
Under review as a conference paper at ICLR 2020

INSIGHTS ON VISUAL REPRESENTATIONS
FOR EMBODIED NAVIGATION TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in deep reinforcement learning require a large amount of training
data and generally result in representations that are often over specialized to the
target task. In this work, we study the underlying potential causes for this spe-
cialization by measuring the similarity between representations trained on related,
but distinct tasks. We use the recently proposed projection weighted Canonical
Correlation Analysis (PWCCA)to examine the task dependence of visual represen-
tations learned across different embodied navigation tasks. Surprisingly, we find
that slight differences in task have no measurable effect on the visual representation
for both SqueezeNet and ResNet architectures. We then empirically demonstrate
that visual representations learned on one task can be effectively transferred to
a different task. Interestingly, we show that if the tasks constrain the agent to
spatially disjoint parts of the environment, differences in representation emerge
for SqueezeNet models but less-so for ResNets, suggesting that ResNets feature
inductive biases which encourage more task-agnostic representations, even in the
context of spatially separated tasks. We generalize our analysis to examine permu-
tations of an environment and find, surprisingly, permutations of an environment
also do not influence the visual representation. Our analysis provides insight on
the overfitting of representations in RL and provides suggestions of how to design
tasks that induce task-agnostic representations.

1 INTRODUCTION

Recent advancements in deep reinforcement learning (deep RL) have allowed for the creation of
systems that are able to out-perform human experts on a variety of different games such as Chess,
Go, Dota2, and Starcraft2 (Vinyals et al., 2019; Silver et al., 2017; Tian et al., 2019). These advances
have heavily relied on sample-inefficient algorithms that require significant amounts of task-specific
training episodes, making them computationally expensive to run. Furthermore, deep RL has been
found to be capable of overfitting to the training task, even for complex problems (Zhang et al., 2018),
or failures when the environment is altered (even if this, in turn, simplifies the task Ruderman et al.
(2019)). These observations call into question whether representations learned with one training task
will be reusable for novel tasks.

The generality and reuse-ability of representations is a desirable and powerful property as it allows
knowledge to be transferred between tasks and can help alleviate a lack of data. In the regime of
supervised learning, it is well known that deep neural networks are capable of overfitting on tasks and
memorizing random labels (Zhang et al., 2016), making it reasonable to expect that representations
would be highly tuned to their training task. However, many have shown that representations trained
for one task perform well for other tasks, both as an initialization for fine-tuning and as a static feature-
extractor (Girshick, 2015; Ren et al., 2015; Anderson et al., 2018b; Conneau et al., 2017; Kornblith
et al., 2019). Resolving this discrepancy is an area of much debate and active research (Neyshabur
et al., 2019; 2015; Keskar et al., 2017; Golowich et al., 2018; Arora et al., 2018; Morcos et al., 2018b).

Reusing representations provides a promising avenue for the emerging field of training virtual robots
in simulation before transfer learned skills to reality. There have been a number of recent works
proposing to train robots as Embodied Agents in simulated environments with the ultimate goal of
transferring agents learned in simulation to reality (Gupta et al., 2017; Zhu et al., 2017; Anderson
et al., 2018c; Das et al., 2018; Gordon et al., 2018; Wijmans et al., 2019; Savva et al., 2019). The
ability to reuse representations for new tasks and in new environments is of particular concern to the

1

Under review as a conference paper at ICLR 2020

goal of transferring embodied agents from simulation to reality. Once in the real world, an agent
should be capable of learning new tasks – such as finding new objects or handling new questions
– and be able to cope with the non-stationarity of a changing world. Thus, we seek to answer the
following question: Do different embodied navigation tasks induce different visual representations?

Contributions. We study our primary question in the context of the task of Object Navigation
(ObjectNav), e.g. ‘Go to the X’. We define two different embodied tasks by constructing disjoint splits
of target objects, allowing us to understand the exact differences between our tasks. We then adapt the
methodologies proposed in Raghu et al. (2017) and Morcos et al. (2018a) to examine the impact the
task has on the visual representation. We first perform our experiments using SqueezeNet1.2 (Iandola
et al., 2016) as parameter efficient networks would be a good choice for embodied agents deployed
on real robots. We find that, surprisingly, differences in the task do not lead to a measurable effect on
the visual representation. We leverage this knowledge to show that visual representations trained for
one tasks are useful for learning another, and, surprisingly, allow for more sample efficient learning.

Next, we design a special case where the different tasks constrain the agent to spatially disjoint
locations in the environment, such that the agents should explore different areas during training,
resulting in different representations and providing insight on how task independent visual represen-
tations emerge. We demonstrate that this task dependence negatively impacts the ability to re-use the
representation for new tasks.

We then consider how our choice of CNN impacted our findings by performing our analysis on
a second CNN, a version of ResNet50 (He et al., 2016) modified to have a comparable number
of parameters to SqueezeNet1.2, and find similar conclusions for the non-special case set of tasks.
For the spatially disjoint tasks however, the modified ResNet50 learns reasonably task-agnostic
representations, in contrast to our results for SqueezeNet, suggesting that ResNets contain inductive
biases that encourage more task-agnostic representations.

Finally, to evaluate the extent to which these results are environment dependent, we generalize our
analysis to transfer across multiple permutations of an environment and demonstrate representations
learned in one permutation of an environment are effective for the other permutations.

2 RELATED WORK

Representation analysis. Analyzing the representations of deep neural networks has been the subject
of many works. Initial works focused on analyzing individual neurons (Li et al., 2016; Zeiler &
Fergus, 2014; Bau et al., 2017; Arpit et al., 2017; Morcos et al., 2018b). In this work, however,
we examine the entire representation. Our closest related works, Raghu et al. (2017); Morcos et al.
(2018a), propose methods to examine the entire representation of neural networks in the context of
standard image classification tasks. We adopt their analysis tools and utilize them to analyze neural
networks in the context of embodied-vision tasks and reinforcement learning. See Section 3.2 for a
more detailed discussion of the benefits of these methods.

Reward-free reinforcement learning. Transfer of knowledge and representations is a paradigm
commonly used in task-agnostic and reward-free reinforcement learning. The goal of this paradigm
is to allow the agent to interact with its environment such that it gains general knowledge, thereby
allowing it to learn downstream tasks with less samples. These works provide the agent with a reward
signal such that it will explore its environment (or state-space). This can be formulated from an
information theoretic standpoint to provide intrinsic motivation Jung et al. (2011); Eysenbach et al.
(2018); Gregor et al. (2016); Haarnoja et al. (2017). Others provide a more direct signal in the form
of exploration based rewards Burda et al. (2018); Savinov et al. (2018). We differ from these works
by using representations learned via task-driven reinforcement learning directly for a different task.

Transfer Learning. Transfer learning seeks to transfer knowledge between a domain with labeled
data to another domain (Pan & Yang, 2009; Luo et al., 2017; Oquab et al., 2014). Transfer learning
has also been studied in the context of reinforcement learning by designing specific objectives or
model structures such that knowledge can be transferred between two tasks Oh et al. (2017); Bacon
et al. (2017); Taylor & Stone (2009). We do not use any specific architecture or objectives and
examine task dependence of vanilla architectures.

2

Under review as a conference paper at ICLR 2020

3 APPROACH

In this section, we outline our approach for answering our core question by describing the task we
examine and the method for comparing representations we leverage.

3.1 EXPERIMENTAL SETUP

Task. We examine the task of Object Goal Navigation (ObjectNav) due to its reliance on both
semantic and spatial understanding. In ObjectNav, an agent is given a token describing an object
in the environment, such as fridge, and then must navigate through the environment until it finds a
good view of the fridge and calls the stop action. To avoid under-specification of the task, we restrict
target objects to have at most two instances for a given class. Note that each target object is specified
uniquely by its object ID. The terminal reward given is proportional to how much of the target object
is in the agent’s field of view. At every time-step, a shaped reward proportional to the agents progress
towards the target object is also provided. See the supplementary for more details.

Environment. We use the extreme high-fidelity reconstructions in the Replica Dataset (Straub et al.,
2019) and simlate agents utilizing AI Habitat (Savva et al., 2019). We utilize these environment
so that our analysis will be more applicable to the ultimate goal of agents operating in reality. See
Fig. 1a for a top-down view of an environment and the supplement for example agent views.

Agent. The agent has 4 primitive actions, move_forward, which moves 0.25 meters forward;
turn_left and turn_right (which turn 10 degrees left and right, respectively), and stop which
signals that the agent believes it has completed its task. At every time-step, the agent receives an
egocentric RGB image and the token specifying the target object.

Policy. We parameterize our agent with 3 components. A visual encoder, a target encoder, and a
recurrent policy. The visual encoder utilizes SqueezeNet1.2 (Iandola et al., 2016) as the backbone
architecture as its combination of parameter efficiency and representational power is a logical choice
for embodied agents deployed on real robots. The target encoding is a 128 dimensional vector that is
learn-able and unique for each target object. The policy consists of a GRU (Cho et al., 2014) followed
by 2 fully connected layers. See the supplementary for more details. Note that the vast majority
(∼80%) of the learnable parameters are in the visual encoder. This is key to our analysis as other the
network is able to perform the task with a frozen randomly initialized visual encoder.

Training. We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) with Generalized
Advantage Estimation (Schulman et al., 2015) and the Adam optimizer (Kingma & Ba, 2014) to
train our agent. We train for 15,000 rollouts (∼ 61× 106 steps) to ensure converge across different
random seeds. See the supplementary for more details.

3.2 MEASURING THE SIMILARITY OF REPRESENTATIONS

A perhaps straight-forward approach to measuring the similarity of representations would be to simply
measure the distance (e.g., Euclidean or cosine) between their representations of the same inputs.
However, this approach is ill-suited to neural networks. Consider the following toy example: For a set
of inputs X , suppose that function f produces a representation that is uniform on the N-ball and define
f ′ = Af for an affine transform A. A simple distance calculation (or alternatively, dimensionality
reduction and clustering) would report a high distance between the two representations. Accounting
for affine transformations is important when analyzing neural networks as, for any given layer, one
can apply any affine transformation to the activations and the inverse to the next layer’s weights
without changing the network. Given two neural networks trained in the exact same way modulo the
random seed, there is no reason why their representations would be aligned despite computing very
similar (if not exact the same) functions (Li et al., 2016).

Instead, we follow the approach of Raghu et al. (2017); Morcos et al. (2018a) to compare the
representations of two deep neural networks. Given two neural networks, A and B, and a set of N
inputs, Raghu et al. (2017); Morcos et al. (2018a) compare the representations at layer L of both
networks by 1) extracting the neuron activation matrix, X , of both networks – where Xi,j is the
activation of the ith neuron on the jth input; and 2) compute the distance between the neuron activation
matrices using Canonical Correlation Analysis (CCA), a classic statistical technique (Hotelling, 1936).
CCA finds a basis which maximizes the correlation between two matrices and then computes the
correlation in that basis, thereby account for any affine transformations between two representations.

3

Under review as a conference paper at ICLR 2020

(a) Top-down view in the environment. Circles
denote the location of all target objects. Color-
ing denotes which target set objects are in for the
spatially disjoint split: blue for A, red for B, and
green is unused.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – SqueezeNet

A

B

A-B

(b) PWCCA results of comparing networks trained
on different embodied task. Down-sampling layers
are marked with [s=2]. Shading around the line
corresponds to a 95% confidence interval calcu-
lated via empirical bootstrapping.

Figure 1

It is worth noting that CCA (and variants) do not capture the “usefulness” of representation to the
downstream task.

We follow the technique proposed by Morcos et al. (2018a) to account for differing numbers of
noise dimensions between representations. This method weights CCA correlation coefficients by the
amount of variance each CCA direction explains in the real data. Given each of the CCA directions
hi and correlation coefficients ρi, Morcos et al. (2018a) first computes the projection coefficients
αi =

∑
k |〈di, Xk〉| and then computes 1 minus the weighted average of the correlation coefficients,

Dpwcca = 1.0− 1∑
k αk

∑
k αkρk, as the distance between representations.

4 HOW TASK-DEPDENDENT ARE LEARNED REPRESENTATIONS?

Core Hypothesis. Training for different embodied tasks induces different visual representations.
Due to Deep RL’s ability to overfit on even complicated tasks, it is reasonable to expect that the
representations learned will be highly tuned to their specific task.

Two tasks. To gain insight into the impact of task differences on visual representations, we must
first understand the differences between the tasks themselves. An ideal task set should contain tasks
for which the learning and reward dynamics are very similar, but which differ in simple and easily
understandable ways. To accomplish this, we randomly divide the set of target objects, X , into
two equally sized and disjoint subsets A and B such that A ∩ B = ∅, A ∪ B = X , and |A| = |B|
(assuming |X | is even). We average our results over three different choices of A and B. These two
tasks therefore share the same environment and action space and have similar visual statistics, but
differ only in the set of target objects to which the agent must navigate. To control for the effect
of any particular environment, we rerun these results over 4 additional environments in the Replica
dataset – apartment_0, office_2, room_0, frl_apartment_0.

Measuring the task dependence of representations. A naive approach to using PWCCA to mea-
suring the effect of different target sets on the representation learned would be to train a policy for A
and a policy for B and then measure the dissimilarity. This approach doesn’t control for the effect of
different random initialization, and, more importantly, doesn’t ground the values reported by PWCCA
(which is a unitless metric). Instead, we compare the distance between models trained on different
tasks to the distance between models trained on the same task. If the distance between models trained
on different tasks is higher than that between models trained on the same task, representations are
task-dependent whereas if the distance between models trained on different tasks is the same as that
between models trained on the same task, representations are task-agnostic.

4

Under review as a conference paper at ICLR 2020

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet – B
Scratch
A → B, New Policy
A → B, Fine-tuned Policy

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet – A ∪ B
Scratch
A → B, New Policy
A → B, Fine-tuned Policy

Figure 2: Results of transferring policies learned on one task to the other task. Train reward while
learning target set B (left) and target set A ∪ B (right) under three different regimes.

To compare representations across different tasks, we train N networks for A and N networks for
B, compute the PWCCA distance for each pair of networks, and then average over the N2 pairwise
comparisons. To compare representations learned for the same task, we take the N networks trained
on A (or B), and compute the PWCCA distance for the

(
N
2

)
network pairs.

We use the following notation to denote our comparison: comparisons across networks trained on
the same task are denoted without a dash, e.g. A is the comparison of networks trained on A among
themselves. Comparisons across networks trained on different tasks are denoted with a dash, e.g. A-B
is the comparison between networks trained on A and networks trained on B.

Representations are not influenced by the training task. If networks trained on different tasks
learn different representations, we would expect the A-B distance to be higher than that for A or B
alone. In contrast, we found that distances were similar regardless of task trained, suggesting that
networks learn task-agnostic visual representations, Fig. 1b. This result is surprising as it implies
that the differences in learning dynamics, reward, and incentives induced by the different target splits
have no more impact on the representation than the random seed alone. Despite arising directly from
training on that set of target object, the visual representation shows no bias in how it represents the
environment. To determine whether this effect is dependent on the particular environment used, we
repeated this analysis across four additional environments and found similar trends (Fig. A3). A
direct and actionable implication of this result is that the representation learned for one task should
transfer to another.

5 TRANSFERRING BETWEEN A AND B
We aim to generate policies with task agnostic visual representations as we hope that these vi-
sual representations can be easily adapted to new tasks. In this section, we evaluate whether the
PWCCA results above, which suggest that agents learn task-agnostic representations, also imply that
representations learned on A are sufficient to learn B.

Setup. We examine two types of transfer experiments: 1) transferring the policy learned on A to B
(or from B to A), and 2) transferring the policy learned on A to A ∪ B (the full set of targets). In all
transfer experiments, every layer of the visual encoder is frozen. We consider both fine-tuning the
policy learned on A and learning a new policy from scratch.

Results. As suggested by the PWCCA experiments, we found that visual representations learned on
A are effective for learning both B andA ∪ B (Fig. 2). We also found fine-tuning to be more effective
than learning a new policy from scratch, suggesting that general navigation skills can transfer in
addition to visual representations. These results suggest that the representational similarity observed
in Sec. 4 leads to directly transferable representations, and confirms that agents in this environment
learn task-agnostic representations.

Sample efficient learning of new target objects. We also consider the sample efficiency of learning
B with a frozen visual representation trained for A compared to learning B from scratch. Imagine an
agent deployed as a home robot: it can be pre-trained for some set of target objects but then must be
capable of learning new objects over time. Ideally we would be able to share and re-use large parts of
the agent – its visual encoder for instance – to learn these new target objects. The results in Fig. 2

5

Under review as a conference paper at ICLR 2020

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

0.5

D
pw

cc
a

Spatially Disjoint – SqueezeNet

A

B

A-B

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

Spatially Disjoint Split – SqueezeNet

B, A → B
B, scratch

Figure 3: (Left) PWCCA analysis on the spatially disjoint target sets for SqueezeNet. (Right) Transfer
results on the spatially disjoint split for SqueezeNet

(left) imply that using the representation learned on A as a feature-extractor may provide an efficient
method for learning new sets of target objects.

We measure sample efficiency by training with five different random seeds and recording the number
of iterations (rollouts) needed to reach a reward of 0.8 on average, which represents good performance
on this task. We compare learning B from scratch, and learning B with a frozen visual representation
pre-trained on A. While Fig. 2 (left) shows that fine-tuning a copy of the existing policy is more
sample efficient, we examine the more general case of learning the policy from scratch.

Surprisingly, utilizing a frozen visual representation learned on A is a more sample efficient strategy
for learning B than learning B from scratch (Fig. 2), suggesting that the visual represnetation learned
on A is generalizable. We note that learning B could potentially be done more efficiently as we have
not optimized our selection of reinforcement learning algorithm for sample efficiency. An additional
benefit of re-using and freezing the visual encoder is that reinforcement learning algorithms which
provide increased sample efficiency but have difficulties scaling to millions of parameters can be used
instead of PPO (which scales to millions of parameters, but does not maximize sample efficiency).

6 A SPATIALLY DISJOINT SPLIT

In the previous sections, we demonstrated that the visual representations learned across tasks are
highly similar and can be transferred across tasks, but the aspects of these tasks which enable task-
agnostic learning remain unclear. One possibility is that both target sets cover the entire visual
manifold, leading agents to explore the same portions of the environment across tasks. To test this
hypothesis, we created hand-designed target sets which contain little to no spatial overlap.

Setup. We examine spatially disjoint sets with multiple target objects (see Fig. 1a (red vs. blue)). We
examine the effect of this spatially disjoint split on both the PWCCA results and the transfer results.

Representation Similarity. If the underlying factor that causes representations to be similar is
spatial coverage, we would expect the distance between the representations learned on A and the
representations learned on B to increase in the spatially disjoint case. Consistent with this hypothesis,
we found that representations differed between A and B when models were trained on spatially
disjoint splits (Fig. 3). This result suggests that our previous PWCCA results (Fig. 2) were not merely
finding similarity were not artifactual and provides support for our hypothesis that similar coverage
is a necessary condition for representational overlap. We repeat this analysis over four additional
environments and find similar trends (see Fig. A5).

Representation re-usability. The PWCCA results show that agents trained on the spatially disjoint
split learn different representations for A and B. We also examine if this difference in representation
affects the re-usability of representations. We do so by re-running the transfer efficiency experiments1.
We found that while B can still be learned with a representation trained on A (Fig. 3), we no
longer observe the gain in sample efficiency observed on the randomly divided target object splits,
confirming that the learned representations are more distinct. We note, however, that transferred

1note that the representation learned on A is taken after 2,000 iterations (rollouts) of training for A

6

Under review as a conference paper at ICLR 2020

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – ResNet35

A

B

A-B

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – ResNet35

B, A → B
B, scratch

Figure 4: (Left) PWCCA results of comparing networks trained on different embodied task for the
ResNet35 model. (Right) Transfer results for randomly split target objects for the ResNet35 model.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.1

0.2

0.3

0.4

D
pw

cc
a

Spatially Disjoint – ResNet35

A

B

A-B

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

Spatially Disjoint Split – ResNet35

B, A → B @ 2,000 It
B, A → B @ 14,800 It
B, scratch

Figure 5: (Left) PWCCA results of comparing networks trained on the spatially disjoint split for
ResNet35. (Right) Transfer results for disjoint split of target objects for the ResNet35 model.

representations are not substantially worse than representations learned from scratch, suggesting that
some information is shared even in the spatially disjoint case.

7 A DIFFERENT ARCHITECTURE

Next, we test how these trends transfer to a different architecture. Specifically, we examine a
modified ResNet50 (He et al., 2016) architecture. We reduce the number of parameters such that the
network has a similar number of parameters to SqueezeNet1.2. The resultant network has 35 layers,
and we therefore refer to it as ResNet35. We replace all Batch Normalization layers with Group
Normalization (Wu & He, 2018) layers. See the supplementary material for more details. We train
with the previous procedure and hyper-parameters.

Random target splits. Consistent with SqueezeNet models, we found that randomly distributed
target objects have no effect on the visual representation learned (Fig. 4), indicating that our initial
choice of CNN had no impact on this result. We repeat this analysis over four additional environments
and find similar trends (see Fig. A4). We also observe an interesting behavior between the down-
sampling layers; the distance between representations induced by different random seeds decreases.
This suggests that residual connections help networks learn more similar representations. Fig. 4
shows the results of using a representation learned on A to learn B. We once again see that the
representation learned onA is sufficient for learning B and that this is a more sample efficient strategy
than training a network for B from scratch.

Spatially disjoint split. In contrast to our results on SqueezeNet, we observed qualitatively different
behavior in ResNet35 models trained on spatially disjoint splits. While spatially disjoint splits induced
different learned representations in Squeezenet, for ResNet35, we observed minimal separation
between the inter-comparisons (A-B) and the intra-comparisons (A, B), see Fig. 5. We repeat this
analysis over four additional environments and find similar trends (see Fig. A6).

7

Under review as a conference paper at ICLR 2020

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

D
pw

cc
a

Replica PointNav – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Replica PointNav – ResNet35

A

B

A-B

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ew

ar
d

Replica PointNav– SqueezeNet

Scratch
A → B, New Policy
A → B, Fine-tuned Policy

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ew

ar
d

Replica PointNav– ResNet35

Scratch
A → B, New Policy
A → B, Fine-tuned Policy

Figure 6: Our main experiments (PWCCA and transfer-ability) for disjoint sets of training environ-
ments. We find results consistent with our prior findings – singular differences to not impact the
representation in a measurable way.

We then transferred spatially disjoint representations, and found that learning B from the representa-
tion learned on A after 14,800 iterations (the same number of iterations as the PWCCA plot) is faster
than learning from scratch (Fig. 5). However, if we take the representation after 2,000 iterations (when
the average reward on A reaches 0.8), we observe the reverse, implying that after 2,000 iterations the
representation learned on A is specific to that task, but converges to a general one.

8 GENERALIZATION TO MULTIPLE ENVIRONMENTS

Finally, we generalize our analysis to multiple permutations of an environments. Specifically, the
Replica dataset contains 6 different version of the same apartment, with dramatically different config-
urations of the objects (see frl_apartment_{0-5}). We look at the question Does the representation
depend on the position of objects?. We examine this question by training agents for PointGoal Navi-
gation (Anderson et al., 2018a) – in PointNav an agent must navigate to a given location specified by
a point in ego-centric coordinates – where A is a random selection of 3 environments and B is the
remaining. We once again find that the representation learned is surprisingly invariant to changes
(Fig. 6) – the location of objects does not impact the representation in a measurable way. We verify
this with transfer experiments and find that, in this case, the information learned in environments A
is sufficient to perform the task well in environments B.

9 DISCUSSION

We present a series of results and analysis centered around the question: Do different embodied
navigation tasks induce different visual representations? To answer this question, we constructed two
embodied navigation tasks by creating disjoint splits of target objects for the task of ObjectNav. We
then used PWCCA (Raghu et al., 2017; Morcos et al., 2018a) to measure the influence of the task on
the representation, the first to do so for deep RL. We found that for both SqueezeNet and ResNet
visual encoders, the task does not influence visual representation, allowing for use in learning new
tasks in a sample efficient manner. We then hand-designed a spatially disjoint split to create tasks
than influence the visual representation. We found that this has the desired effect for our SqueezeNet
models, but does not for the ResNet models. Our work provides valuable and actionable insight into
how the task influences the representation for embodied navigation tasks.

Caveats. Our results and analysis have the following primary caveat. The two tasks we examine,
while distinct, are quite similar. Designing experiments for this type of analysis across tasks with less
similarity while not introducing too many additional variables is an avenue for future work.

Takeaways. We show that under certain settings, task agnostic visual representation can be induced.
Our results suggest that on ingredient is coverage of the visual space that will be seen, implying that
designing tasks and environments which maximize the visual diversity seen by the agent is paramount.
However, this conclusion is somewhat less clear following our experiments with ResNet35, which
appear to learn more task-agnostic representations in general. While ResNets have been used for
embodied vision tasks in prior works (Fang et al., 2019; Sax et al., 2018; Anderson et al., 2018c;
Wijmans et al., 2019), they are not common and and are rarely trained directly for their task. Our
results suggest that utilizing ResNets, even with dramatically less parameters, will help to transfer
representations between different embodied tasks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of
embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018a.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086,
2018b.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In CVPR, 2018c.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. ICML, 2018.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 233–242. JMLR. org, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6541–6549, 2017.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. arXiv preprint
arXiv:1705.02364, 2017.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
Question Answering. In CVPR, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. CVPR, 2019.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. Conference On Learning Theory, 2018.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. IQA: Visual question answering in interactive environments. In CVPR, 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In CVPR, 2017.

9

Under review as a conference paper at ICLR 2020

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1352–1361. JMLR. org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

H Hotelling. Relations between two sets of variates. Biometrika, 1936.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Tobias Jung, Daniel Polani, and Peter Stone. Empowerment for continuous agent—environment
systems. Adaptive Behavior, 19(1):16–39, 2011.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better? In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In ICLR, 2016.

Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of transferable
representations acrosss domains and tasks. In Advances in Neural Information Processing Systems,
pp. 165–177, 2017.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In NeurIPS, 2018a.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance of
single directions for generalization. ICLR, 2018b.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401, 2015.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of
over-parametrization in generalization of neural networks. ICLR, 2019.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In ICML, pp. 2661–2670. JMLR. org, 2017.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In NeurIPS, 2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

10

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Under review as a conference paper at ICLR 2020

Avraham Ruderman, Richard Everett, Bristy Sikder, Hubert Soyer, Charles Beattie, Jonathan Uesato,
Ananya Kumar, and Pushmeet Kohli. Uncovering surprising behaviors in reinforcement learning
via worst-case analysis. Safe Machine Learning workshop at ICLR, 2019.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timothy Lilli-
crap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274,
2018.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

Alexander Sax, Bradley Emi, Amir R Zamir, Leonidas Guibas, Silvio Savarese, and Jitendra Malik.
Mid-level visual representations improve generalization and sample efficiency for learning active
tasks. arXiv preprint arXiv:1812.11971, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J. Engel,
Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge, Yajie Yan,
Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi,
Michael Goesele, Steven Lovegrove, and Richard Newcombe. The Replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and
C Lawrence Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. arXiv
preprint arXiv:1902.04522, 2019.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Woj-
ciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin
Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor
Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,
Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Tim-
othy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaS-
tar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan
Lee, Irfan Essa, Devi Parikh, and Dhruv Batra. Embodied question answering in photorealistic
environments with point cloud perception. arXiv preprint arXiv:1904.03461, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

11

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Under review as a conference paper at ICLR 2020

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint, 2018.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In ICRA, 2017.

12

Under review as a conference paper at ICLR 2020

A ARCHITECTURE DETAILS

A.1 SQUEEZENET ENCODER

For our SqueezeNet1.2 (Iandola et al., 2016) based visual encoder, we utilize all layers expect for the
final convolution and global average pool. Given a 224×224 image, this produces a (512×13×13)
feature map. We follow this with two convolution layers, Conv-[42, k=3, d=2], Conv-[21, k=3,
d=1] where d specifies the dilation, to produce a (21×7×7) feature map. This feature map is then
flattened and transformed to a 256d vector with a fully connected layer.

A.2 RESNET ENCODER

For our ResNet50 (He et al., 2016) based visual encoder, we start with all residual layers (all layers
minus the global average pool and sofmax classifier). We then reduce the number of output channels
at each layer by a factor of 4. We then remove 1 residual block within each layer and remove an
additional residual block in the 3rd layer. ResNet50 contains 3 blocks in the first layer, 4 in the
second, 6 in the third, and 3 in fourth. Our ResNet35 contains 2 blocks in the first layer, 3 in the
second, 4 in the third, and 2 in the fourth. We replace all Batch Normalization layers with Group
Normalization (Wu & He, 2018) layers, to account for the highly correlated observations seen in
on-policy reinforcement learning.

We reduce the 512×7×7 feature map to 41×5×5 with two convolution layers, Conv-[41, k=1],
Conv-[41, k=3]. This feature map is then flattened and transformed to a 256d vector with a fully
connected layer.

A.3 POLICY

Given the 256-d visual feature, we concatenate the 128-d target encoding and use the resulting 384-d
vector as input to a single layer GRU (Cho et al., 2014) with a 256-d hidden state. The hidden state is
reduced to 128-d with a fully connected layer, and the 128-d representation is used to produced the
softmax distribution over the action space and estimate the value function.

B IMPLEMENTATION DETAILS

We utilize an in-house built simulator to perform our experiments. We perform collision checking on
a pre-computed occupancy grid and no partial steps are allowed.

Models are trained on a single node with 8 Tesla V100 GPUs. We use PyTorch to trian our agent; we
base our training code on (Kostrikov, 2018).

We utilize the publicly available implementation of PWCAA (Morcos et al., 2018a): https://
github.com/google/svcca

C TASK DETAILS

The reward at time t is given as follows:

Rt =

{
IoUt

IoUmax
action = stop

−0.05 ·∆geo_dist otherwise

Where IoU is the intersection over union between the semantic segmentation of the target object and
a predefined bounding box. IoUt is the IoU at the agents current position. IoUmax is the maximum
possible IoU for the target object as determined by exhaustive search within a reasonable radius of
the target object.

D TRAINING DETAILS

We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) with Generalized Advantage
Estimation (Schulman et al., 2015). We set the discount factor, γ, to 0.99 and τ to 0.95. We collect
128 frames of experience from 32 agents running in parallel (possibly working on different tasks) and
then perform 4 epochs of PPO with 2 mini-batches per epoch. We utilize the Adam optimizer (Kingma

13

https://github.com/google/svcca
https://github.com/google/svcca

Under review as a conference paper at ICLR 2020

Figure A1: Example images from the environment we utilize.

& Ba, 2014) with a learning rate of 10−4 and a weight decay of 10−5. Note that unlike popular
implementations of PPO, we do not normalize advantages as we find this often leads to instabilities
during training. We train for 15,000 rollouts (∼ 61× 106) to ensure converge across different random
seeds.

14

Under review as a conference paper at ICLR 2020

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet

A ∪ B, scratch
A, scratch
B, scratch

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – ResNet35

A ∪ B, scratch
A, scratch
B, scratch

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

Spatially Disjoint Split – SqueezeNet

A, scratch
B, scratch

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

Spatially Disjoint Split – ResNet35

A, scratch
B, scratch

Figure A2: Reward curves for both models on various sets of tasks.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

−0.02

0.00

0.02

0.04

∆
D

pw
cc

a

Randomly Split – SqueezeNet

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Randomly Split – Environment 0 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 1 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 2 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

D
pw

cc
a

Randomly Split – Environment 3 – SqueezeNet

A

B

A-B

Figure A3: SqueezeNet results for randomly split sets of target objects on 4 environments from the
replica dataset. First plot shows the average ∆Dpwcca = Dpwcca(A-B)−(Dpwcca(A)−Dpwcca(B))/2.0
across all environments.

15

Under review as a conference paper at ICLR 2020

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

−0.03

−0.02

−0.01

0.00

0.01

0.02

∆
D

pw
cc

a

Randomly Split – ResNet35

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Randomly Split – Environment 0 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Randomly Split – Environment 1 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 2 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Randomly Split – Environment 3 – ResNet35

A

B

A-B

Figure A4: ResNet35 results for randomly split sets of target objects on 4 environments from the
replica dataset. First plot shows the average ∆Dpwcca = Dpwcca(A-B)−(Dpwcca(A)−Dpwcca(B))/2.0
across all environments.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

−0.02

0.00

0.02

0.04

∆
D

pw
cc

a

Spatially Disjoint – SqueezeNet

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Spatially Disjoint – Environment 0 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Spatially Disjoint – Environment 1 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Spatially Disjoint – Environment 2 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Spatially Disjoint – Environment 3 – SqueezeNet

A

B

A-B

Figure A5: SqueezeNet results for spatially disjoint split sets of target objects on 4 environments
from the replica dataset. First plot shows the average ∆Dpwcca = Dpwcca(A-B) − (Dpwcca(A) −
Dpwcca(B))/2.0 across all environments.

16

Under review as a conference paper at ICLR 2020

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

−0.04

−0.02

0.00

0.02

∆
D

pw
cc

a

Spatially Disjoint – ResNet35

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Spatially Disjoint – Environment 0 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Spatially Disjoint – Environment 1 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Spatially Disjoint – Environment 2 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Spatially Disjoint – Environment 3 – ResNet35

A

B

A-B

Figure A6: SqueezeNet results for spatially disjoint split sets of target objects on 4 environments
from the replica dataset. First plot shows the average ∆Dpwcca = Dpwcca(A-B) − (Dpwcca(A) −
Dpwcca(B))/2.0 across all environments.

17

