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ABSTRACT

Large datasets on natural language inference are a potentially valuable resource
for inducing semantic representations of natural language sentences. But in many
such models the embeddings computed by the sentence encoder goes through an
MLP-based interaction layer before predicting its label, and thus some of the in-
formation about textual entailment is encoded in the interpretation of sentence
embeddings given by this parameterised MLP. In this work we propose a sim-
ple interaction layer based on predefined entailment and contradiction scores ap-
plied directly to the sentence embeddings. This parameter-free interaction model
achieves results on natural language inference competitive with MLP-based mod-
els, demonstrating that the trained sentence embeddings directly represent the in-
formation needed for textual entailment, and the inductive bias of this model leads
to better generalisation to other related datasets.

1 INTRODUCTION

After the enormous success of learning representations of words, learning representations of sen-
tences has become one of the most important challenges in natural language understanding. Many
models have been proposed for embedding sentences in a vector space, but the methods for inter-
preting those representations are dominated by two approaches: using the dot product (or cosine)
to measure the similarity between two vectors, or training a parameterised function to do the in-
terpretation for specific tasks (e.g. (Conneau et al., | 2017)). In this paper we consider a different
form of interpretation, based neither on similarity nor on a parameterised function. We investigate
embedding sentences into vector representations of information inclusion and contradiction.

1.1 MOTIVATION

Information inclusion, called entailment, is a fundamental concept in theories of the semantics of
natural language. This motivated the proposal of recognising entailment in text as a generic task
which captures a very wide range of issues in natural language understanding (Dagan et al.,|2005),
which has been demonstrated by the conversion of a large number of semantic datasets into a single
textual entailment task (Poliak et al., 2018a). The fundamental nature of this task has motivated the
development of many datasets for textual entailment (Poliak et al.,|2018a). The more recent textual
entailment datasets have extended this task to include annotations for contradiction, which are often
referred to as natural language inference (NLI) datasets.

Modelling these semantic relationships between sentences is not only a crucial problem in natu-
ral language processing, but it also has a wide variety of applications, such as question answer-
ing (Harabagiu & Hickl, 2006), producing abstract summaries (Lacatusu et al., 2006} |Yan et al.,
2011ab), and machine translation evaluation (Pado et al.,2009)). It is possible to transfer the predic-
tions of an NLI model directly to the task, but it has been shown that NLI models trained on large
NLI benchmarks such as SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018a) do not
transfer well to other NLI benchmarks (Talman & Chatzikyriakidisl [2019). Despite recent efforts
to improve generalisation (Belinkov et al.| 2019b), this remains an open question. A more flexible
and powerful approach is to transfer the knowledge learned about the NLI task to other tasks with
representation learning. For example, |(Conneau et al.| (2017) train sentence embeddings on the NLI
task and demonstrate their usefulness on other tasks. But there is still no clear interpretation of these
embeddings in terms of entailment, other than via a trained parameterised function.
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In this work we propose a novel approach to learning sentence embeddings from NLI data, where
the sentence embeddings have a direct interpretation in terms of entailment and contradiction. Anal-
ogously to the use of the dot product or cosine to define similarity over a vector space, we define
entailment and contradiction as two parameter-free operators over pairs of vectors. The entailment
operator provides a score of how well one vector includes all the information in the other vector.
The contradiction operator provides a score of to what extent two vectors contradict each other. We
use these operators to train sentence encoders which embed sentences into a vector space which has
these interpretations, using data for the Natural Language Inference task.

1.2  OVERVIEW

Natural language inference involves predicting whether a premise entails the given hypothesis,
whether they contradict each other, or neither (Bowman et al. 2015). Due to the availability of
large-scale datasets for natural language inference (Bowman et al. 2015; |Williams et al., 2018b)),
neural network models have become popular for textual entailment. We can characterise these mod-
els in terms of three stages. First, the encoding stage computes d-dimensional embeddings of the
premise and of the hypothesis. Then the interaction layer models the interactions between the two
sentences. Finally a classifier layer makes the prediction of entailment, contradiction or neutral.
While most of the literature has been concerned with improving the encoding stage, in this paper we
focus on the interaction layer.

For the interaction layer, passing the sentence embeddings plus their heuristic matching features
(Mou et al., 2016) through a multi-layer perceptron (MLP) has become the standard practice for
textual entailment models (Conneau et al., [2017; |Bowman et al.,[2016; Kim et al.,[2019; [Pan et al.,
2018 [Yoon et al.} [2018; [Kiela et al.| 2018}; (Conneau et al.| 2018)). The heuristic matching features
are component-wise measures of similarity between premise and hypothesis, most commonly imple-
mented as the absolute difference and the component-wise multiplication. However, textual entail-
ment is not only about similarity, since it reflects an information inclusion relationship. Moreover,
most similarity features are symmetric, whereas entailment is an intrinsically asymmetric relation.
It is only after the MLP that the sentence embeddings and similarity-based features get transformed
into a representation which can be directly mapped to entailment, contradiction and neutral. Often
the MLP plays a significant role in the model’s architecture, for example requiring 800k of the total
2.1m model parameters in the state-of-the-art Dynamic Self-Attention model (Yoon et al., [2018)).

In this paper, we propose a parameter-free interaction layer consisting of only a few scores, including
entailment and contradiction, defined in terms of the entailment-vectors framework of [Henderson &
Popa) (2016), which are passed to a log-linear classification layer. This forces the sentence embed-
dings to have a direct interpretation in terms of entailment and contradiction.

Despite drastically reducing the number of trained parameters, this simple interaction layer is em-
pirically competitive with MLP-based models. Because it is parameter-free, all of the information
learned about entailment and contradiction must be encoded directly in the sentence embeddings,
rather than indirectly via its interpretation by the trained MLP. Thus information about entailment
or contradiction can be transferred to other tasks simply by transferring the sentence embeddings.
An ablation analysis indicates that the entailment and contradiction scores are indeed the main fac-
tors in the model’s success. Moreover, we evaluate our trained models in a transfer learning setting
by testing them on NLI datasets that have not been used during training, and find better transfer
performance for our proposed model.

In summary, we propose a novel, theoretically grounded, parameter-free model of the interactions
between premise and hypothesis for entailment and contradiction. Evaluation on benchmark natural
language inference datasets show this model is competitive with modelling interaction with an MLP.
The resulting sentence embeddings have a direct entailment-based interpretation, which transfers
better to different NLI datasets.

2 MODELLING ENTAILMENT AND CONTRADICTION RELATIONS

The task of textual entailment takes premise and hypothesis sentences and classifies their relation-
ship into entailment, contradiction, or neutral. To train our sentence embeddings, we
adopt the widely used approach of first encoding each sentence in an embedding, then modelling the
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interactions between the premise and hypothesis, followed by a softmax classifier which estimates
the probability of each label (Conneau et al., 2018).

2.1 ENCODING STAGE

The encoding stage embeds the premise s1 and hypothesis s2 into two d-dimensional vector rep-
resentations p,h = enc(s1,s2), where enc is a sentence encoder, and p and h are the premise and
hypothesis embeddings respectively. There are two types of encoders; intra-sentence encoders only
look at each sentence individually, while inter-sentence encoders consider both sentences. In our
first set of experiments, we consider models with both single-sentence and inter-sentence encoders,
specifically the two baselines from the GLUE benchmark (Wang et al., 2019). The single-sentence
encoder is a bidirectional LSTM (Bi-LSTM) with max-pooling, which |Conneau et al.| (2017) found
to work best among a diverse set of encoders. The inter-sentence encoder adds attention over the
other sentence (Wang et al., [2019). In our second set of experiments, we consider models with
the single-sentence encoder of (Reimers & Gurevych| 2019), based on a pre-trained BERT model
Devlin et al.|(2019).

2.2 MLP INTERACTION STAGE

Most previous neural network approaches to NLI model the interaction between sentences with a
non-linear MLP. The input to this MLP includes the embeddings of the hypothesis h and premise p
obtained from the encoding stage. Mou et al.|(2016)) proposed adding heuristic matching features in
order to capture the similarity of the two sentences, which have since been widely adopted (Conneau
et al., [2017; |Chen et al., 2017; Bowman et al.,[2016; Kim et al., [2019; |Pan et al., 2018} [Yoon et al.,
2018; Kiela et al.,[2018)). These features are most commonly the element-wise product and absolute
difference between the two sentence embeddings, giving the input vector m:

m = [p;h;|p— hl;p® h] @
The MLP then computes a hidden layer, from which the softmax classifier predicts the labels.
class = softmax(W, tanh(W,m + b.) + b..) 2)

where W, € R3*" b, € R3 W, € R"¥% b, € R", and n is the size of the hidden layer.
Because of the high dimensionality d of the sentence embeddings, the number of parameters in this
interaction layer (W) can be large. Following |Wang et al.[(2019), we set n = 512.

2.3 THE PROPOSED INTERACTION STAGE

We propose an alternative interaction stage with no parameters. The input is the two sentence em-
beddings, and the output is just 5 scores, which are then input to the softmax classifier. These
predefined scores provide a strong inductive bias to the model, and force the sentence embeddings
to have the interpretation required by these scores.

Normalisation In the 5 scores, the sentence embeddings are first passed through a sigmoid func-
tion, and we want them to use the full output range of this function. We therefore apply layer
normalisation to the sentence embeddings to make their mean zero and their standard deviation s,
where s is a hyperparameter set to 6 in all experiments. We use y, « to refer to the embeddings p, h
respectively after applying normalisation.

Entailment Vectors Framework |Henderson & Popal (2016) propose a vector-space framework
for entailment which explicitly models the information known about a word by interpreting each
dimension of a word embedding as the probability that a certain feature is known to be present. So
zero is interpreted as unknown, and not as necessarily false. Entailment is when all the features
that are known about the entailed vector are also known about the entailing vector. They propose
different operators for computing the probability of this entailment. Previous work only applied this
framework to lexical entailment (Henderson & Popal [2016), but we apply it to fextual entailment.
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Modelling Contradictory Information The original entailment vectors framework only models
binary entailment. We extend this representation to also model contradiction. We split entailment
vectors into two blocks, one ;. . 4 for modelling features f and another x d.q for their negation — f

(as suggested by [Henderson & Popa (2016) for a different purpose). So ifxg, £ € {1,..., 5
represents that something is known to be true, then ;| 4 Tepresents that it is known to be false, and
thus having both these features active is a contradiction.

Entailment Score: We compute the entailment score between two sentences using the factorised
entailment operator (y=-x) proposed by Henderson & Popa|(2016), which measures the probability
of entailment in the k-th dimension as Si(entail|x,y) = 1—o(—yx)o(xy), and which requires
entailment to be probable in every dimension, giVing us:

S(entail|x, y) Hl o(—yr)o ))% (3)

Contradiction Score: We consider two sentences to contradict each other if their respective em-
beddings have contradictory features in at least one dimension. Our contradiction score for the k-th
dimension € {1,..., 4} is thus:

Sk (contradict|x, y) = o(xx)0(Yyp 2 )+0o(2pya)o(yr) — o(xr)o (Y 2)o(x), a)o(yYk)
where the first term models that the feature is known to be true in the hypothesis and known to

be false in the premise, the second term the reverse, and the third term both. The total score of
contradiction is the complement of not having contradiction in any dimension:

d
3
S(contradict|x, y) =1 — (H(l — Sj(contradict|x, y)))é
k=1
Neutral Score: We define a neutral score as the non-negative complement of the contradiction and
entailment scores, computed as:
S(neutral|z, y) = ReLU(1 — S(entail|x, y) — S(contradict|x, y)),

The ReLU function avoids negative scores, and its nonlinearity makes this score non-redundant in
the log-linear softmax classifier.

Similarity Scores: Since similarity information is known to help textual entailment (Mou et al.,
2016), we employ two scores that can be viewed as condensed versions of the heuristic matching
features, namely averages of element-wise multiplication and absolute difference, respectively:

d

Z Yr))

Z
Z lo(xr) — o(yw)l).

&.M—‘

S'meul xr y

simay(x, y)

&.M—‘

Initialisation For the success of our models, we found it critical to initialise the output layer in
such a way that the scores are associated with their respective class label. To this end, we add 1 to
the random initial weight connecting the entailment score to the entailment class, the contradiction
score to the contradiction class, and the neutral score to the neutral class, respectively. We observed
that without this initialisation the model takes several epochs to train before achieving better than
random performance.

3  EVALUATION ON NLI DATASETS

We first evaluate our approach to learning sentence embeddings from NLI data without using any
resources external to the NLI datasets themselves. We train and test our models on two popular large-
scale datasets for textual entailment, SNLI (Bowman et al., [2015)) and MNLI (Williams et al.,[2018a)).
In addition to evaluating classification performance, we conduct an ablation study to determine
whether our sentence embeddings and associated scores have the interpretations claimed.
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3.1 EXPERIMENTAL SETUP

For the LSTM-based sentence encoders, we always use Bi-LSTM state vectors with 512 dimensions.
With larger models (2048 dimensions) the results were only slightly better and the pattern of results
did not change, while the computational cost was substantially higher. We train these models for 20
epochs, use validation accuracy for early stopping, and use mini-batch SGD with batch size of 64.
The learning rate is selected among {0.06,0.08,0.1,0.3,0.5} based on the validation scores.

For MNLI, we tuned the models on the mismatched validation set, and report results for both mis-
matched and matched validation sets, only reporting test set results for the best baseline and our best
models.

3.2 BASELINES

We compared our model with several baselines: 1) p,h: Using only sentence embeddings followed
by an MLP; 2) HM: Heuristic-matching features input to an MLP (i.e. the baseline from |(Conneau
et al|(2017)); 3) Random: compute five random scores followed by a linear softmax classifier. For
baseline (3), we use untrained nonlinear projections of the embeddings p, h of the form:

r = o(Wyo(Wilp; h] + b;) + by), ©)
where the weight matrices W; € R4*24, W, € R>*4 and their corresponding biases are randomly
generated using Glorot Initialisation (Glorot & Bengio, [2010). This baseline evaluates how much
performance is being gained by employing our specific five scores, with their inductive bias.

Table 1: Validation and test accuracies (for Table 2: Ablation results for the scores
MNLI, on matched/mismatched sets), and num- (C)ontradiction, (E)ntailment, (N)eutral,
ber of parameters in the encoder (#enc) and MLP and (S)imilarity, on SNLI and MNLI
and/or classifier (#mlp). (matched/mismatched) validation sets.
Model #enc #mlp SNLI MNLI Used scores SNLI MNLI
Random 3.3m 18 79.07 65.91/65.88 E,C,N, S 83.47 69.97/70.51
p,h 33m 1.3m 78.70 64.70/65.69 E,C,N 83.14 69.19/69.97
HM 33m  2.4m 84.82 71.23/71.46 ‘; C ;g?é gg-ggjggg?
Ours 33m 18 83.47 69.97/70.51 E 7862 635776392
HM-+attn  13.8m 2.4m 86.46 74.81/74.81 C 74.7 58.19/58.96
Ours+attn  13.8m 18 86.28 74.21/74.41

Test set results
HM 33m 24m 84.79 71.22/70.36
Ours 33m 18 83.09 69.79/68.96
HM-+attn  13.8m 2.4m 85.52 74.37/73.60
Ours+attn  13.8m 18 85.49 73.14/72.74

3.3 RESULTS

Table E] shows the results. First, note that random scores already achieve reasonable performance,
at about the level of the MLP-based baseline p,h. This suggests that the encoder is so powerful that
it can generate embeddings suitable for virtually any kind of interaction model. Nonetheless, the
performance of our interaction model is over 4 points better than random scores, indicating that our
proposed scores impose an inductive bias which is well-suited for textual entailment.

For single-sentence encoders, our interaction model performs slightly worse than the MLP-based
model. The fact that our models’ performance is close indicates that our model is capturing nearly
the same amount of information about NLI, and it has the advantage that all this learned infor-
mation is encoded in the sentence embeddings, not in the MLP. When we move to inter-sentence
encoders (+attn), the difference reduces in every case, and is virtually eliminated for SNLI. Since an
inter-sentence encoder is able to model some interaction in the encoder itself, this suggests that the
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performance difference is in part due to the reduced power of our parameter-free interaction model
compared to an MLP. For example, our interaction model with a single-sentence encoder does not
seem powerful enough to model known artefacts in the datasets (Gururangan et al., |2018), which
we will discuss further in Section [l

3.4 ABLATION STUDY

To better understand the effect of each of the scores, we performed an ablation study by evaluating
models with subsets of our proposed scores, as shown in Table[2] The two similarity scores alone (S)
perform rather poorly, indicating that similarity information alone is not enough to model entailment.
In contrast, using only the three entailment scores (E,C,N) achieves very good performance, yielding
within 0.66 points of the full model on MNLI and within 0.33 points of the full model on SNLI.
Removing the neutral score had a surprisingly large impact on SNLI, but otherwise the neutral score
is less important than the contradiction score, which is less important than the entailment score.

To further understand the roles of the different scores, consider the trained weights of the final
classification layer for the model with only the entailment, contradiction and neutral scores (E,C,N):

Se SN Sc

_ —26.4
E( +0.2 240) b:(wl.o)

W.= N | -108 -33 -35.0 153

C \ -295 441

where the rows denote the labels and the columns denote the scores. The very large weights in the
first and last columns indicate that indeed the entailment score predicts entailment and the contradic-
tion score predicts contradiction. The neutral score weights interact with the biases to compensate
for when the entailment and contradiction scores are both high.

4 EVALUATION OF TRANSFER PERFORMANCE

One motivation for using sentence embeddings which are directly interpretable in terms of entail-
ment and contradiction is that the resulting interaction model imposes a stronger inductive bias
towards learning entailment and contradiction. Such inductive biases are often unhelpful when eval-
uating within the domain of a given dataset, particularly because the large NLI datasets, used in the
previous section, contain annotation artefacts which allow high performance to be achieved without
actually modelling entailment and contradiction (Gururangan et al.| 2018)). To evaluate the useful-
ness of this inductive bias for learning the more general regularities behind textual entailment, we
evaluate our proposed model on its ability to generalise to a large number of different NLI datasets
which do not share these same annotation biases.

We conduct these transfer experiments using sentence encoders which have been pretrained on
very large amounts of unannotated text using a language modelling objective, namely the BERT
model (Devlin et al., 2019). This pretraining has previously been demonstrated to help general-
isation in a large number of tasks (Devlin et al., |2019), including state of the art results in NLI.
In this section, we first evaluate our approach to learning sentence embeddings from NLI data by
fine-tuning a pretrained BERT model, replicating the results from the previous section on the perfor-
mance of the resulting NLI modelﬂ We then evaluate the resulting sentence embeddings on their
model’s ability to generalise to a large number of other related tasks.

4.1 MODELS

The original BERT model of NLI (Devlin et al.,|2019) encodes the premise and hypothesis together
and uses the embedding of the CLS token at the last layer as input to a classifier. But this model
does not produce individual sentence embeddings for the premise and hypothesis. To get a sen-
tence embedding model based on BERT, we use the Sentence-BERT (SBERT) model proposed by
Reimers & Gurevych|(2019). Reimers & Gurevych|(2019) encode each sentence individually using
a pretrained BERT model, then obtain the final fixed-sized embedding by average-pooling over the

"We do not replicate the full range of experiments in this context because of the high computational cost of
training with BERT pretrained models.
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outputs at the last layer. Average pooling was found to be better than max pooling or using the CLS
token embedding.

For the baseline model (HM+SBERT), after obtaining an embedding for the premise and the hypoth-
esis, we proceed similarly to Section[2.2] First the baseline computes heuristic matching features
from the sentence embeddings, but instead of using an MLP classifier, it uses a log-linear classifier
in accordance with Reimers & Gurevych (2019 Our model (Ours+SBERT) computes the 5 scores
defined above and uses them in a log-linear classifier.

4.2 EXPERIMENTAL SETUP

We use BERT-Large as the foundation and finetune it with AdamW (Loshchilov & Hutter;, 2019).
We generally use a universal initial learning rate of 2e-5 for all heuristic matching models. When
training our entailment-based model, a significantly larger learning rate of 0.006 was necessary for
the parameters of the classifier. On SNLI, we found a learning rate of 2e-5 for training the BERT
parameters and not initialising the output layer as described in Section [2.3]to work best. On MNLI,
a learning rate of 2e-6 with initialisation worked best. In all cases, there is a warm-up phase lasting
for 30% of the training dataset. For SNLI, we used a batch size of 8 whereas on MNLI we had to
reduce the batch size to 4 because of limited memory.

4.3 NLI RESULTS

When training and testing on the same NLI corpora, finetuning a pretrained BERT model gives
us the same pattern of results as in Section as shown in Table [3]| We see a small decrease in
accuracies for both SNLI and MNLI for our much simpler interaction model, exacerbated by the
fact that there is no interaction in the encoding stage. We hypothesise that this decrease is largely
due to the inability of our simpler model to capture the annotation biases in these datasets. In the
next section, we investigate this issue by testing on datasets which do not share the same annotation
biases.

Table 3: Validation accuracies(for MNLI, on matched/mismatched sets), and number of parameters
in the encoder (#enc) and MLP and/or classifier (#mlp).

Model #enc #mlp SNLI MNLI

HM+SBERT 13.8m 123k 872 76.1/76.2
Ours+SBERT 13.8m 18 85.1 74.6/73.7
Test set results

HM+SBERT 13.8m 123k 86.0 75.2/75.6
Ours+SBERT 13.8m 18 85.1 73.8/74.2

4.4 TRANSFER PERFORMANCE

To evaluate how well the baseline and proposed models generalise to solving textual entailment in
domains which do not share the same annotation biases as the large NLI training sets used above,
we take trained NLI models and test them on a number of different NLI datasets.

Datasets: We consider a total of 11 different NLI datasets. We use the 10 datasets studied by
Poliak et al.[|(2018b). These datasets include MNLI, SNLI, SciTail (Khot et al., [2018), AddOneRTE
(Pavlick & Callison-Burch, [2016)), Johns Hopkins Ordinal Commonsense Inference (JOCI) (Zhang
et al.|2017)), Multiple Premise Entailment (MPE) (Lai et al.,[2017), Sentences Involving Composi-
tional Knowledge (SICK) (Marelli et al., 2014), and three datasets from [White et al.| (2017) which
are automatically generated from existing datasets for other NLP tasks including: Semantic Proto-
Roles (SPR) (Reisinger et al., |2015)), Definite Pronoun Resolution (DPR) (Rahman & Ngl [2012),

>We found that using an MLP instead of a log-linear classifier resulted in the same validation performance
on SNLI and worse validation performance on MNLI, particularly for the mismatched set.
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and FrameNet Plus (FN+) (Pavlick et al.| 2015). We additionally consider the Recognising Textual
Entailment dev dataset (RTE) from GLUE benchmark [Wang et al.| (2019), and the Quora Question
Pairs (QQP) datase where the task is to determine whether two given questions are semantically
matching (duplicate) or not. As in|Gong et al.|(2017), we interpret duplicate question pairs as an
entailment relation and neutral otherwise. We use the same split ratio mentioned by [Wang et al.
(2017).

Since the datasets considered have different label spaces, when evaluating on each target dataset, we
map the model’s labels to the corresponding target dataset’s space. We train all models on MNLI
and evaluate their performance on other target datasets. MNLI contains three labels, contradiction,
neutral, and entailment. Some of the datasets we consider contain only two labels. In the case of
labels entailed and not-entailed, as in DPR, we map contradiction and neutral to the not-entailed
class. In the case of labels entailment and neutral, as in SciTail, we map contradiction to neutral.

Table 4: Accuracy results of models transferring to new datasets. All models are trained on MNLI
and tested on target test sets. A are absolute differences between our method and the baseline.

Target Test Dataset Methods

Baseline Ours A Ours
RTE 48.38 6498 +16.6
JOCI 41.14 45.58 +4.44
SCITAIL 68.02 71.59 +3.57
SPR 50.84 53.74 +2.9
QQP 68.8 69.7 +0.9
DPR 49.95 4995 0
FN+ 43.04 42.81 -0.23
SICK 56.57 54.03 -2.54
MPE 48.1 41.0 -7.10
ADD-ONE-RTE 29.2 17.05 -12.15
SNLI 64.96 54.14 -10.82

Results Table 4| shows the transfer performance of the baseline and proposed SBERT models to
other NLI datasets. As shown in prior work (Belinkov et al.l 2019a), the SNLI dataset has very
similar annotation biases to the MNLI data which the models were trained on, so we do not expect
any improvement in the relative performance of the two models for SNLI. Also, for the ADD-ONE-
RTE dataset, both models essentially fail to generalise to this data, so the comparison is not very
meaningful. For the remaining datasets, our proposed model performs better than the baseline on 5
datasets, the same on one, and worse on 3. On average, this represents a substantial improvement
in generalisation by using the proposed inductive bias, especially given that our model started out
from a lower accuracy on the in-domain data.

5 CONCLUSION

Both the ablation study and the full results demonstrate that our proposed entailment and contra-
diction scores are effective for modelling textual entailment. This parameter-free model of the re-
lationship between premise and hypothesis forces training to put all information about entailment
and contradiction in the sentence embeddings, rather than in the parameters of an MLP classifier,
and gives those sentence embeddings a direct entailment-based interpretation. We also show that
the inductive bias given by forcing the learned sentence embeddings to have this entailment-based
interpretation results in better generalisations to other NLI datasets.

*https://data.quora.com/First—Quora-Dataset—Release-QuestionPairs
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