as
c
(i,t,`)
i2,j2,··· ,iT ,jT . It follows that

V (i,t) =


∑
i2,j2,··· ,iT ,jT c

(i,t,1)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT

...∑
i2,j2,··· ,iT ,jT c

(i,t,N)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT

 . (25)

Combining equation ??, equation 23, equation 24 and equation 25, we have

αi(t)βi(t) =

N∑
`=1

∑
i2,j2,··· ,iT ,jT

π`b`(o1)c
(i,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT . (26)

According to equation 19, given that observation ol = h, mil,jl = ail,jlbjl(ol) = ail,jlbjl(h). From
equation 26, it is clearly that αi(t)βi(t) is the polynomial function of parameters {A,B, π}. From
equation 5 and equation 26, we have

π
(k+1)
i =

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)c

(i,1,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT∑N

i=1

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)c

(i,1,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT

. (27)

The numerator and denominator of π(k+1)
i are polynomial function of parameters λ = {A,B, π}.

According to (Rudin et al., 1964), the third partial gradient of π(k+1)
i to λ is uniformly bounded on

the range of parameters, which is bounded and closed set onRM .

Since ai,jbj(ot+1) = mit,jt , where it = i, jt = j, then similar as equation 26, we have

αi(t)ai,jbj(ot+1)βj(t+ 1) = αi(t)mit,jtβj(t+ 1)

=

N∑
`=1

∑
i2,j2,··· ,iT ,jT

π`b`(o1)c̃
(i,j,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT ,(28)
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where index i, j, t of coefficients c̃(i,j,t,`)i2,j2,··· ,iT ,jT corresponds to i, j, t in αi(t)ai,jbj(ot+1)βj(t+ 1).
Combining equation 6, equation 26 and equation 28, we have

a
(k+1)
i,j =

∑T−1
t=1

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)c̃

(i,j,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT∑T−1

t=1

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)c

(i,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT

. (29)

Similarly, it follows from equation 7 and equation 26 that

b
(k+1)
i (h) =

∑T
t=1

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)δot,vhc

(i,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT∑T

t=1

∑N
`=1

∑
i2,j2,··· ,iT ,jT π`b`(o1)c

(i,t,`)
i2,j2,··· ,iT ,jTmi2,j2 · · ·miT ,jT

. (30)

Note that the numerator and denominator of a(k+1)
i,j and b(k+1)

i (h) are also polynomial function of

parameters λ = {A,B, π}. Then the third partial gradient a(k+1)
i,j and b(k+1)

i (h) are also bounded
on the range of parameters. Since f in equation 10 is equivalent to equation 27, equation 29 and
equation 30, the first partial gradient of f is uniformly bounded.

Theorem 1. Suppose that for each k, ∆
(k)
1 , · · · ,∆(k)

M are independent to each other and have zero
mean such that E(∆

(k)
i ) = 0, i = 1, 2, · · · ,M . In addition, as k → ∞, almost surely |∆(k)

i | ≤ τ1
and E| 1

∆
(k)
i

| ≤ τ2, i = 1, · · · ,M , where τ1 and τ2 are positive constants. Then for k →∞, almost

surely ∥∥∥E ( Ĵ(k) − J(k)
∣∣∣Fk)∥∥∥

F
= O(c2k), (31)

where ‖.‖F is Frobenius norm.

Proof. According to equation 11, equation 12, and equation 14, the i-th row, j-th column element
difference between Ĵ(k) and J(k) is

Ĵ
(k)
i,j − J

(k)
i,j =

fi
(
λ(k) + ck∆(k)

)
− fi

(
λ(k) − ck∆(k)

)
2ck∆

(k)
j

− ∂fi(λ
(k))

∂λj
+
ε
(k,+)
i − ε(k,−)

i

2ck∆
(k)
j

. (32)

Taylor series expansion (Taylor & Lay, 1958) of fi(.) is represented as

fi

(
λk + ck∆(k)

)
= fi(λ

(k)) +

M∑
j1=1

ck∆
(k)
j1

∂fi(λ
(k))

∂λj1
+

1

2

M∑
j1=1

M∑
j2=1

c2k∆
(k)
j1

∆
(k)
j2

∂2fi(λ
(k))

∂λj1∂λj2

+
1

6

M∑
j1=1

M∑
j2=1

M∑
j3=1

c3k∆
(k)
j1

∆
(k)
j2

∆
(k)
j3

∂3fi
(
λ(k) + ξ(+)∆(k)

)
∂λ1∂λ2∂λ3

,

and

fi

(
λk − ck∆(k)

)
= fi(λ

(k))−
M∑
j1=1

ck∆
(k)
j1

∂fi(λ
(k))

∂λj1
+

1

2

M∑
j1=1

M∑
j2=1

c2k∆
(k)
j1

∆
(k)
j2

∂2fi(λ
(k))

∂λj1∂λj2

− 1

6

M∑
j1=1

M∑
j2=1

M∑
j3=1

c3k∆
(k)
j1

∆
(k)
j2

∆
(k)
j3

∂3fi
(
λ(k) − ξ(−)∆(k)

)
∂λ1∂λ2∂λ3

,

where ξ(+), ξ(−) ∈ (0, ck). Then it follows that

fi
(
λ(k) + ck∆(k)

)
− fi

(
λ(k) − ck∆(k)

)
2ck∆

(k)
j

− ∂fi(λ
(k))

∂λj
=

1

∆
(k)
j

∑
j1 6=j

∆
(k)
j1

∂fi(λ
(k))

∂λj1
+RES, (33)

where

RES =
c2k

12∆
(k)
j

M∑
j1=1

M∑
j2=1

M∑
j3=1

∆
(k)
j1

∆
(k)
j2

∆
(k)
j3

[
∂3fi

(
λ(k) + ξ(+)∆(k)

)
∂λ1∂λ2∂λ3

+
∂3fi

(
λ(k) − ξ(−)∆(k)

)
∂λ1∂λ2∂λ3

]
.
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Since E
(

∆
(k)
j1

)
= 0, then

E

 1

∆
(k)
j

∑
j1 6=j

∆
(k)
j1

∂fi(λ
(k))

∂λj1

∣∣∣∣∣∣Fk
 = E

(
1

∆
(k)
j

)∑
j1 6=j

∂fi(λ
(k))

∂λj1
E
(

∆
(k)
j1

)
= 0. (34)

Since | ∂3fi(.)
∂λ1∂λ2∂λ3

| ≤ τ0 from Lemma 1, almost surely |∆(k)
j | ≤ τ1 and E| 1

∆
(k)
j

| < τ2, as k → ∞,

then given Fk, the expectation of RES in equation 33 is bounded such that as k →∞, almost surely

|E(RES|Fk)| ≤ τ0c
2
k

6

M∑
j1=1

M∑
j2=1

M∑
j3=1

E

∣∣∣∣∣∆
(k)
j1

∆
(k)
j2

∆
(k)
j3

∆
(k)
j

∣∣∣∣∣ ≤ τ0τ
3
1 τ2M

3

6
c2k. (35)

Combining equation 33, equation 34 and equation 35, almost surely

E

(
fi
(
λ(k) + ck∆(k)

)
− fi

(
λ(k) − ck∆(k)

)
2ck∆

(k)
j

− ∂fi(λ
(k))

∂λj

∣∣∣∣∣Fk
)

= O(c2k), (36)

In addition, from equation 13, we have

E

(
ε
(k,+)
i − ε(k,−)

i

2ck∆
(k)
j

∣∣∣∣∣Fk
)

= 0

which together with equation 32 and equation 36 yields that as k →∞, almost surely

E
(
Ĵ

(k)
i,j − J

(k)
i,j

∣∣∣Fk) = O(c2k),

It follows that ∥∥∥E ( Ĵ(k) − J(k)
∣∣∣Fk)∥∥∥

F
= O(c2k).

A.2 DESCRIPTION OF E-COMMERCE DATASET

The operation specialist who has deep domain knowledge in the Home Decoration sector have
concluded that after a condo is purchased, the customer will likely go through 4 distinct phases:
Planning , Indoor Construction, Furniture, and Accessories. In the Planning
phase the customer mainly browses listing of designing services and contractors. Representative items
in the Indoor Construction includes electrical and plumbing supplies. The user’s interest
changes according to the actual decoration progress of the condo. Once we have identified that a user
is likely to switch from one phase to another, we can begin to recommend the items that belong to the
next phase. The ability to incorporate such detailed temporal information is a key improvement over
existing recommender system algorithms.

The hidden states include the four phases discussed above, as well as a NotDecorating state to
indicate that the user is not actively considering items in the Home Decoration. We summarize the
user’s behavior on the platform on a daily basis. Each day, we assign a strength value to a total of
17 sub-categories (each of the four phases consists of four sub-categories, plus one for no action).
The strength value is calculated based on the number of clicks/purchases and serves an indicator
of the level of interest of the user in a particular sub-category. The strength value across the 17
sub-categories is normalized to 1. With this formulation, the emission probability is the Multinomial
distribution. The duration distribution is Poisson distribution.

The user feature that we provided to the neural network is a 128 dimension embedding trained in
a link prediction task using GraphSage. The task is to predict whether a user would click an item
solely based on the user embedding and item embedding. Such embedding not only encodes the
numerical and categorical information of the users (such as location and income level), but also
captures the user-to-item interaction on the platform. We chose 10000 users on the platform that has
a large number of clicks/purchases in Home Decoration, and used 180 days of their behavior between
January 2018 and July 2018 as training data. The user’s behavior between July 1st and July 2nd 2018
is used as validation data.
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