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ABSTRACT

Deep neural networks have achieved impressive performance in handling com-
plicated semantics in natural language, while mostly treated as black boxes. To
explain how the model handles compositional semantics of words and phrases,
we study the hierarchical explanation problem. We highlight the key challenge is
to compute non-additive and context-independent importance for individual words
and phrases. We show some prior efforts on hierarchical explanations, e.g. contex-
tual decomposition, do not satisfy the desired properties mathematically, leading
to inconsistent explanation quality in different models. In this paper, we pro-
pose a formal way to quantify the importance of each word or phrase to generate
hierarchical explanations. We modify contextual decomposition algorithms ac-
cording to our formulation, and propose a model-agnostic explanation algorithm
with competitive performance. Human evaluation and automatic metrics evalua-
tion on both LSTM models and fine-tuned BERT Transformer models on multiple
datasets show that our algorithms robustly outperform prior works on hierarchical
explanations. We show our algorithms help explain compositionality of semantics,
extract classification rules, and improve human trust of models 1.

1 INTRODUCTION

Recent advances in deep neural networks have led to impressive results on a range of natural
language processing (NLP) tasks, by learning latent, compositional vector representations of text
data (Peters et al., 2018; Devlin et al., 2018; Liu et al., 2019b). However, interpretability of the pre-
dictions given by these complex, “black box” models has always been a limiting factor for use cases
that require explanations of the features involved in modeling (e.g., words and phrases) (Guidotti
et al., 2018; Ribeiro et al., 2016). Prior efforts on enhancing model interpretability have focused
on either constructing models with intrinsically interpretable structures (Bahdanau et al., 2015; Liu
et al., 2019a), or developing post-hoc explanation algorithms which can explain model predictions
without elucidating the mechanisms by which model works (Mohseni et al., 2018; Guidotti et al.,
2018). Among these work, post-hoc explanation has come to the fore as they can operate over a
variety of trained models while not affecting predictive performance of models.

Towards post-hoc explanation, a major line of work, additive feature attribution methods (Lundberg
& Lee, 2017; Ribeiro et al., 2016; Binder et al., 2016; Shrikumar et al., 2017), explain a model
prediction by assigning importance scores to individual input variables. However, these methods
may not work for explaining compositional semantics in natural language (e.g., phrases or clauses),
as the importance of a phrase often is non-linear combination of the importance of the words in the
phrase. Contextual decomposition (CD) (Murdoch et al., 2018) and its hierarchical extension (Singh
et al., 2019) go beyond the additive assumption and compute the contribution solely made by a
word/phrase to the model prediction (i.e., individual contribution), by decomposing the output vari-
ables of the neural network at each layer. Using the individual contribution scores so derived, these
algorithms generate hierarchical explanation on how the model captures compositional semantics
(e.g., stress or negation) in making predictions (see Figure 1 for example).

1Code and data have been uploaded and will be published upon acceptance of the paper.
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Figure 1: Different score attribution algorithms. (a) Input occlusion assigns a negative score for
the word “interesting”, as the sentiment of the phrase becomes less negative after removing “in-
teresting” from the original sentence. (b) Additive attributions assign importance scores for words
“not” and “interesting” by linearly distributing contribution score of “not interesting“, exemplified
with Shapley Values (Shapley, 1997). Intuitively, only (c) Hierarchical explanations highlight the
negative compositional effect between the words “not” and “interesting”.

However, despite contextual decomposition methods have achieved good results in practice, what
reveals extra importance that emerge from combining two phrases has not been well studied. As a
result, prior lines of work on contextual decomposition have focused on exploring model-specific
decompositions based on their performance on visualizations. We identify the extra importance
from combining two phrases can be quantified by studying how the importance of the combined
phrase differs from the sum of the importance of the two component phrases on its own. Simi-
lar strategies have been studied in game theory for quantifying the surplus from combining two
groups of players (Driessen, 2013). Following the definition above, the key challenge is to formu-
late the importance of a phrase on it own, i.e., context independent importance of a phrase. How-
ever, while contextual decomposition algorithms try to decompose the individual contributions from
given phrases for explanation, we show neither of them satisfy this context independence property
mathematically.

To this end, we propose a formal way to quantify the importance of each individual word/phrase,
and develop effective algorithms for generating hierarchical explanations based on the new formu-
lation. To mathematically formalize and efficiently approximate context independent importance,
we formulate N -context independent importance of a phrase, defined as the difference of model
output after masking out the phrase, marginalized over all possible N words surrounding the phrase
in the sentence. We propose two explanation algorithms according to our formulation, namely the
Sampling and Contextual Decomposition algorithm (SCD), which overcomes the weakness of con-
textual decomposition algorithms, and the Sampling and OCclusion algorithm (SOC), which is sim-
ple, model-agnostic, and performs competitively against prior lines of algorithms. We experiment
with both LSTM and fine-tuned Transformer models to evaluate the proposed methods. Quantita-
tive studies involving automatic metrics and human evaluation on sentiment analysis and relation
extraction tasks show that our algorithms consistently outperform competitors in the quality of ex-
planations. Our algorithms manage to provide hierarchical visualization of compositional semantics
captured by models, extract classification rules from models, and help users to trust neural networks
predictions.

In summary, our work makes the following contributions: (1) we identify the key challenges in
generating post-hoc hierarchical explanations and propose a mathematically sound way to quantify
context independent importance of words and phrases for generating hierarchical explanations; (2)
we extend previous post-hoc explanation algorithm based on the new formulation of N -context in-
dependent importance and develop two effective hierarchical explanation algorithms; and (3) both
experiments using automatic evaluation metrics and human evaluation demonstrate that the pro-
posed explanation algorithms consistently outperform the compared methods (with both LSTM and
Transformer as base models) over several datasets.

2 PRELIMINARIES

2.1 POST-HOC EXPLANATIONS OF NEURAL SEQUENCE MODELS

We consider a sequence of low-dimensional word embeddings x1:T := (x1,x2, ...,xT ), or denoted
as x for brevity, as the input to a neural sequence model, such as standard RNNs, LSTM (Hochreiter
& Schmidhuber, 1997) and Transformers (Vaswani et al., 2017). These neural models extract latent,
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compositional representations h1:T (i.e., hidden states) from the input sequence x, and feed these
hidden state vectors to a prediction layer to generate output in the label space (e.g., sentiment polarity
of a sentence). For LSTM, we use the last hidden state hT to give unnormalized prediction scores
s(x) ∈ Rdc over dc label classes as follows.

s(x) =WlhT , (1)
whereWl ∈ Rdc×dh is a trainable weight matrix. For Transformers, the representation correspond-
ing to the “[CLS]” token at the final layer is fed to the prediction layer to generate scores s(x).

Towards post-hoc explanation of s(x), a notable line of work, additive feature attribution meth-
ods (Ribeiro et al., 2016; Shrikumar et al., 2017; Sundararajan et al., 2017), measure word-level
importance to the model prediction s(x) by attributing a importance score φ(xi,x) to each word in
the input sequence xi ∈ x. Such additive attribution methods are related to Shapley Values (Shap-
ley, 1997) and thus can be proven to enjoy good properties, including that it has unique solution of a
“fair” attribution (Lundberg & Lee, 2017). However, the additive assumption hinders these methods
from explaining the complex interactions between words and compositional semantics in a sentence
(e.g., modeling negation, transition, and emphasis in sentiment classification), as shown in Figure 1.

2.2 HIERARCHICAL EXPLANATIONS VIA CONTEXTUAL DECOMPOSITION

To caputure non-linear compositional semantics, the line of work on contextual decomposi-
tion (CD) (Murdoch et al., 2018) designs non-additive measures of importance from individual
words/phrases to the model predictions, and further extend to agglomerative contextual decomposi-
tion (ACD) algorithm (Singh et al., 2019) for generating hierarchical explanations.

Given a phrase p = xi:j in the input sequence x, contextual decomposition (CD) attributes a score
φ(p,x) as the contribution solely from p to the model’s prediction s(x). Note that φ(p,x) does
not equal to the sum of the scores of each word in the phrase, i.e., φ(p,x) 6= ∑

xi∈p φ(xi,x).
Starting from the input layer, CD iteratively decomposes each hidden state h of the model into the
contribution solely made by p, denoted as β, and the contributions involving the words outside the
phrase p, denoted as γ, with the relation h = β + γ holds. Note that the algorithm also keeps the
contribution from the bias term, denoted as ζ, temporally before element-wise multiplication.

For a linear layer h = Wixt + bi with input xt, the contribution solely from p to h is defined as
β = Wixt when xt is part of the phrase (i.e., xt ∈ p), and the contribution involving other words
in the sentences (denoted as x\p) is defined as γ = 0. The contribution of the bias term ζ is thus
bi. When xt lies outside of the phrase in the sentence (i.e., xt 6∈ p), γ is quantified as Wixt and β
is 0. In the cases when CD encounters element-wise multiplication operations h = ha ∗ hb (e.g., in
LSTMs), it eliminates the multiplicative interaction terms which involve the information outside of
the phrase p. Specifically, suppose that ha and hb have been decomposed as ha = βa + γa + ζa

and hb = β
b + γb + ζb, CD computes the β term for ha ∗hb as β = βa ∗βb +βa ∗ ζb + ζa ∗βb.

When dealing with non-linear activation h′ = σ(h), CD computes the contribution solely from the
phrase p as the average activation differences caused by β supposing γ is present or absent,

β′ =
1

2
[σ(β + γ + ζ)− σ(γ + ζ)] +

1

2
[σ(β + ζ)− σ(ζ)]. (2)

Following the three strategies introduced above, CD decomposes all the intermediate outputs starting
from the input layer, until reaching the final output of the model hT = β+ γ. The logit scoreWlβ
is treated as the contribution of the given phrase p to the final prediction s(x).

As a follow-up study, Singh et al. (2019) extends CD algorithm to other families of neural network
architectures, and proposes agglomerative contextual decomposition algorithm (ACD). The decom-
position of activation functions is modified as β′ = σ(β). For the linear layer h′ =Wh + b with
its decomposition h = β + γ, the bias term b is decomposed proportionally and merged into the β′
term of h′, based on β′ =Wβ + |Wβ|/(|Wβ|+ |Wγ|) · b.

3 METHODOLOGY

In this section, we start by identifying desired properties of phrase-level importance score attribution
for hierarchical explanations. We propose a measure of context-independent importance of a phrase
and introduce two explanation algorithms instantiated from the proposed formulation.
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Figure 2: (Left) Illustration of the CD and SCD at calculating the decomposition for h = σ(β+γ),
following Eq. 2. Red lines indicate computation that make CD explanations dependent on the words
outside the give phrase. (Right) Illustration of the sampling step xδ ∼ p(xδ|x−δ) for calculating the
importance of the word very in SOC and SCD, with size of context N = 1. The padding operation
is for SOC.

3.1 PROPERTIES OF IMPORTANCE ATTRIBUTION FOR HIERARCHICAL EXPLANATION

Despite the empirical success of CD and ACD, no prior works analyze what common properties a
score attribution mechanism should satisfy to generate hierarchical explanations that reveal com-
positional semantics formed between phrases. Here we identify two properties that an attribution
method should satisfy to generate informative hierarchical explanations.

Non-additivity Importance of a phrase φ(p,x) should be quantified by a non-linear function over
the importance scores of all the component words xi ∈ p, i.e., φ(p,x) 6= ∑

xi∈p φ(xi,x), in
contrast to the family of additive feature attribution methods.

Context Independence For deep neural networks, when two phrases combine, their importance to
predicting a class may greatly change. The surplus by combining two phrases can be quantified by
the difference between the importance of the combined phrase and the sum of the importance of two
phrases on its own. It follows how the surplus of combining two groups of players can be quan-
tified in the game theory (Driessen, 2013; Fujimoto et al., 2006). According to the definition, the
importance of two component phrases should be evaluated independently of each other. Formally,
if we are interested in how combining two phrases p1 and p2 contribute to a specific prediction for
an input x, we expect for input sentences x̂ where only p2 is replaced to another phrase, the impor-
tance attribution for p1 remains the same, i.e., φ(p1,x) = φ(p1, x̂). In the hierarchical explanation
setting, we are interested in how combining a phrase and any other contextual words or phrases in
the input x changes the prediction for the input x. Therefore, we expect φ(p,x) = φ(p, x̂) given
the phrase p in two different contexts x and x̂.

Limitations of CD and ACD Unfortunately, while CD and ACD try to construct decomposition so
that β terms represent the contributions solely from a given a phrase, the assigned importance scores
by these algorithms do not satisfy the context independence property mathematically. For CD, we
see the computation of β involves the γ term of a specific input sentence in Eq. 2 (see Figure 2(a)
for visualization). Similarly, for ACD, the decomposition of the bias term involves the γ terms of a
specific input sentence. As a result, the β terms computed by both algorithms depend on the context
of the phrase p. Regarding the decomposition of activation functions, the decomposition β′ = σ(β)
in ACD seems plausible, which does not involve γ for computing β terms. However, in case every
activation is decomposed in this way and suppose the bias terms are merged into β, the algorithm
is equivalent to feeding only the phrase p into the classifier with all other input masked as zero.
Empirical results show unreliable explanation quality of both algorithms in some models.

Given the limitation of prior works, we start by formulating a importance measure of phrases that
satisfies both non-additivity and context independence property.

3.2 CONTEXT-INDEPENDENT IMPORTANCE

Given a phrase p := xi:j appearing in a specific input x1:T , we first relax our setting and define
the importance of a phrase independent of all the possible N -word contexts adjacent to it. The
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N-context independent importance is defined as the output difference after masking out the phrase
p, marginalized over all the possible N -word contexts, denoted as xδ , around p in the input x.
For an intuitive example, to evaluate the context independent importance up to one word of very in
the sentence The film is very interesting in a sentiment analysis model, we sample some possible
adjacent words before and after the word very, and observe the prediction difference after some
practice of masking the word very. In Figure 2 (Right), we illustrated an example for the sampling
and masking steps. The process of evaluating context independent importance is formally written
as,

φ(p,x) = Exδ [s(x−δ;xδ)− s(x−δ\p;xδ)], (3)

where x−δ denotes the resulting sequence after masking out an N -word context surrounding the
phrase p from the input x. Here, xδ is a N -word sequence sampled from a distribution p(xδ|x−δ),
which is conditioned on the phrase p as well as other words in the sentence x. Details on the sam-
pling process will be elaborated later in the section. Accordingly, we use s(x−δ;xδ) to denote the
model prediction score after replacing the masked-out context x−δ with a sampledN -word sequence
xδ . We use x\p to denote the operation of masking out the phrase p from the input sentence x. The
specific implementation of this masking out operation varies across different explanation algorithms
and is instantiated from their formulation.

Following the notion of N -context independent importance, we define context-independent impor-
tance of a phrase p by increasing the size of the context N to sufficiently large (e.g., length of the
sentence). The context independent importance can be equivalently written as follows.

φg(p) = Ex[s(x)− s(x\p)|p ⊆ x]. (4)

Computing Eqs. 3 and 4 are intractable as it requires integrating over a large number of variants
of xδ as replacements (i.e., number of variants for xδ is exponential to the size of N ). While it is
possible to approximate the expectations in Eqs. 3 and 4 by sampling from the training text corpus,
we find it common that a phrase occurs sparsely in the corpus. Therefore, we approximate the
expectation by sampling from a language model pre-trained using the training corpus. The language
model helps model a smoothed distribution of p(xδ|x−δ). In practice, all our explanation algorithms
implements N -context independent importance following Eq. 3, where the size of the neighborhood
N is a parameter to be specified.

3.3 SAMPLING AND CONTEXTUAL DECOMPOSITION ALGORITHM

In contextual decomposition algorithm, the desirable context independence property is compromised
when computing decomposition of activation functions, as discussed in Section 3.1. Following the
new formulation on context-independent importance introduced in Section 3.2, we present a simple
modification of the contextual decomposition algorithm, and develop a new sampling and contextual
decomposition (SCD) algorithm for effective generation of hierarchical explanations.

SCD only modifies the way to decompose activation functions in CD. Specifically, given the output
h = s(l)(x) at an intermediate layer l with the decomposition h = β + γ, we decompose the
activation value σ(h) into β′ + γ′, with the following definition:

β′ = Eγ [σ(β + γ)− σ(γ)] = Eh[σ(h)− σ(h− β)], (5)

i.e., β′ is defined as the expected difference between the activation values when the β term is present
or absent. h is computed for different input sequences x with the contexts of the phrase p sampled
from the distribution p(xδ|x−δ). Eq. 5 is a layer wise application of Eq. 4, where the masking
operation is implemented with calculating σ(h − β). Figure 2(b) provides a visualization for the
decomposition.

To perform sampling, we first pretrain a LSTM language model from two directions on the training
data. For sampling, we mask the words that are not conditioned in p(xδ|x−δ). Some other sampling
options include performing Gibbs sampling from a masked language model (Wang et al., 2019). The
algorithm then obtain a set of samples S by sampling with the trained language model. For each
sample in S, the algorithm records the input of the i-th non-linear activation function to obtain a
sample set S(i)h . During the explanation, the decomposition of the i-th non-linear activation function

5



Under review as a conference paper at ICLR 2020

is calculated as,

β′ =
1

|S(i)h |
∑

h∈S(i)
h

[σ(h)− σ(h− β)]. (6)

Some neural models such as Transformers involve operations that normalize over different di-
mensions of a vectors, e.g. softmax functions and layer normalization operations. We observe
improved performance by not decomposing the normalizer of these terms when the phrase p is
shorter than a threshold, assuming that the impact of p to the normalizer can be ignored. Besides,
for element-wise multiplication in LSTM models, we treat them in the same way as other non-
linear operations and decompose them as Eq. 5, where the decomposition of h1h2 is written as
β′ = Eγ1,γ2 [(β1 + γ1)(β2 + γ2)− γ1γ2]

3.4 SAMPLING AND OCCLUSION ALGORITHM

We show it is possible to fit input occlusion (Li et al., 2016) algorithms into our formulation. Input
occlusion algorithms calculate the importance of p specific to an input example x by observing the
prediction difference after replacing the phrase p with padding tokens, noted as 0p,

φ(p,x) = s(x)− s(x−p;0p) (7)

It is obvious that importance score by the input occlusion algorithm is dependent on the all the
context words of p in x. To eliminate the dependence, we perform sampling around the phrase
p. This leads to the Sampling and Occlusion (SOC) algorithm, which computes the importance
of phrases as the average prediction difference after masking the phrase for each replacement of
neighboring words in the input example.

Similar to SCD, SOC samples neighboring words xδ from a trained language model p(xδ|x−δ)
and obtain a set of neighboring word replacement S. For each replacement xδ ∈ S , the algorithm
computes the model prediction differences after replacing the phrase p with padding tokens. The
importance φ(p,x) is then calculated as the average prediction differences. Formally, the algorithm
calculates,

φ(p,x) =
1

|S|
∑
xδ∈S

[s(x−δ;xδ)− s(x−{δ,p};xδ;0p)]. (8)

Sampling and Occlusion is advantageous in that it is model-agnostic and easy to implement. The
input occlusion algorithm inside Eq. 8 can also be replaced with other measure of phrase importance,
such as Shapley values (Shapley, 1997), with the phrase p and other input words considered as
players. We expect it is helpful for longer sequences when there are multiple evidences outside the
context region saturating the prediction.

4 EXPERIMENTS

We evaluate explanation algorithms on both shallow LSTM models and deep fine-tuned BERT
Transformer (Devlin et al., 2018) models. We use two sentiment analysis datasets, namely the
Stanford Sentiment Treebank-2 (SST-2) dataset (Socher et al., 2013) and the Yelp Sentiment Po-
larity dataset (Zhang et al., 2015), as well as a relation extraction dataset, namely the TACRED
dataset (Zhang et al., 2017). The two tasks are modeled as binary and multi-class classification tasks
respectively. For the SST-2 dataset, while it provides sentiment polarity scores for all the phrases
on the nodes of the constituency parsing trees, we do not train our model on these phrases, and use
these scores as the evaluation for the phrase level explanations. Our Transformer model is fine-tuned
from pretrained BERT (Devlin et al., 2018) model. See Appendix A for model details.

Compared Methods We compare our explanation algorithm with following baselines: Input occlu-
sion (Li et al., 2016) and Integrated Gradient+SHAP (GradSHAP) (Lundberg & Lee, 2017); two
algorithms applied for hierarchical explanations, namely Contextual Decomposition (CD) (Murdoch
et al., 2018), and Agglomerative Contextual Decomposition (ACD) (Singh et al., 2019). We also
compare with a naive however neglected baseline in prior literature, which directly feed the given

6



Under review as a conference paper at ICLR 2020

Dataset SST-2 Yelp Polarity TACRED
Model BERT LSTM BERT LSTM BERT LSTM
Metric word ρ phrase ρ word ρ phrase ρ word ρ word ρ word ρ word ρ

Input Occlusion 0.2229 0.4081 0.6489 0.4899 0.3781 0.6935 0.7646 0.5756
Direct Feed 0.2005 0.4889 0.6798 0.5588 0.3875 0.7905 0.1986 0.5771
GradSHAP 0.5073 0.5991 0.7024 0.5402 0.5791 0.7388 0.2965 0.6651

CD 0.2334 0.3068 0.6231 0.4727 0.2645 0.7451 0.0052 0.6508
ACD 0.3053 0.3698 0.2495 0.1856 0.3010 0.5024 0.2027 0.0291

Statistic 0.5223 0.4741 0.7271 0.4959 0.7294 0.9094 0.5324 0.7662
SCD 0.5481 0.6015 0.7151 0.5664 0.7180 0.7793 0.7980 0.6823
SOC 0.6265 0.6628 0.7226 0.5649 0.6971 0.7683 0.7982 0.7354

Table 1: Correlation between word & phrase importance attribution and linear model coefficients &
SST-2 human annotations, achieved by baselines and our explanation algorithms.
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Figure 3: Hierarchical Explanation of a prediction made by the BERT Transformer model on SST-
2. We generate explanations for all the phrases on the truncated constituency parsing tree, where
positive sentiments are colored red and negative sentiments are colored blue. We see our method
identify positive segments in the overall negative sentence, such as “a breath of fresh air”

phrase to the model and take the prediction score as the importance of the phrase, noted as Direct
Feed. For our algorithms, we list the performance of corpus statistic based approach (Statistic) for
approximating context independent importance in Eq. 3, Sampling and Contextual Decomposition
(SCD), and Sampling and Occlusion (SOC) algorithm.

4.1 HIERARCHICAL VISUALIZATION OF IMPORTANT WORDS AND PHRASES

We verify the performance of our algorithms in identifying important words and phrases captured by
models. We follow the quantitative evaluation protocol proposed in CD algorithm (Murdoch et al.,
2018) for evaluating word-level explanations, which computes Pearson correlation between the coef-
ficients learned by a linear bag-of-words model and the importance scores attributed by explanation
methods, also noted as the word ρ. When the linear model is accurate, its coefficients could stand
for general importance of words. For evaluating phrase level explanations, we notice the SST-2
dataset provides human annotated real-valued sentiment polarity for each phrase on constituency
parsing trees. We generate explanations for each phrase on the parsing tree and evaluate the Pearson
correlation between the ground truth scores and the importance scores assigned for phrases, also
noted as the phrase ρ. This evaluation assume that annotators consider the polarity of incomplete
phrases by considering there effects in possible contexts for annotations. We draw K = 20 samples
from N = 10 words adjacent to a phrase to be explained at the sampling step in our SOC and SCD
algorithms. The parameter setting is trade-off between the efficiency and performance.

Table 1 shows word ρ and phrase ρ achieved by our algorithms and competitors. Generally, explana-
tion algorithms that follow our formulations achieve highest word ρ and phrase ρ for all the datasets
and models. SOC and SCD perform robustly on the deep Transformer model, achieving higher word
ρ and phrase ρ than input occlusion and contextual decomposition algorithms by a large margin. We
see the simple Direct Feed method provide promising results on shallow LSTM networks, but fail
in deeper Transformer models. The statistic based approximation of the context independent impor-
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He is also survived by S-PERSON parents and a sister , O-PERSON , of Washington , and

S-PERSON parents sister , O-PERSON

survived by S-PERSON parents a sister , O-PERSON

survived by S-PERSON parents and a sister , O-PERSON ,

per:siblings

(a) SCD

He is also survived by S-PERSON parents and a sister , O-PERSON , of Washington , and

also survived by O-PERSON , of

also survived by S-PERSON parents O-PERSON , of Washington

per:siblings

(b) CD
Figure 4: Extracting phrase-level classification patterns from LSTM relation extraction model with
SCD. Red indicate evidence for predicting the class, and blue indicate distractor for predicting the
class. By applying the agglomerative clustering algorithm and defining a threshold score, we effe-
cively extract “a sister, O-Person” as a classification rule for the relation per:siblings. However, we
see CD fails in this example.

tance, which do not employ a trained sampler, yields competitive words ρ, but it is not competitive
for phrase ρ, pushing the phrase ρ towards that of the input occlusion algorithm. We find it common
that a long phrase does not exist in previously seen examples.

Qualitative study also shows that our explanation visualize complicated compositional semantics
captured by models, such as positive segments in the negative example, and adversative conjunctions
connected with “but”. We present an example explanation provided by SOC algorithm in Figure 3
and Appendix.

4.2 EXPLANATION AS CLASSIFICATION PATTERN EXTRACTION FROM MODELS

We show our explanation algorithm is a nature fit for extracting phrase level classification rules from
neural classifiers. With the agglomerative clustering algorithm in Singh et al. (2019), our explana-
tion effectively identify phrase-level classification patterns without evaluating all possible phrases
in the sentence even when a predefined hierarchy does not exist. Figure 4 show an example of au-
tomatically constructed hierarchy and extracted classification rules in an example in the TACRED
dataset.

4.3 ENHANCING HUMAN TRUST OF MODELS

We follow the human evaluation protocol in Singh et al. (2019) and study whether our explanations
help subjects to better trust model predictions. We ask subjects to rank the provided visualizations
based on how they would like to trust the model. For the SST-2 dataset, we show subjects the
predictions of the fine-tuned BERT model, and the explanations generated by SOC, SCD, ACD
and GradSHAP algorithms for phrases. The phrase polarities are visualized in a hierarchy with the
provided parsing tree of each sentence in the dataset. For the TACRED dataset, we show the expla-
nations provided by SOC, SCD, CD and Direct Feed algorithms on the LSTM model. We binarilize
the importance of a phrase by calculating the difference between its importance to the predicted
class and the its top importance to other classes, and the hierarchies are constructed automatically
with agglomerative clustering (Singh et al., 2019). Figure 5 shows average ranking of explanations,
where 4 notes the best, and 1 notes the worst. On the SST-2 dataset, SOC achieve significantly
higher ranking than ACD and GradSHAP, showing a p-value less than 0.05 and 0.001 respectively.
On the TACRED dataset, SCD achieve the best ranking, showing significantly better ranking than
CD and Direct Feed with p-value less than 10−6 .

4.4 PARAMETER ANALYSIS

Both SOC and SCD algorithms require specifying the size of the context region N and the number
of samples K. In Figure 6 (also Figure 7 in Appendix) we show the impact of these parameters. We
also plot the performance curves when we pad the contexts instead of sampling. We see sampling
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Figure 5: Results for human evaluation on the Transformer model trained on SST-2 sentiment anal-
ysis dataset (between SOC, SCD, ACD, GradSHAP) and the LSTM model trained on TACRED
relation extraction dataset (between SOC, SCD, CD, DirectFeed).
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Figure 6: Word ρ and phrase ρ curve as the size of the context region N and the number of samples
K change on BERT, trained on the SST-2 dataset. Dash line notes for the performance of padding
the context words instead of sampling.

the context achieves much better performance than padding the context. We also see word ρ and
phrase ρ increase as the number of samples K increases. The overall performance also increases
as the size of the context region N increases at the early stage, and saturates when N grows large,
which implies words or phrases usually do not interact with the words that are far away them in the
input. The saturation also implies the performance of trained language models can be a bottleneck
of the performance.

5 RELATED WORKS

Interpretability of neural networks has been studied with vairous techniques, including probing
learned features with auxiliary tasks (Tenney et al., 2019), or designing models with inherent in-
terpretability (Bahdanau et al., 2015; Lei et al., 2016). A major line of work, local explanation
algorithms, explains predictions by assigning importance scores for input features. This line of
work include input occlusion (Kádár et al., 2017), gradient based algorithms (Simonyan et al.,
2013; Hechtlinger, 2016; Ancona et al., 2017), additive feature attribution methods (Ribeiro et al.,
2016; Shrikumar et al., 2017; Sundararajan et al., 2017), among which Shapley value based ap-
proaches (Lundberg & Lee, 2017) have been studied intensively because of its good mathematical
properties. Researchers also study how to efficiently marginalize over alternative input features to
be explained (Zintgraf et al., 2017; Chang et al., 2019) for input occlusion algorithms, while our
research show extra focus could be placed on marginalizing over contexts. Regarding explanations
of models with structured inputs, Chen et al. (2019) propose L-Shapley and C-Shapley for effi-
cient approximation of Shapley values, with a similar hypothesis with us that the importance of a
word is usually strongly dependent on its neighboring contexts. Chen et al. (2018) propose a feature
selection based approach for explanation in an information theoretic perspective.

On the other hand, global explanation algorithms (Guidotti et al., 2018) have also been studied
for identifying generally important features, such as Feature Importance Ranking Measure (Zien
et al., 2009), Accumulated Local Effects (Apley, 2016). We note that the context independence
property in our proposed methods implies we study hierarchical explanation as a global explanation
problem (Guidotti et al., 2018). Compared with local explanation algorithms, global explanation
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algorithms are less studied for explaining individual predictions (Poerner et al., 2018), because they
reveal the average behavior of models. However, with a hierarchical organization, we show global
explanations are also powerful at explaining individual predictions, achieving better human evalua-
tion scores and could explain compositional semantics where local explanation algorithms such as
additive feature attribution algorithms totally fail. Moreover, we note that the use of explanation
algorithms is not exclusive; we may apply explanation algorithms of different categories to make a
more holistic explanation of model predictions.

6 CONCLUSION

In this work, we identify two desirable properties for informative hierarchical explanations of pre-
dictions, namely the non-additivity and context-independence. We propose a formulation to quantify
context independent importance of words and phrases that satisfies the properties above. We revisit
the prior line of works on contextual decomposition algorithms, and propose Sampling and Con-
textual Decomposition (SCD) algorithm. We also propose a simple and model agnostic explanation
algorithm, namely the Sampling and Occlusion algorithm (SOC). Experiments on multiple datasets
and models show that our explanation algorithms generate informative hierarchical explanations,
help to extract classification rules from models, and enhance human trust of models.
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Figure 7: Word ρ and phrase ρ curve as the size of the context region N and the number of samples
K change on LSTM trained on the SST-2 dataset. Dash line notes for the performance of padding
the context words instead of sampling.

Dataset Label Pattern

SST-2 Positive frighteningly evocative; insight and honesty
Negative neither funny nor provocative; kill the suspense

TACRED
person:age [PERSON], [NUMBER], was; a [NUMBER] man
organization:top-member chief engineer of the [ORGANIZATION]
person:origin [Nationality] citizen; tribal member from [COUNTRY]

Table 2: Phrase-level classification patterns extracted from models. We show the results of SCD and
SOC respectively for the SST-2 and the TACRED dataset.

A IMPLEMENTATION DETAILS

Our LSTM classifiers use 1 layer unidirectional LSTM and the number of hidden units is set to
128, 500, and 300 for SST-2, Yelp, and TACRED dataset respectively. For all models, we load the
pretrained 300-dimensional Glove word vectors (Pennington et al., 2014). The language model sam-
pler is also built on LSTM and have the same parameter settings as the classifiers. Our Transformer
models are fine-tuned from pretrained BERT models (Devlin et al., 2018), which have 12 layers and
768 hidden units of per representation. On three datasets, LSTM models achieve 82% accuracy,
95% accuracy, and 0.64 F1 score on average. The fine-tuned BERT models achieve 92% accuracy,
96% accuracy, and 0.68 F1 score on average. We use the same parameter settings between LSTM
classifiers and language models on three datasets.

B PERFORMANCE ON ADVERSARIAL MODELS

For computing context independent importance of a phrase, an intuitive and simple alternative ap-
proach, which is nevertheless neglected in prior literature, is to only feed the input to the model and
treat the prediction score as the explanation. In Table 1, while the score of the Direct Feed is lower
than that of the best performing algorithms, the score is rather competitive.

The potential risk of this explanation is that it assumes model performs reasonably on incomplete
sentence fragments that are significantly out of the data distribution. As a result, the explanation
of short phrases can be misleading. To simulate the situation, we train a LSTM model on inversed
labels on isolate words, in addition to the origin training sentences. The model could achieve the
same accuracy as the original LSTM model. However, the word ρ and the phrase ρ of Direct Feed
drop by a large margin, showing a word ρ of -0.38 and 0.09. SOC and SCD are still robust on the
adverse LSTM model, both showing a word ρ and phrase ρ of more than 0.60 and 0.55.

The masking operation could also cause performance drop because the masked sentence can be out
of data distribution when explaining long phrases. For SOC, the risk can be resolved by implement-
ing the masking operation of the phrase p by another round of sampling from a language model
conditioned on its context x−p, but we do not find empirical evidence showing that it improves
performance.
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Figure 8: More examples about rule extraction from LSTM models trained on TACRED relation
extraction dataset with SOC. Red indicate evidence for predicting the class, and blue indicate dis-
tractor for predicting the class. By applying the agglomerative clustering algorithm and defining a
threshold score, we effectively extract classification rules from LSTM models. The ground truth
label noted on the top

C EXPLANATION HEATMAPS
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(d) GradSHAP

Figure 9: Explanation heatmaps generated by SOC, SCD, CD, and GradSHAP on a negatively
predicted sentence by BERT Transformer model in SST-2 dataset. Only SOC and SCD captures
adversarial conjunction connected by “but”.
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