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ABSTRACT

Developing agents that can learn to follow natural language instructions has been
an emerging research direction. While being accessible and flexible, natural lan-
guage instructions can sometimes be ambiguous even to humans. To address
this, we propose to utilize programs, structured in a formal language, as a precise
and expressive way to specify tasks. We then devise a modular framework that
learns to perform a task specified by a program – as different circumstances give
rise to diverse ways to accomplish the task, our framework can perceive which
circumstance it is currently under, and instruct a multitask policy accordingly to
fulfill each subtask of the overall task. Experimental results on a 2D Minecraft
environment not only demonstrate that the proposed framework learns to reliably
accomplish program instructions and achieves zero-shot generalization to more
complex instructions but also verify the efficiency of the proposed modulation
mechanism for learning the multitask policy. We also conduct an analysis compar-
ing various models which learn from programs and natural language instructions
in an end-to-end fashion.

1 INTRODUCTION

Humans are capable of leveraging instructions to accomplish complex tasks. A comprehensive
instruction usually comprises a set of descriptions detailing a variety of situations and the correspond-
ing subtasks that are required to be fulfilled. To accomplish a task, we can leverage instructions to
estimate the progress, recognize the current state, and perform corresponding actions. For example, to
make a gourmet dish, we can follow recipes and procedurally create the desired dish by recognizing
what ingredients and tools are missing, what alternatives are available, and what corresponding
preparations are required.

Can machines likewise learn to follow and exploit comprehensive instructions like humans? Utilizing
expert demonstrations to instruct agents has been widely studied in (Finn et al., 2017; Yu et al.,
2018; Xu et al., 2018; Pathak et al., 2018; Stadie et al., 2017; Duan et al., 2017; Wang et al., 2017).
However, demonstrations could be expensive to obtain and are less flexible (e.g. altering subtask
orders in demonstrations is nontrivial). On the other hand, natural language instructions are flexible
and expressive (Misra et al., 2018; Fried et al., 2018; Kaplan et al., 2017; Bahdanau et al., 2019).
Yet, language has the caveat of being ambiguous even to humans, due to its lacking of structure
as well as unclear coreferences and entities. Andreas et al. (2017a); Oh et al. (2017) investigate
hierarchical approaches, where an instruction consists of a set of symbolically represented subtasks.
Nonetheless, those instructions are not a function of states (i.e. describe a variety of circumstances
and the corresponding desired subtasks), which substantially limits their expressiveness.

We propose to utilize programs, written in a formal language, as a structured, expressive, and
unambiguous representation to specify tasks. Specifically, we consider programs, which are composed
of control flows (e.g. if/else and loops), environmental conditions, as well as corresponding subtasks,
as shown in Figure 1. Not only do programs have expressiveness by describing diverse situations (e.g.
a river exists) and the corresponding subtasks which are required to be executed (e.g. mining wood),
but they are also unambiguous due to their explicit scoping. To study the effectiveness of using
programs as task specifications, we introduce a new problem, where we aim to develop a framework
which learns to comprehend a task specified by a program as well as perceive and interact with the
environment to accomplish the task.

To address this problem, we propose a modular framework, program guided agent, which exploits
the structural nature of programs to decompose and execute them as well as learn to ground pro-
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Program

def run():
if is_there[River]:
mine(Wood)
build_bridge()
if agent[Iron]<3:
mine(Iron)

place(Iron, 1, 1)
else:
goto(4, 2)

while env[Gold]>0:
mine(Gold)

Figure 1: An illustration of the proposed problem.
We are interested in learning to fulfill tasks speci-
fied by written programs. A program consists of
control flows (e.g. if, while), branching condi-
tions (e.g. is_there[River]), and subtasks (e.g.
mine(Wood)).

Program p := def run() : s

Statement s := while(c) : (s) | b | loop(r) : (s)

| if(c) : (s) | elseif(c) : (s) | else : (s)

Repetition r := Number of repetitions

Item t := Gold |Wood | Iron

Operators o :=>≥==<≤
Numbers i := Positive Integers

Perception h := agent[] | env[] | is_there[]

Behavior b := mine(t) | goto(i, i)

| place(t, i, i) | build_bridge() | sell(t)

Conditions c := h[t] o i

Figure 2: The domain-specific language (DSL) for con-
structing the programs. Each program is composed of do-
main dependent perception, subtasks, and control flows.

gram tokens with the environment. Specifically, our framework consists of three modules: (1)
a program interpreter that leverages grammar provided by the programming language to parse
and execute a program, (2) a perception module that learns to respond to conditional queries (e.g.
is_there[River]) produced by the interpreter, and (3) a policy that learns to fulfill a variety of
subtasks (e.g. mine(Wood)) extracted from the program by the interpreter. To effectively instruct
the policy with symbolically represented subtasks, we introduce a learned modulation mechanism
that leverages a subtask to modulate the encoded state features instead of concatenating them. Our
framework (shown in Figure 3) utilizes a rule-based program interpreter (i.e. a compiler) to deal
with programs as well as learning perception module and policy when it is necessary to perceive or
interact with the environment. With this modularity, our framework can generalize to more complex
program-specified tasks without additional learning.

To evaluate the proposed framework, we consider a Minecraft-inspired 2D gridworld environment,
where an agent can navigate itself across different terrains and interact with objects, similar to Andreas
et al. (2017a); Oh et al. (2017); Sohn et al. (2018). A corresponding domain-specific language (DSL)
defines the rules of constructing programs for instructing an agent to accomplish certain tasks. Our
proposed framework demonstrates superior generalization ability – learning from simpler tasks while
generalizing to complex tasks. We also conduct extensive analysis on various end-to-end learning
models which learns from not only program instructions but also natural language descriptions.
Furthermore, our proposed learned policy modulation mechanism yields a better learning efficiency
compared to other commonly used methods that simply concatenate a state and goal.

2 RELATED WORK

Learning from language instructions. Prior works have investigated leveraging natural languages
to specify tasks on a wide range of applications, including navigation (Misra et al., 2018; Tellex
et al., 2011; Fried et al., 2018), spatial reasoning for goal reaching (Janner et al., 2018), game
playing (Kaplan et al., 2017; Fried et al., 2017; Co-Reyes et al., 2019), and grounding visual
concepts (Kaplan et al., 2017; Bahdanau et al., 2019; Andreas et al., 2017b). However, natural
language descriptions can often be ambiguous even to humans. Moreover, it is not clear how end-to-
end learning agents trained with simpler instructions can generalize well to much more complex ones.
In contrast, we propose to utilize an precise and structured representation, programs, to specify tasks.

Learning from demonstrations. When a task cannot be easily described in languages (e.g. object
texture or geometry), expert demonstrations offer an alternative way to provide instructions. Prior
works have explored learning from video demonstrations (Finn et al., 2017; Yu et al., 2018; Xu et al.,
2018; Pathak et al., 2018; Stadie et al., 2017) or expert trajectories (Duan et al., 2017; Wang et al.,
2017). However, demonstrations can be expensive to obtain and are less expressive about diverging
behaviors of a complex task, which are better captured by control flow in programs. Moreover, editing
demonstrations such as rearranging the order of subtasks is often difficult.
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Program induction and synthesis. To learn acquire programmatic skills such as digit addition and
string transformations and achieve better generalization, program induction methods (Xu et al., 2018;
Devlin et al., 2017a; Neelakantan et al., 2015; Graves et al., 2014; Kaiser & Sutskever, 2016; Reed
& De Freitas, 2016; Cai et al., 2017) aim to implicitly induce the underlying programs to mimic
the behaviors demonstrated in task specifications (e.g. input/output pairs, demonstrations). On the
other hand, program synthesis methods (Parisotto et al., 2017; Devlin et al., 2017b; Chen et al., 2019;
Shin et al., 2018; Bunel et al., 2018; Liu et al., 2019; Sun et al., 2018; Lin et al., 2018; Liao et al.,
2019) explicitly synthesize the underlying programs and execute the programs to perform the tasks.
Instead of trying to infer programs from task specifications, we are interested in explicitly reading
and executing programs. Once learned, our framework can be leveraged to obtain program execution
results for evaluating program synthesis frameworks when no program executor is available (e.g.
programs describe real-world activities instead of behaviors in simulation).

Programmable agent. Executing programs with reinforcement learning have been studied in
programmable hierarchies of abstract machines (PHAM) (Parr & Russell, 1998; Andre & Russell,
2001; 2002), which provide partial descriptions and subroutines of the desired task. Programs can
also take the form of a graph to express subtask dependencies and different routes of completing a
task (Sohn et al., 2018). Agents can also be trained to execute declarative programs by grounding
these well-structured languages in their learning environments (Denil et al., 2017; Lázaro-Gredilla
et al., 2018). In contrast, our modular framework consists of modules for perceiving the environment
and interacting with it by following a program which specifies the task.

3 PROBLEM FORMULATION

We are interested in learning to comprehend and execute an instruction specified by a program to
fulfill the desired task. In this section, we formally describe our definition of programs, the family of
Markov Decision Processes (MDPs), and the problem formulation.

Program. The programs considered in this work are defined based on a domain-specific lan-
guage (DSL) as shown in Figure 2. The DSL is composed of perception primitives, action prim-
itives, and control flow. A perception primitive indicates circumstances in the environment (e.g.
is_there(River), and agent[Gold]<3) that can be perceived by an agent, while an action
primitive defines a subtask that describes a certain behavior (e.g. mine(Gold), and goto(1,1)).
Control flow includes if/else statements, loops, and Boolean/logical operators to compose more
sophisticated conditions. A program p is a deterministic function that outputs a desired behavior (i.e.
subtask) given a history of states ot = p (Hj), where Hj = {s1, ..., st} is a state history with s ∈ S
denoting a state of the environment, and o ∈ O denotes an instructed behavior (subtask). We denote
a program as p ∼ P , an infinite program set containing all executable programs given a DSL.

MDPs. We consider a family of finite-horizon discounted MDPs in a shared environment, specified
by a tuple (S,A,P, T ,R, ρ, γ), where S denotes a set of states, A denotes a set of low-level actions
an agent can take, P denotes a set of programs specifying instructions, T : S ×A×S → R denotes a
transition probability distribution,R denotes a task-specific reward function, ρ denotes an initial state
distribution, and γ denotes a discount factor. For a fixed sequence {(s0, a0), ..., (st, at)} of states
and actions obtained from a rollout of a given policy π, the performance of the policy is evaluated
based on a discounted return

∑T
t=0 γ

trt, where T is the horizon of the episode.

Problem Formulation. We consider developing a framework which can comprehend and fulfill
an instruction specified by a program. Specifically, we consider a sampled MDP with a program
describing the desired task. Addressing this task requires the ability to keep track of which parts of the
program are finished and which parts are not, perceiving the environment and deciding which paths
in the program to take, and performing actions interacting with the environment to fulfill subtasks.

4 APPROACH

Accomplishing an instructed task described by a program requires (1) comprehending the program
control flow and conditions, (2) recognizing the situations to infer which path in the program should
be chosen, and (3) executing a series of actions interacting with the environment to fulfill the subtasks.
Based on this intuition, we design a modular framework with three modules:
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Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():

  while env[Gold] > 0:

    mine(Gold)

  if is_there[River]:

    build_bridge()

    place(Wood, 2, 3)

State

3 0 1

Figure 3: Program Guided Agent. The proposed modular framework comprehends and fulfills a desired
task specified by a program. The program interpreter executes the program by altering between querying
the perception module with a query q when an environment condition is encountered (e.g. env[Gold]>0,
is_there[River]) and instructing a policy when it needs to fulfill a goal/subtask g (e.g. mine(Gold),
build_bridge()). The perception module produces a response h to answer the query, determining which
paths in the program should be chosen. The policy takes a sequence of low-level actions a (e.g. moveUp,
moveLeft, Pickup) interacting with the environment to accomplish the given subtask (e.g. mine(Gold)).

• Program interpreter (Section 4.1) reads a program and executes it by querying a perception
module with environment conditions (e.g. env[Gold]>0) and instructing the policy with
subtasks (e.g. mine(Gold)).
• Perception module (Section 4.2) responds to perception queries (e.g. env[Gold]>0) by exam-

ining the observation and predicting responses (e.g. true).
• Policy (action module) (Section 4.3) performs low-level actions (e.g. moveUp, moveLeft,
pickUp) to fulfill the symbolically represented subtasks (e.g. mine(Gold)) provided by the
program interpreter.

Our key insight is to only learn a module when its input or output is associated with the environment
(i.e. a function approximator is needed) – the perception module learns to ground the queries to its
observation and answer them; the policy learns to ground the symbolically represented subtasks
and interact with the environment in a trial-and-error way (Section 4.4). On the other hand, we do
not learn the program interpreter; instead, we utilize a rule-based parser to execute programs (i.e.
compiler). An overview of the proposed framework is illustrated in Figure 3.

4.1 PROGRAM INTERPRETER

To comprehend a program instruction, we group program tokens into three main categories: (1)
subtasks indicate what the agent should perform (e.g. mine(Gold)), (2) perceptions the essential
information extracted from the environment (e.g. env[Gold]>0), and (3) control flows determine
which paths in a program should be taken according to the perceived information (i.e. perceptions).
Then, we devise a program interpreter, which can execute and keep track of the progress by leveraging
the structure of programs. Specifically, it consists of a program line parser and a program executor.
The parser first transforms the program into a program tree by representing each line of a program as
a tree node. Each node is either a leaf node (subtask) or a non-leaf node (perception or control flow)
that has various subroutines as children nodes. The executor then performs a pre-order traversal on
the program tree to execute the program, utilizing the parsed contents to alternate between querying
the perception module when an environment condition is encountered and instructing the policy when
it reaches to a leaf node (subtask). The details and the algorithm are summarized in section A. Note
that the program interpreter is a rule-based algorithm instead of a learning module.

4.2 PERCEPTION MODULE

Determining which paths should be chosen when executing a program requires grounding a symboli-
cally represented query (e.g. is_there[River] can be represented as a sequence of symbols)
and perceiving the environment. To this end, we employ a perception module Φ that learns to map a
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Figure 4: Learning a multitask policy via learned modulation. (a) A multitask policy takes both a state s and a
goal specification g as inputs and produces an action distribution a ∼ π(s, g). Instead of simply concatenating
the state and goal in a raw space or a latent space, we propose to modulate state features es using the goal.
Specifically, the goal network learns to predict affine transform parameters γ and β to modulate the state features
ês = γ · es + β. Then, the final layers use the modulated features to predict actions. (b) We experiment
different ways of feeding a state and goal for learning a multitask policy. The training curves demonstrate that
all modulation variants, including modulating state feature maps of convolutional layers (Modulation conv),
modulating state feature vectors of fully-connected layers (Modulation fc), or both (Modulation conv fc), are
more efficient than concatenating the state and the goal in a raw space (Concat raw) or a latent space (Concat).

query and current observation to a response: h = Φ(q, s), where q denotes a query, and h denotes the
corresponding perception output (e.g. true/false). Note that we focus on Boolean perception
outputs in this paper, but a more generic perception type can be used (e.g. object attributes such as
color, shape, and size).

4.3 POLICY

When program execution reaches a subtask/leaf node (e.g. mine(Gold)), the agent is required
to take a sequence of low-level actions (e.g. moveUp, moveLeft, Pickup) to interact with the
environment to fulfill it. To enable the execution, we employ a multitask policy π (i.e. action module)
which is instructed by a symbolic goal (e.g. mine(Gold)) provided by the program interpreter
indicating the details of the corresponding subtask. To learn to perform different subtasks, we train the
policy using actor-critic reinforcement learning, which takes a goal vector g and an environment state
s and outputs a probabilistic distribution a for low-level actions a ∼ π(st, gt|θ). The value estimator
used for our policy optimization is also goal-conditioned: Vπ(st, gt) = E[

∑
t γ

tRt|s0 = s, π, gt].

While the most common way to feed a state and goal to a policy parameterized by a neural network is
to concatenate them in a raw space or a latent space, we find this less effective when the policy has
to learn a diverse set of tasks. Therefore, we propose a modulation mechanism to effectively learn
the policy. Specifically, we employ a goal network to encode the goal and compute affine transform
parameters γ and β, which are used to modulate state features es to ês = γ · es + β. Then, the
modulated features ês are used to predict action a and value V . With the modulation mechanism, the
goal network learns to activate state features related to the current goal and deactivate others. An
illustration is shown in Figure 4 (a).

4.4 LEARNING

To follow a program by perceiving the environment and taking actions to interact with it, we employ
two learning modules: a perception module and a policy. In this section, we discuss how each
module is trained, their training objectives, and optimization methods. More training details and the
architectures can be found in section B.3.1.
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4.4.1 PERCEPTION MODULE

We formulate training the perception module as a supervised learning task. Given tuples of (query q,
state s, ground truth perception hgt), we train a neural network Φ to predict the perception output
h by optimizing the binary cross-entropy loss: LCE = −hgtlog(h) − (1 − hgt)log(1 − h). Note
that when perception describes more than a Boolean, training the perception module can be done
by optimizing other losses such as categorical cross-entropy loss. We train the perception module
only on the queries appearing in the training programs with randomly sampled states, requiring it to
generalize to novel queries to perform well in executing testing programs.

4.4.2 POLICY

We train the policy using Advantage Actor-Critic (A2C) (Mnih et al., 2016; Dhariwal et al., 2017),
which is commonly used for gridworld environments with discrete action spaces. A2C computes
policy gradients At∇θ log πθ (at|st, gt), where At = Rt − V (st, gt) is the advantage function based
on empirical return Rt starting from st and learned value estimator V (st, gt) conditioning on the
goal vector gt. We denote the learning rate as α, and the policy update rule is as follows:

θ ← θ + α (At∇θ log πθ (at|st, gt) + β∇θHπθ
) , (1)

where Hπθ
denotes the policy entropy, where maximizing it improves overall exploration, and β

determines the strength of the entropy regularization term.

5 EXPERIMENTS

Our experiments aim to answer the following questions: (1) Can our proposed framework learn to
perform tasks specified by programs? (2) Can our modular framework generalize better to more
complex tasks compared to end-to-end learning models? (3) How well can a variety of end-to-end
learning models (e.g. LSTM, Tree-RNN, Transformer) learn from programs and natural language
instructions? (4) Is the proposed learned modulation more efficient to learn a multitask (multi-goal)
policy than simply concatenating a state and goal?

5.1 EXPERIMENTAL SETUPS

5.1.1 ENVIRONMENT

To evaluate the proposed framework in an environment where an agent can perceive diverse scenarios
and interact with the environment to perform various subtasks, we construct a discrete Minecraft-
inspired gridworld environment, similar to Andreas et al. (2017a); Oh et al. (2017); Sohn et al. (2018).
As illustrated in Figure 1, the agent can navigate through a grid world and interact with resources
(e.g. Wood, Iron, Gold) and obstacles (e.g. River, Wall), build tools (e.g. Bridge), and sell resources
to a merchant visualized as an alpaca. The environment gives a sparse task completion reward of +1
when an instruction (i.e. an entire program or natural language instruction) is successfully executed.
More details can be found in Section B.1.

5.1.2 TASK INSTRUCTIONS

Programs. We sample 4,500 programs using our DSL and split them into 4,000 training programs
(train) and 500 testing programs (test). To examine the framework’s ability to generalize to more
complex instructions, we generate 500 programs which are twice longer and contains more condition
branches on average to construct a harder testing set (test-complex).

Natural language instructions. To obtain the natural language counterparts of those instructions,
we asked annotators to construct natural language translations of all the programs. The data collection
details, as well as sample programs and their corresponding natural language translations, can be
found in Section B.2.

5.2 TRAINING

During training, we randomly sample programs from the training set as well as randomly sample
an environment state to execute the program interpreter. The program interpreter produces a goal to
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Table 1: Task completion rate. For each method, we iterate over all the programs in a testing set by randomly
sampling ten initial environment states and running three models trained using different random seeds for
this method. The averaged task completion rates and their standard deviations are reported. Note that all the
end-to-end learning models learning from natural language descriptions and programs suffer from a significant
performance drop when evaluated on the more complex testing set.

Instruction Natural language descriptions Programs
Method Seq-LSTM Transformer Seq-LSTM Tree-RNN Transformer Ours (concat) Ours

Dataset test 54.9±1.8% 52.5±2.6% 56.7±1.9% 50.1±1.2% 49.4±1.6% 88.6±0.8% 94.0±0.5%
test-complex 32.4±4.9% 38.2±2.6% 38.8±1.2% 42.2±2.4% 40.9±1.5% 85.2±0.8% 91.8±0.2%

Generalization gap 40.9% 27.2% 31.6% 15.8% 17.2% 3.8% 2.3%

instruct the policy when encountering a subtask in the program. The policy takes actions a ∼ π(s, g)
and receive reward +1 only when the entire program is completed. This setup naturally induces a
curriculum where the policy first learns to solve simpler programs and obtain a better understanding
of the subtasks, which eventually allows the policy to complete more complex programs. Note that
the perception module is pre-trained beforehand in a supervised manner. More training details can be
found in section B.5.

5.3 END-TO-END LEARNING MODELS

In contrast to the proposed modular framework, we experiment with a variety of end-to-end learning
models. Considering programs and natural language instructions as sequences of tokens, we inves-
tigate two types of state-of-the-art sequence encoders: LSTM (Hochreiter & Schmidhuber, 1997)
(Seq-LSTM), and Transformers (Vaswani et al., 2017; Devlin et al., 2018) (Transformer). To leverage
the explicit structure of programs, we also investigate encoding programs using a generalization of
RNNs for tree-structured input (Tai et al., 2015; Alon et al., 2019) (Tree-RNN). All the models are
trained using A2C. The details of these architectures can be found in Section B.3.2.

5.4 RESULTS

5.4.1 TASK COMPLETION

We train the proposed framework and the end-to-end learning models on training programs and
evaluate their performances using the percentage of completed instructions on test and test-complex
sets (shown in Table 1). Our proposed framework achieves a satisfactory test performance and only
suffers a negligible drop (i.e. generalization gap) when it is evaluated on test-complex set. This can
be attributed to the modular design, which explicitly utilizes the structure and grammar of programs,
allowing the two learning modules (i.e. perception and policy) to focus on their local jobs. A more
detailed failure analysis can be found in Section B.4.

On the other hand, all the end-to-end learning models suffer a significant performance drop from test
to test-complex sets, while it is less significant for the models learning from programs, potentially
indicating that models learning from instructions with explicit structures can generalize to complex
instructions better. Among them, Seq-LSTM achieves the best results on test set, but performs the
worst on the test-complex set. Transformer has smaller generalization gaps, which could be attributed
to their multi-head attention mechanism, capturing the instruction semantics better. By leveraging the
explicit structure of programs, Tree-RNN achieves the best generalization performance.

5.4.2 ANALYSIS ON END-TO-END LEARNING MODELS

An analysis on the end-to-end learning models with respect to varying instruction length and com-
plexity is shown in Figure 5, where all the instructions from test and test-complex sets are considered.

Instruction length. As shown in Figure 5 (a), both Seq-LSTM and Transformer suffer from a
performance drop as the instruction length increases. Seq-LSTM performs better when instructions
are shorter, but suffers from generalizing to longer instructions. On the other hand, Transformer
may learn on a more semantic level, which leads to similar overall performances across two types of
instructions. Tree-RNN leverages the structure of programs and achieves a better performance.
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Figure 5: Analysis on end-to-end learning models: (a) Models learning from programs generalize better to
longer instructions. Transformer is more robust to longer instructions (Upper). Tree-RNN exploiting the program
structure generalizes the best, but performs worst for shorter programs (Lower). (b) Seq-LSTM learning from
both instructions performs worse as the diversity increases. Transformer learns better from natural language
when the instructions are less diverse (Upper). Transformer and Tree-RNN learning from programs are more
consistent as the diversity increases, yet perform worse on less diverse instructions (Lower).

Instruction diversity. We define the diversity of a program based on the number of control flows it
contains (i.e. number of branches). Figure 5 (b) shows a clear trend of performance drop of all the
models. Transformer is more robust to diverse instructions which could be attributed to its better
ability to learn the semantics. While Seq-LSTM learning from programs are consistently better across
different levels of diversities, Tree-RNN demonstrates the most consistent performances.

5.5 MODULATION MECHANISM FOR LEARNING A MULTITASK POLICY

We investigate if learning a multitask policy with the learned modulation mechanism is more effective.
We compare against the two most commonly used methods: concatenating a state and goal in a
raw space (Concat raw) or a latent space (Concat). An illustration is shown in Figure 4 (a). Since
our state contains an environment map, which is encoded by a CNN and MLP, we experiment
modulating convoluted feature maps (Modulation conv) or feature vectors (Modulation fc) or both
(Modulation conv fc). Figure 4 (b) demonstrate that the proposed policy modulation mechanism is
more sample efficient. Table 1 shows that the multitask policy learning using modulation achieves
better performance on task completion.

6 CONCLUSION

We propose to utilize programs, structured in a formal language, as an expressive and precise way to
specify tasks instead of commonly used natural language instructions. We introduce the problem of
developing a framework that can comprehend a program as well as perceive and interact with the
environment to accomplish the desired task. To address this problem, we devise a modular framework,
program guided agent, which executes programs with a program interpreter by altering between
querying a perception module when a branching condition is encountered and instructing a policy to
fulfill subtasks. We employ a policy modulation mechanism to improve the efficiency of learning
the multitask policy. The experimental results on a 2D Minecraft environment demonstrate that
the proposed framework learns to reliably fulfill program instructions and generalize well to more
complex instructions without additional training. We also investigate the performance of various
models that learn from programs and natural language descriptions in an end-to-end fashion.
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A PROGRAM EXECUTION

We describe our program interpreter in Section 4.1 and provide more details in this section. The
program instruction considered in this work contains the following three components: (1) subtasks,
(2) perceptions, and (3) control flows. Accordingly, our Program Interpreter is designed to consist of
(1) a parser to parse each line of the program following the grammar defined by our DSL in figure 2,
and (2) a program executor which executes the program conditioning on the parsed contents. The
interpreter transforms the program into a tree-like object by exploiting its structure (i.e. scopes) and
then utilizes the parsed contents to traverse it to execute the program.

A program tree is built by representing each line of a program as a tree node. Each tree node is a data
structure containing members: (1) node.line, the original line in the program, (2) node.isLeaf(), if
the current node is a leaf node (i.e. subtask), and (3) node.children, all the subroutines of the current
node (i.e. the processes under the scope of the current line of program). The interpreter will parse
according to the original line contained in the node, and decide whether to call the policy if it is a
leaf node (subtask) or produce a query to call the perception module, deciding which child node
(subroutine) to go into.

The subroutines of a node should correspond to proper scoping of the program. For example,
in Figure 1 in the main paper, the line if is_there[River] has subroutines mine(Wood),
build_bridge(), if agent[Iron]<3, and place(Iron,1,1), but not mine(Iron),
which should be if agent[Iron]<3’s subroutine.

Once the program tree is built, the program executor will perform a pre-order traversal to initiate the
execution. Algorithm 1 summarizes the details of the program execution utilizing the transformed
program tree.

Algorithm 1 Program Execution

Require: P : program to be executed
Require: s: environmental state
Require: π: agent policy parameterized by θ, Φ: perception module
Require: node: has member node.line as the original program line and children nodes node.children

1: procedure EXECUTE(node)
2: if node.isLeaf() then
3: subtask = parse_subtask(node.line)
4: π(subtask, θ) . Calls the agent policy to execute the subtask
5: else
6: control_flow, perception_query = parse_ctrl_percept(node.line)
7: h = Φ(perception_query, s) . Calls the perception module with a query and state
8: control_flow h . e.g. if, while, loop, calls the subroutines depending on h
9: for child in node.children do

10: EXECUTE(child)
11: end for
12: end if
13: end procedure

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 ENVIRONMENT DETAILS

In the following paragraphs, we provide more details of the environment used in this work.

Objects in the environment. The major environmental resources that the agent can interact with
are: wood, gold, and iron. There is a certain probability that the environment will contain a
river, which the agent cannot go across unless a bridge is built (or pre-built). The environment
is surrounded by brick walls, which draws the boundaries of the world.

Agent action space. The agent’s actions are (1) crafting actions: including mining (collecting
resources), placing, and building a bridge; and (2) motor actions: including moving to four directions
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(a) (b) (c) (d)

Figure 6: Exemplar rendered environment map. The agent, objects, and stuff are represented as blocks with their
corresponding textures. Specifically, the agent is represented as a female character. gold is represented as a
golden block, wood is shown as a tree, and iron is represented as a sliver block. River is shown as a blue
grid with water texture while bridge is presented as wooden grid. merchant is shown as an alpaca, which
is supposed to transport the sold objects. Notice that there are 2 merchants in (a) and (b), while (c) and (d)
contains 3 and 4 of them, respectively. The boundaries of the map are shown as brick walls.

(up, down, left, right). The crafting actions are only allowed on the current grid cell the agent is
standing on, e.g. the subtask mine(gold) requires the agent to navigate to a specific location
containing a gold with motor actions, and then perform the crafting action mine at the current
location. To build a bridge, the agent should consume one of the wood it possesses. To sell an
item, the agent needs to travel to a merchant and then place the item. With certain probabilities,
there can be 2 to 4 merchants located at different locations.

Initialization. During training, when each training program is sampled, a valid environment will be
randomly initialized, where validity refers to the property that the agent will be able to successfully
follow the program with sufficiently provided environmental resources. At test time, we pre-sample
20 valid initialization of the environment with 20 different random seeds to ensure the validity of the
two test sets.

Agent observation space (state representations). The state used in our reinforcement learning
policy consists of an environment map smap and an inventory status of the agent sinv. smap is of size
10 × 10 × 9, where each channel-wise slice of size 10 × 10 × 1 represents the binary existence
of certain objects at a specific location, e.g. if (3, 4, 2) is 1, it means there is a gold at location
(3, 4) (environment objects in channel dimension are zero-indexed). The objects represented by the
channels are ordered as follows: wood, iron, gold, agent, wall, goal (2-D representation of
intended goal coordinates), river, bridge, and merchant. The agent inventory status sinv is
augmented with the agent location, resulting in a 1-d integer vector of size 5. The ordered entry of
such vector is as follows: agent’s wood counts, agent’s iron counts, agent’s gold counts, agent’s
location coordinate x, and then y.

Goal representations. For our proposed framework, we represent the goal of the subtask as an 1-D
vector of size 10, produced by the program interpreter. The first five entries of the goal vector is
a one-hot representation of the subtask: goto, place, mine, sell, build_bridge. The 6th
to 8th entries are one-hot representation of the resources: wood, iron, and gold. The last two
entries are the intended goal locations. For example, place(iron,3,5) will be represented as
[0, 1, 0, 0, 0, 0, 1, 0, 3, 5]. For end-to-end learning models, such goal representation is produced by
the input encoder as a continuous latent vector representation.

Exemplar environment maps. We show several exemplary rendered environment maps in Figure 6.
As can be seen, the essential resources such as wood, gold, iron are represented as block objects,
where the merchant is depicted by an alpaca. The agent is shown as a female human character.
River grids, with bridge blocks built on it is shown as the blue grid cells, where the bridge which
should be transformed by wood is of wooden texture. The Boundaries can be seen in the surroundings
represented as brick wall grids.

B.2 TASK INSTRUCTIONS DETAILS

Programs. We generate the program sets by sampling program tokens with normal distributions,
and constructing them according to the DSL grammar we define. The training set is composed of on

13



Under review as a conference paper at ICLR 2020

average 32 tokens and 4.6 lines; the more complex test set, i.e. test-complex, contains on average
65 tokens and 9.8 lines. We include the plotted statistics of various essential properties for the three
datasets in Figure 11, Figure 12, and Figure 13, respectively. Note that the maximum indent of a
program is the maximum depth of its scope or the height of its transformed program tree. The number
of recurring procedures includes both while and loop.

Natural language instructions. For each of the three program sets, we chunked them into sev-
eral subsets of programs and assign them to annotators for their corresponding natural language
translations. The annotators were instructed to read the provided DSL to understand the details of
program syntax as well as some exemplary translations before they are allowed to start the task. The
annotators were encouraged to give diverse and colloquial translations to avoid constantly giving dull
line-by-line translations. The collected (translated) natural language instructions were then cleansed
with spell checks and grammatical errors fixes. On average, the annotators used 27, 28, and 61 words
to describe the instructions for the train, test, and test-complex sets respectively. The total vocabulary
size of the natural language instructions is of 448.

Qualitative results on natural language analysis. We show several example data points from our
testing sets in Figure 10. The leftmost column displays natural language instructions, the middle
column shows our sampled ground truth programs, while the rightmost column illustrates how
language can be ambiguous and lead to possible alternative interpreted programs.

B.3 NETWORK ARCHITECTURES

B.3.1 OUR FRAMEWORK

Perception module. The perception module takes a query q and a state s as input and outputs a
response h. A query has a size of 6× 186, since the longest query has a length of 6 and 186 is the
dimension of one-hot program tokens. Shorter queries are zero-padded to this size.

The state map smap is encoded by a CNN with four layers with channel size of 32, 64, 96, and 128.
Each convolutional layer has kernel size 3 and stride 2 and is followed by ReLU nonlinearity. The
final feature map is flattened to a feature vector, denoted as fm.

The state inventory sinv is encoded by a two-layer MLP with a channel size of 32 for both layers.
Each fully-connected layer is followed by ReLU nonlinearity. The resulting feature vector is denoted
as fi.

Each token in the query is first encoded by a two-layer MLP with a channel size of 32 for both layers.
Each fully-connected layer is followed by ReLU nonlinearity. Then, all the query token features are
concatenated along the feature dimension to a single vector. This vector is then encoded by another
two-layer MLP with a channel size of 32 for both layers. Each fully-connected layer is followed by
ReLU nonlinearity. The resulting feature vector is denoted as fq .

All encoded features (fm, fi, and fq) are then concatenated along the feature dimensions to a single
vector. This vector is processed by a three-layer MLP with a channel size of 128, 64, and 32. Each
fully-connected layer is followed by ReLU nonlinearity. Finally, a linear fully-connected layer
produces an output with a size of 1, which should have a higher value if the response of the query is
true and lower otherwise.

Policy. The policy takes a goal g and a state s as input and outputs an action distribution a, where the
state is encoded by two types of modules: (1) a four-layer CNN encoder to encode the state map smap,
and (2) a two-layer MLP to encode the agent inventory status sinv.

The goal g is encoded by a two-layer MLP with a channel size of 64 for both layers. Each fully-
connected layer is followed by ReLU nonlinearity. The resulting feature vector is denoted as fg.
Given the encoded goal vector, we employ four linear fully-connected layers to predict modulation
parameters {γi, βi}{1,...,4} for the state CNN encoder, where γ1 and β1 have size 32, γ2 and β2 have
size 64, γ3 and β3 have size 96, and γ4 and β4 have size 128. Note that these modulation parameters
are predicted for modulating convolutional features (i.e. modulation conv). For modulation fc, a linear
fully-connected layer is used to produce γfc and βfc with size 64.

A state map smap is encoded by four-layer CNN with channel size of 32, 64, 96, and 128. Each
convolutional layer has kernel size 3, strides 2, and is followed by ReLU nonlinearity. After each
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convolutional layer, the produced feature maps e are modulated to γ · e + β, where γ and β are
broadcast along spatial dimensions. The final feature map is flattened to a feature vector and denoted
as fπm.

A state inventory sinv is encoded by a two-layer MLP with channel size of 64 for both layers. Each
fully-connected layer is followed by ReLU nonlinearity. The resulting feature vector is denoted as
fπi .

The two encoded features (fπm and fπi ) are then concatenated along the feature dimension. Two
fully-connected layers are used to process the feature with a channel size of 64 for both layers. Each
layer is followed by ReLU nonlinearity. The final encoded feature u is then modulated to γfc ·u+βfc

if modulation fc is used.

Finally, the modulated features û are used to produce an action distribution a and a predicted value V
using two separated MLPs. Each MLP has two fully-connected layers with a channel size of 64 for
both layers. A linear layer then outputs a vector with a size of 8 (the number of low-level actions).
Another linear layer outputs a vector with a size of 1 as the predicted value.

B.3.2 END-TO-END LEARNING MODELS

In addition to the input encoder, the end-to-end learning models can utilize a mechanism to remember
what subtasks from the instructions have been accomplished. The agent can then explicitly memorize
where it stands in the instruction while completing the task. We augment such memorization
mechanism utilizing the memory of another LSTM network, taking as inputs the encoded states
throughout the execution trajectory. After agent taking each action, the last hidden state encoding
the trajectory up to the current step is used to compute attention scores to pool the outputs of the
input encoders. For Tree-RNN encoder, we simply concatenate the hidden representation from
memorization LSTM with the root representation of Tree-RNN before feeding them to subsequent
layers. The agent policy network then learns to perform task conditioning on this attention-pooled
latent instruction vector.

We provide details of our various end-to-end learning models in Table 2. Program token embedding is
jointly trained with learning the whole module, while GloVe Pennington et al. (2014) (50-D version)
is used for word embedding when instructions are natural languages.

Model Parameters Details

Seq-LSTM 0.62M LSTM size of 128, both program and word embeddings are of
dimension 50. Attention LSTM size of 128. Attention weights of
size [256× 128], with bias of size [128]. Word embeddings utilize
pre-trained GloVe.

Tree-RNN 0.51M Program embeddings are of dimension 128. Attention LSTM size
of 128. Composition module (to aggregate all the children repre-
sentation of a node) is of size [128× 128], and output projection
weights of size [128× 128], with bias of size [128]. The program
embeddings are average pooled across the same program line, so
that each line will be mapped to a fixed dimension representa-
tion. The composition layer is applied when combining pooled
embedding from all the children of a node.

Transformer 2.63M Number of hidden layers: 2, with 8 attention heads, and intermedi-
ate size of 256. Hidden size is 128. No dropout is applied.

Table 2: Architectural details for end-to-end learning models

B.4 FAILURE ANALYSIS

To gain a better understanding of how our proposed framework and the end-to-end learning models
work or fail, we conduct detailed failure analysis on the execution traces of our model. The analysis
is organized as follows:
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Figure 7: First failure rate of subtasks. Every colored grid shows the first failure rate of each subtask. From top-
left to bottom-right, each block of grids show the results for subtask category goto, place, build_bridge,
mine, and sell. Warmer colors indicate higher first failure rate; while colder colors indicate lower first failure
rate. White grids indicate subtasks that either never occurs as first failed task in any execution or do not exist in
the executions that lead to this figure.
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indicate higher average subtask time cost; while colder colors indicate lower average subtask time cost. White
grids indicate subtasks that do not exist in the executions that lead to this figure.

• We first present an analysis of our framework on the subtasks that appear to be the first failed
subtask, which immediately leads to failing the whole task. This analysis sheds some light on
which subtasks most commonly cause the failure of task execution. (Section B.4.1)
• We show an analysis of how many time steps each successfully executed subtask takes on average

for our framework, through which we explain which subtasks we find to be harder than others.
(Section B.4.2)
• We show additional visualizations on the completion rates of different end-to-end learning models

plotted with metrics not shown in the main paper, where we aim to deliver a more complete view
of how these models perform. (Section B.4.3)

B.4.1 FIRST FAILURE RATE OF SUBTASKS

As the first step of failure analysis, we want to get an idea of which subtasks cause the failure of the
model in executions more often. To make this possible, we define “first failed subtask” as the first
subtask that ends as a failure in an unsuccessful execution of a program. Based on this definition, we
further define “first failure rate” as the percentage that an occurrence of a specific subtask turns out to
be the first failed subtask of the execution that includes it.

We collect the first failure rate of all subtasks for the result we obtain from running our full model
over the more complex test set, i.e. test-complex. The results are plotted in a visually interpretable
format in Figure 7. As seen in the figure, subtasks in goto and place categories are more likely to
be the first failed subtask than subtasks in build_bridge, mine, and sell categories. Within
the goto and place subtask categories, subtasks requiring the agent to navigate to grid cells nearby
the border of the world has a higher first failure rate than ones nearby the center of the world. This
shows that these tasks mentioned above are more prone to failure than other subtasks.
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Figure 9: Additional analysis on completion rates. The results of executing program instructions on both datasets
are used to produce the six plots above. In each plot, each color corresponds to a different model that we propose.
For the two rightmost plots, there is a very small number of outliers that extends out of the right boundary of the
plot that we omit for visual interpretability reasons. Please note that the use of colors in this figure is not the
same as that in Figure 5 of the main paper.

B.4.2 AVERAGE TIME COST OF SUBTASKS

Continuing from the previous analysis, we show the average time cost of all successful subtask
executions in Figure 8. As can be seen in the figure, subtasks in build_bridge, mine, and sell
categories take relatively smaller number of time steps to complete. In goto and place categories,
the closer to border the subtask requires the agent to reach, the more time consuming it gets for the
agent to complete the subtask. This corresponds to the finding in the analysis of first failure rates that
subtasks with destinations close to the border are more likely to fail. In other words, the closer to
border the agent has to reach, the more likely it is to fail the subtask.

B.4.3 ADDITIONAL ANALYSIS ON END-TO-END LEARNING MODELS COMPLETION RATES

To conclude failure analysis, we focus on the variation of completion rates of program executions
with respect to different conditioning variables. As shown in Figure 9, plots showing the trends of
completion rates while evaluating with different independent variables show that execution failure is
more common in cases when the program consists of larger number of lines, more loops and while
statements, and larger number of subtasks. Note that this subtask count is only a summation of the
occurrence counts of each subtask in a program, which does not accurately reflect the number of
executions each subtask is being invoked (i.e. it does not reflect the repetitive counts when there is a
loop).

Meanwhile, the effect of the number of if and else statements and the maximum indent values of
programs on completion rates seem to vary across different models. For Seq-LSTM model, having a
larger number of if and else statements or having a larger max indent value results in more failures;
while for Transformer and Tree-RNN models, having larger values above results instead in fewer
failures. This is probably since Transformer and Tree-RNN models are designed in a way that deals
with hierarchical structures with jumps in instruction executions better (this point is also mentioned
in the main paper). Despite this difference in effects, the overall change in performance when the
number of if and else statements and the maximum indent value change is much less significant than
that in the previous case.

During our analysis, we also designed an algorithm to calculate an estimate to the number of branches
a program has. Here, the number of branches is defined by the number of distinct sets of lines that a
program can be executed. For a program without control flows (no if, else-if, else, loop, and while
statements), the number of branches is always 1. For if, else-if, and else statements, the exact number
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def run():
    mine(Wood)
    if agent[Iron] >= 4:
        mine(Wood)
    if is_there[Gold]:
        place(Iron, 3, 7)

Mine wood first. If agent has 
more than 3 iron, mine wood. 
If there is gold in the 
environment, place iron at 
(3,7).

def run():
    mine(Wood)
    if agent[Iron] >= 4:
        mine(Wood)
        if is_there[Gold]:
            place(Iron, 3, 7)

def run():
    loop(5):
        place(Iron, 7, 2)
    if agent[Iron] <= 9:
        sell(Gold)

Place an iron on (7,2) and 
repeat 4 times, if agent has no 
more than 9 iron then sell a 
gold.

def run():
    place(Iron, 7, 2)
    loop(4):
        if agent[Iron] <= 9:
            sell(Gold)

Alternative Interpretation

def run():
    if is_there[River]:
        build_bridge()
    loop(3):
        mine(Gold)
    if env[Gold] <= 8:
        mine(Gold)
    sell(Iron)

If there is a river, build a 
bridge. Repeat the followings 
3 times: mine a gold, and if 
environment has no more 
than 8 gold, mine iron, and 
then sell an iron.

Language Instructions

def run():
    if is_there[River]:
        build_bridge()
    loop(3):
        mine(Gold)
        if env[Gold] <= 8:
            mine(Gold)
        sell(Iron)

Ground Truth Program##

(a)

(b)

(c)

Figure 10: Exemplar data and languages ambiguity. The goal of the examples above is to show that natural
language instructions while being flexible enough to capture the high-level semantics of the task, can be
ambiguous in different ways and thus might lead to impaired performance. In example (a), the modifier "repeat
the following 3 times" has an unclear scope, resulting in two possible interpretations shown in program format on
the right side; in example (b), "repeat 4 times" can be used to modify either the previous part of the description
or the latter part of it, resulting in ambiguity; in example (c), the last sentence starting with "If" has unclear
scope. In all of the above cases, a model that learns to execute instructions presented in natural language format
might fail to execute the instructions successfully because of the ambiguity of the language instructions.

of branches these statements incur can be calculated easily. In cases of the loop and while statements,
we treat loops as being executed only once and while statements as if statements when we calculate
the number of branches. The result shown in the analysis does not reveal a clear trend. We attribute
this result to two possibilities – either the metric we create is not accurate enough, or it is not a very
suitable metric to be inspected.

B.5 HYPERPARAMETERS

We use the following hyperparameters to train A2C agents for our model and all the end-to-end
learning models: learning rate: 1× 10−3, number of environment: 64, number of workers: 64, and
number of update roll-out steps: 5.

B.6 COMPUTATIONAL RESOURCES

We train all our models on a single Nvidia Titan-X GPU, in a 40 core Ubuntu 16.04 Linux server.
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Figure 11: Program set statistics for training set (train).
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Figure 12: Program set statistics for same complexity testing set (test).
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Figure 13: Program set statistics for more complex testing set (test-complex).
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