Under review as a conference paper at ICLR 2020

REPRESENTING MODEL UNCERTAINTY OF NEURAL NETWORKS
IN SPARSE INFORMATION FORM

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses the problem of representing a system’s belief using Multi-
variate Normal Distributions (MNDs) where the underlying model is based on
a deep neural network (DNN). The major challenge with DNNs is the computa-
tional complexity that is needed to obtain model uncertainty using MNDs. To
achieve a scalable method, we propose a novel approach that expresses the param-
eter posterior in sparse information form. Our inference algorithm is based on a
novel Laplace Approximation scheme, which involves a diagonal correction of
the Kronecker-factored eigenbasis. As this makes the inversion of the information
matrix intractable - an operation that is required for full Bayesian analysis, we de-
vise a low-rank approximation of this eigenbasis and a memory-efficient sampling
scheme. We provide both a theoretical analysis and an empirical evaluation on
various benchmark data sets, showing the superiority of our approach over existing
methods.

1 INTRODUCTION

Whenever machine learning methods are used for safety-critical and health-related applications such
as medical image analysis, autonomous driving, or mobile robotics, it is crucial to provide a precise
estimation of the failure probability of the learned predictor. Therefore, most of the current learning
approaches return distributions rather than single, most-likely predictions. For example, DNNs
trained for classification usually use the softmax function to provide a distribution over predicted
class labels. Unfortunately, this method tends to severely underestimate the true failure probability,
leading to overconfident predictions (Guo et al.l 2017). The main reason for this is that neural
networks are typically trained with a principle of maximum likelihood, neglecting their epistemic or
model uncertainty with point estimates of the parameters.

A recent work by |Gal| (2016)) shows that this can be mitigated by using dropout at test time. This
so-called Monte-Carlo dropout (MC-dropout) has the advantage that it is relatively easy to use and
therefore very popular in practice. However, MC-dropout also has significant drawbacks. First, it
requires a specific stochastic regularization during training. This limits its use on already well trained
architectures, because current networks are often trained with other regularization techniques such
as batch normalization. Moreover, it uses a Bernoulli distribution to represent the complex model
uncertainty, which again leads to an underestimation of the predictive uncertainty.

Concurrently, several researchers proposed alternatives without these drawbacks of MC-dropout.
Variational inference (Khan et al.} 2018; Kingma et al.| 2015} |Graves, [201 1)) and expectation propaga-
tion (Herandez-Lobato & Adams, [2015) are such examples. However, these methods use a diagonal
covariance matrix which limits their applicability as the model parameters are often highly correlated
in deep architectures. Using so-called matrix normal distribution (Gupta & Nagar, [1999), |Sun et al.
(2017); |[Louizos & Welling| (2017} 2016); Zhang et al.| (2018); Ritter et al.| (2018a)) show that the
correlations between the parameters can also be computed. This representation has the advantage
that its covariance can be decomposed into Kronecker products of smaller matrices. However, the
distribution suffers from the fact that not all matrices can be Kronecker decomposed. As a result, it
usually induces crude approximations of the covariance (Bae et al.| 2018)).

On the other hand, MND approaches, which do not have these drawbacks, are difficult to exploit
in the context of deep learning. This is due to the fact that the covariance scales quadratic to the
number of parameters, resulting in intractable storage, let alone the inference. Therefore, we propose

Under review as a conference paper at ICLR 2020

to represent the MND in sparse information form and focus on designing an associated inference
framework. As a first step, we propose a new Laplace Approximation (LA) for DNNSs, in which we
improve the Kronecker factored approximations of the Hessian (George et al.,|2018)) by "correcting”
the diagonal variance in parameter space. We show that these can be computed efficiently, and that
the information matrix of the resulting parameter posterior is more accurate in terms of the Frobenius
norm. Unlike existing works, this results in estimating the model uncertainty in information form of
the MND.

Furthermore, we propose a novel low-rank representation of the resulting Kronecker factorization,
which paves the way to applications on large network structures trained on realistically sized data sets.
To realize such sparsification, we propose a novel algorithm that enables a low-rank approximation
of the Kronecker factored eigenvalue decomposition, and we further introduce a memory-efficient
sampling scheme. As we demonstrate in experiments on benchmark data sets, our approach provides
lower calibration errors and more accurate uncertainty estimates for out-of-distribution samples. Our
method is still efficient in terms of memory and practical, as it does not require changes in the training
procedure. A detailed theoretical analysis is also provided for further insights.

In summary, our contributions are as follows.

e A new Laplace Approximation scheme with a diagonal correction to the "eigenvalue re-
scaled" approximations of the Hessian as a practical inference tool. Unlike others, our
method infers the model uncertainty in information form of Multivariate Normal Distribu-
tion.

¢ A novel low-rank representation of Kronecker factored eigendecomposition for tractable
sampling from Multivariate Normal Distribution. For this, we introduce a novel algorithm
to enable a low rank approximation (LRA) of the Kronecker-factored and eigenvalue-
decomposed matrices. We also demonstrate a memory-efficient sampling algorithm.

As a result, our approach serves as a sparse formulation of the MND in deep Bayesian Neural
Networks.

1.1 RELATED WORKS

Approximation of the Hessian: Instead of diagonal approximations, e.g. (Becker & Lecunl 1989
Salimans & Kingmal [2016), several researchers have focused on various ways of approximating the
Hessian, e.g. (C. Liu & Nocedall [1989; Roux & Fitzgibbon, 2010; |[Hennig, [2013). Amongst them,
layer-wise Kronecker Factor approximation of |Grosse & Martens| (2016); [Martens & Grosse (2015);
Botev et al.[(2017);|Chen et al.[(2018)) have demonstrated a notable scalability (Ba et al.| 2017). A
recent extension can be found in (George et al.| [2018)) where the authors propose to re-scale the
eigen-values of the Kronecker factored matrices so that the diagonal variance in its eigenbasis is
accurate. The work presents an interesting idea as one can prove that in terms of a Frobenius norm,
the proposed approximation is more accurate than that of Martens & Grosse|(2015). However, as this
approximation is harmed by inaccurate estimate of eigenvectors, we propose to further correct the
diagonal elements in the parameter space.

Laplace Approximation: Amongst various methods such as variational inference (Hinton & van
Campl|1993)) and sampling (Neal,|1996), we focus on LA as a practical inference framework (MacKay,
1992)). Recently, diagonal (Becker & Lecun,|1989) and Kronecker-factored approximations (Botev
et al.l 2017) to the Hessian have been applied to LA by [Ritter et al| (2018a). The authors have
further proposed to use LA in continual learning (Ritter et al.| [2018b), and have demonstrated a
competitive results by significantly outperforming its benchmarks (Kirkpatrick et al.,[2017; [Zenke
et al., [2017). We build upon Ritter et al.| (2018al) but propose to use more expressive posterior
distribution than matrix normal distribution. SLANG (Mishkin et al., [2018)) share similar spirit to
ours in using a low-rank plus diagonal form of covariance where the authors show the effects of
low-rank approximation in detail. Yet, SLANG is different to ours as they do not explore Kronecker
structures. SLANG has been tested in relatively small data sets.

Sparse Information Filters: Inspired by (Thrun et al., 2004) from SLAM literature, we introduce
sparse information matrix in the context of approximate inference. A main difference, however, is
that DNNs have high dimensions and thus, we explore Kronecker structure.

Under review as a conference paper at ICLR 2020

2 BACKGROUND AND NOTATION

We model a neural network as a parameterized function fy : RM — RM where § € R™ are the
weights and Ny = N; + - -+ + N;. This function fj is in fact a concatenation of / layers, where each
layer i € {1,...,I} computes h; = Wiai_; and a; = ¢(hi—;). Here, ¢ is a nonlinear function, a; are
activations, /; linear pre-activations, and W; are weight matrices. The bias terms are absorbed into

T
W; by appending 1 to each a;. Thus, 6 = [vec(Wl)T vec(Wo)T ... vec(W,)T] where vec is the
operator that stacks the columns of a matrix to a vector. Let g; = oh;, the gradient of h; w.r.t 6.

Using LA, the parameter posterior can be approximated with a Gaussian, in which, the mean is
given by the MAP estimate 0y,4p and the covariance by the Hessian of the log-likelihood (H + 71)1
(assuming a Gaussian prior with precision 7). When using standard loss functions such as MSE or
cross entropy and piece-wise linear a; (e.g RELU), a good approximation of the Hessian is given by

the Fisher information matrix IM) I = E [6060T] m This matrix is of size Ny X Ny, which means

that it is intractable even for moderately sized neural networks. Therefore, we use an approximation
based on a Kronecker factorization of I.

To make the computation tractable, a number of approximations are applied. First, it is assumed that
the weights across layers are uncorrelated, which corresponds to a block-diagonal form of I with
blocks Iy, I, ..., I;. Then, each realisation of block I; is represented as a Kronecker product

860,60 = ai_1al | ® gig! - (1)

This has the advantage that the representation is more compact and that the inverse can be computed
efficiently using (A ® G)™! = A~ ® G~ Then, in a further approximation step, matrices A;_; and G;
are assumed to be statistically independent, leading to

Ligpe = E [ai—laiT_l ®gigiT] ~E [ai—laiT_l] ®E [gigiT] = A1 ®Gi. 2

We refer toMartens & Grosse|(2015) for details on the Kronecker Factored Approximate Curvature
(KFAC). As demonstrated by |Ba et al.|(2017), KFAC even scales to big data sets such as ImageNet
(Krizhevsky et al.,2012) with large DNNs. Note that A; € R and G; € R™™ where the number
of weights per layer is N; = nym;. Thus, the complexity of IM is reduced significantly. Performing the
LA based on equation[2] we can model the weight posterior per layer as a matrix normal distribution
(proposed by [Ritter et al.| (2018a)). See definitions in section [A]

p: | x,y) ~ Nvec(Wimap), AL} ® G = MN(Wiaap, A, GT). 3)
Typically, IM is scaled by the number of data points N and incorporates the Gaussian prior 7.

NI + 71 ~ (VNA; + V7I) @ (VNG + VrI). (4)

LA for DNNs is practical, because the IM is computed after training. Moreover, its symmetry
approximations (Bishopl 2016) may not be severe, as DNNs have a high dimension, and no methods
can accurately estimate in every directions. Yet, the approximation in equation[2]has severe limitations.
For example, it assumes that the IM can be Kronecker decomposed. Equation |4 induces also
approximation errors. To mitigate this, we propose an alternative approach, as shown next.

3 METHODOLOGY

3.1 LAPLACE APPROXIMATION WITH A DIAGONAL CORRECTION

Following |George et al.| (2018]), we first propose to use an eigenvalue correction in the Kronecker
factored eigenbasis for LA. For simplify, we drop layer indices i and explanation herein applies

The expectation herein is defined wrt. the paramerterized density py(y|x) assuming i.i.d. samples x.

Under review as a conference paper at ICLR 2020

layer-wise. Let I = VAV be the eigendecomposition of IM per layer. From this it follows
A=E [VT6960T V]. Defining elements of layer wise matrices as i € {1,2,--- , N},

Ai =E[(V"60)7]. (5)

Further, define the eigendecomposition of A and G in equation[2{as A = UxS 4 U/{ and G = UgSgU (T;
Then, from the properties of the Kronecker product it follows

Lie ~A®G = (Us @ Ug)(SA®Sc)Us® Ug) . (6)

This approximation can be improved by replacing (S 4 ® S ¢) with the eigenvalues A from equation [5]
where V is set to (Us ® Ug). We denote it as EFB:

L = (Us ® Ug)A(Us ® Ug)" and I{ = (Us ® U)A™ (Us ® Ug)". (7)

This eigenvalue correction has many desirable properties. First, it holds ||[I — I |lp < [T — Ixpacllp
wrt. the Frobenius norm. Second, multiplying diagonal matrices by Kronecker products already
impose less degrees of freedom, which makes the computation more accurate by correcting the
diagonal in the eigenbasis. Lastly, due to the orthogonality of eigenvectors and their Kronecker
products, the inverse computation only involves the diagonal matrix A. Thus, the resulting weight
posterior using EFB can be expressed with eigenvalue-corrected matrix variate distribution (refer to
section[A) as shown below.

PO x,y) ~ Nvec(Wuap), I;) = EMNWayap, Us, A, U) ®)

The regularization terms can again be incorporated, yet without inducing additional approximation
using 7/ = (U, ® Up)tI(Us ® Ug)" and exploring the orthogonality of (U, ® Ug):

NI + 71 = NUs @ Ug)A(Uy ® UG)T +Tl =(Us® Ug)NA +DH(Us ® UG)T. 9)

However, there is an approximation in EFB since (Us ® Ug) is still an approximation of the true
eigenbasis V. Therefore, we propose a further improvement of the approximation by correcting the
diagonal entries of the EFB in parameter space, as shown next.

Intuitively, EFB only performs a correction of the diagonal elements in the eigenbasis, but when
mapping back to the parameter space this correction is again harmed by the inexact estimate of the
eigenvectors. Of course, an exact estimation of the eigenvectors is infeasible, but it is important to note
that the diagonals of the exact IM I;; = E [69?] can be computed efficiently using back-propagation.
This and the fact that the off-diagonal elements of the IM are weaker with larger data sets or when
using weight normalization (Neyshabur et al.| (2015)); Desjardins et al.| (2015)); |Salimans & Kingma
(2016)), motivates the idea to correct the approximation further as follows:

It = (Ua @ Ug)A(Ux @ Ug)' + D where

D;; = E[o67] - f}(vw VALY (4o
k=1

Note that similar ideas of adding a diagonal correcting term are used for sparse Gaussian Processes
(GPs). One prominent example is the work of |Snelson & Ghahramani| (2006)), which also introduces
an additional diagonal correction term based on the idea of so-called pseudo-input points. In our
work, we correct the variance in the information form of the posterior Normal distribution, such that
our approximation is at least exact on its diagonals of IM.

In equation equation , we have represented (Uy @ Ug)A(Uy ® Uc)g as 2 (Voo VAx)? where
V =(Us®Ug) € R™* ™ is a Kronecker product with diagonal elements v, , (see definition 1 below).
It follows from the properties of the Kronecker product that @ = m(i — 1) + k. The derivation is shown

Under review as a conference paper at ICLR 2020

in section[B] Note that in this given form, the Kronecker products are never directly evaluated but the
diagonal matrix D can be computed recursively, making it computationally feasible.

Definition 1: Given matrix A € R"™“ and B € R"™?, the Kronecker product of V. = A ® B € R"™™>® jg
given by vo g = a;jby, where the indices « = n(i — 1) + k and 8 = b(j — 1) + I. Here, the indices of the
matrices Aand Bareie{l,--- ,m}, je{l,---,a}, ke{l,--- ,nyandl e {l,---,b}

Now, our LA models the weight posterior distribution in an information form of MND as shown in
equation [IT] With this formulation one can store its covariance with matrices of smaller sizes. IV
denote here information vector (formulation is in section [A).

PO x,y) ~ Nvec(Wyap), Inp) = IN(Wijip, (Ua ® Ug)A(Ua ® Ug)" + D) (11)

Now, some of the interesting theoretical properties are as follows with proofs provided in section[C]

Lemma 1: Let I € RV pe the real Fisher information matrix, and let I e RYN gnd Iy e RNXN
be the DEF and EFB estimates of it respectively. It is guaranteed to have ”I - Ieﬂ,n - ”I - Idgfn -

Corollary 1: Let Iz, € RYN qnd T, def € RN*N be KFAC and our estimates of real Fisher information
matrix I € RNV respectively. Then, it is guaranteed to have HI - kaaC” - HI - Idef“ -

We note that || — Iyscllp = |IT = Ien|l may not mean ”I" - I]&;CHF > ”I‘1 - Ie‘fL”F and vice versa.
Yet, we can prove that our LA yield better estimates in information form of the posterior distribution
than that of Ritter et al.|(2018a)) in terms of Frobenius norm.

Unfortunately, in the current form, it involves a matrix inversion with size N by N when sampling.
For some layers in modern architectures, this is not be feasible. This problem is tackled next.

3.2 Low RaNk ForM oF KRONECKER FACTORED EIGENVALUE DECOMPOSITION FOR SAMPLING

Sampling from the posterior is crucial in Bayesian Neural Networks. For example, an important
use-case of the parameter posterior is estimating the predict uncertainty for test data (x*,y*) by full
Bayesian analysis with K, samples (equation [T2).

1
KWIC

K.
POl xy) = f POIE, Op(OIx.)60 ~ — > (", 6;) for ' ~ NWyap, I (12)
t=1

However, directly sampling from equation [[T]is non-trivial. This is because the size of the covariance
is prohibitively too large as we use MND. Consequently, its sparse form is introduced next.

As a first step, we propose the low rank form in equation Here, Ay € RL U, € R™ and
Uy, € R™¢ denote low rank form of corresponding eigenvalues and vectors. Naturally, it follows
from definition that L = ag, N = mn and furthermore, the persevered rank L corresponds to preserving
top K and additional J eigenvalues (resultingin L > K, L = ag = K + J).

Iser = Luer = (Ua,, ® Ug,)A1.L(Ua,, ® Ug,)" + D (13)

To explain, we highlight differences to Bishop|(2016) in which top L eigenvalues and corresponding
eigenvectors are preserved for LRA. In our case however, this results in intractable (Us ® Ug)1.
which defies the purpose. Therefore, as seen in equation[I3] the Kronecker structure in eigenvectors
as (Uya,, ® Ug,,) is preserved. Consequently, due to the Kronecker product operation, preserving top
K eigenvalues results in L = K + J eigenvalues in total.

For example, let matrix E decomposed as E = UysA16UT, € R% with Uy = [ul u - u6] €
R®™® and A6 = diag(A, Az, -+ ,Ag) € R in a descending order. In this toy example, the LRA
with top 3 eigenvalues result in E1;3 = U;.3A13U] ; € R (see notation to above). Instead, consider
now the matrix Ex;on = (Ua,;®Uc,,)A1:6(Ua,,®Ug,,)T € R*®. Again, say we want to preserve top 3
the eigenvalues A3 and corresponding eigenvectors (Ua,, ® Ug,,)1:3, However, as (Uy,,, ® Ug,)13 =
[uA, Qug, Ua DUg, Us, DuUg,], preserving the eigenvectors with the Kronecker structure results

Under review as a conference paper at ICLR 2020

Algorithm 1: Sparsification Algorithm 2: Inference of IM
Input: Marices Uy, Ug, A and K. Input: Pre-trained Neural Network and train data.
Output: Matrices: Uy, ., Ug,.,,» Ar.L- Output: Matrices: Uy, ., Ug,.,,» A1 and D.
Algorithm: Algorithm:
1. Find indices of top K eigenvalues on A. This results for the given data points do KFAC

ine € {a,a, - ,ax). fori:=1tldo

| Compute A; and G; (equation 2.

2. For each elements of «, find corresponding indices of d
en

each Kronecker factors of original matrix S, ® S¢
(equation [6) by using definition 2: i = in#(:>) + 1 and end
k = a@—m(— 1). This results in indices of i and k for Compute Uy, Ug with eigenvalue decomposition.
U, and Ug corresponding to S, ® Sg or Aj.x = A,. 1OF the given data points do EFB

3. Using obtained indices i and k, compute eigenvectors fori:=1t0ldo
Ua,, = Ua;i and Ug,,, = Ugy which are the preserved Compute E [69[.2].
eigenvectors in equation [[3] Compute A; (equation[5) with U, and Us.

4. Using definition 1, find indices of top K and end
additional J eigenvalues using @; = m(i — 1) + k for all epqg
iand k. for all the layers do DEF
5. Preserve eigenvalues Ay, = A,, where ; C a. Ay Compute Uy, ., Ug,.,,» AL (algorithm 1).
represents the preserved top K and additional J Compute D (equation[I0).
eigenvalues in equation[I3] end

in having to store Uy,, = [uA, uAQ] and Ug,, = [ucl uG2]. Consequently, additional eigenvalue
A4 has to be saved in order to fulfill the definition of a Kronecker product Ej,p,,, = (Ua,, ®
Ug,,)A1.4(Ua,, ® Ug,,)T € R®®. In summary, preserving top K eigenvalues results in other J
eigenvalues, which ensures the memory-wise tractability in case of DNNs. Furthermore, in contrast
to this toy example, finding the indices of J eigenvalues require formalism as we deal with matrices
of higher dimension. This motivates for an algorithm that enables the LRA of Kronecker factored
eigendecomposition, which is described below.

For this computation we introduce algorithm 1. Let us start with a definition on indexing rules of
Kronecker factored diagonal matrices, which is a core of algorithm 1.

Definition 2: Given a diagonal matrix S, € R™™ and S € R™", the Kronecker product of
A =8S,®Sp € R s given by Ny = S4iSpi, Where the indices a = n(i—1)+kwithi € {1,2,--- ,m}
and k € {1,2,--- ,n). Then, given & and m, i = intl(%) + 1 and given a, m, and i, k = & — m(i — 1).
Here, int(-) is an operator that maps its input to lower number integer.

For explaining algorithm 1, the toy example can be revisited. Firstly, as we preserve top 3 eigenvalues,
a € {1, 2,3} which are indices of eigenvalues A3 (line 1). Then, using line 2,7 € {1,2} and k € {1,2}
can be computed using definition 2. This relation holds as A is computed from S 4 ® S ¢ in equation 6}
and thus, U, and Ug are their corresponding eigenvectors respectively. In line 3, we keep Uy,
and Ug,,) using i and k. Again, in order to fulfill the Kronecker product operation, we use line 4
to find the eigenvalues «; € {1,2,3,4}, and then preserve A;4. As explained, this has resulted in
saving top 3 and additional 1 eigenvalues. Algorithm 1 provides the generalization of this and even if
eigendecomposition does not come with a descending order, the same logic applies.

Having introduced the essentials, we depict an overview of our inference scheme in algorithm 2.
As IM is estimated after the training, our method can be applied to existing and already-working
architectures. Moreover, EFB is computed in a different way to|George et al.|(2018) so that our EFB
does not require batch assumption for taking expectations. Moreover, the scheme is not as expensive
since eigenvalue decomposition of A; and G; are computed only once.

A benefit of the LRA is that now, sampling from the given covariance (equation [TT] with the low rank
form in equation [I3]) only involves the inversion of a L X L matrix (in offline settings) and matrix
multiplications of smaller Kronecker factored matrices or diagonal matrices during full Bayesian
analysis. To this end, we derive the analytical form of the sampler in section [B] which makes the
sampling memory-wise feasible by exploring the Kronecker structure of I4¢. The incorporation of
prior or regularization terms also follows without any additional approximation.

Nl + 7lp = (Ua,, ® Ug, JNALL)(Ua,, ® Ug,)" + (ND + 1) (14)

Under review as a conference paper at ICLR 2020

To our knowledge, the proposed sparse IM have not been studied before. Therefore, we theoretically
motivate its design and validity for better insights. The analysis can be found below.

Lemma 2: Let I € RVN pe the real Fisher information matrix, and let T 101]7{ e RVN 1 ;OZ e RVXN

and I.; € RN be the low rank estimates of I of EKB obtained by preserving top K, L and top K

plus additional J resulting in L eigenvalues. Here, we define K < L. Then, the approximation error of
I,y is bounded as follows: ||[I — I[% | . > | = I.llp > ||T - ||,

Lemma 2 indicate that the given low rank form is rather conservative but a memory eflicient alternative
if saving top L eigenvalues leads to intractable computation.

- -1

Lemma 3: The low rank matrix £ = ((Uy,, ® Uc,)A1.L(Us,, ® Ug,) + D) € R™V is a non-
degenerate covariance matrix if the diagonal correction matrix D and LRA (Ua,,, ® Ug,)A1.L(Ua,, ®
Ug,)" are both symmetric and positive definite. This condition is satisfied if (Us,,®Ug, JA1.L(Ua,,®
Uc,)} <E|[06?| foralli€ (1,2, d} and with Ay, & 0.

This Lemma comments on validity of resulting parameter posterior and proves that sparsifying the

matrix can lead to a valid non-degenerate covariance if two conditions are met. As non-degenerate
covariance can have a uniquely defined inverse, it is important to check these two conditions.

Lemmad: Let I € RNV be the real Fisher information matrix, and let L, € RNV, Ly, € RNV and
Iijuc € RV*N be the low rank DEF, EFB and KFAC estimates of it respectively. Then, it is guaranteed
to have ”I,-i - I€ﬂ7n“p > “Iii - Idef;'i”F = 0 and ||I,~,~ - kaac,-,-”F > | I; - Idef;-,-”F = 0. Furthermore, if
the eigenvalues of fdef contains all non-zero eigenvalues of 1, it follows: ||I - Ieﬂ,” P2 ”I - fdgf|| =

Lastly theoretical property shows the optimally of the given covariance form in capturing the diagonal
variance while indicating that our approach also becomes effective in estimating off-diagonal entries
if IM contains many close to zero eigenvalues. Validity of this assumption has been studied by [Sagun
et al.| (2018). Intuitively, from a graphical interpretation of IM, diagonal entries indicate information
present in each nodes (parameters) and off-diagonal entries are links of these nodes. The given
sparsification scheme reduces the strength of the weak links (their numerical values) while keeping
the diagonal variance accurate. This is by the design of the inference procedure (depicted in algorithm
2), in which, we apply the diagonal correction after the LRA.

4 EXPERIMENTAL RESULTS

An empirical study is presented with a toy regression, MNIST (Lecun et al.| [1998) and CIFAR10
(Krizhevsky, 2009) data-sets. All experiments are implemented using Tensorflow (Abadi et al., 2016).

4.1 PrepicTIVE UNCERTAINTY ESTIMATION

Firstly, an evaluation on toy regression data-set is presented. This exercise has an advantage that we
can not only evaluate the predictive uncertainty, but also directly compare various approximations to
the Hessian (presented in section 4.2). For this a single-layered fully connected network with seven
units in the first layer is considered. We have used 100 uniformly distributed points x ~ U(—4,4) and
samples y ~ N(x3,3?). Visualization of predictive uncertainty is shown in ﬁgure Ideally, predictive
uncertainty should be high in the regimes where there is fewer or no training data. Both Diag and
KFAC Laplace are tuned similar to Ritter et al.|(2018a) by regularizing them with hyperparameters.
FB Laplace denotes the use of exact block diagonal Hessian. Ours and FB Laplace for this experiment
did not require any hyper-parameter tuning. All the methods show high uncertainty in the regimes
far away from training data and seem to deliver reliable predictive uncertainty. Yet, Diag and KFAC
Laplace predicts rather high uncertainty even within the regions that are covered by the training
data. Diag and KFAC Laplace behaves similar to each other whereas ours slightly overestimate the
uncertainty but produces the most comparable fit to the Full Laplace. We believe this is the direct
effect of modelling the Hessian more accurately EI

2we comment on this statement, and the effects of data-set size to number of parameters in section@

Under review as a conference paper at ICLR 2020

—100| -100 —100| -100)

—150] —150) —150] —150)

- —~200! - —~200!
2026 20 2026 20

Diag Laplace KFAC Laplace FB Laplace Ours (DEF)

Figure 1: Uncertainty on toy regression. The black dots and the black lines are data points (X, y).
The red and blue lines show predictions of the deterministic Neural Network and the mean output
respectively. Upto three standard deviations are shown with blue shades.

Next, we evaluate predictive uncertainty on clas-
sification tasks in which the proposed low-rank $ose in-dist
representation is strictly necessary. Furthermore, 8000 AE_out-dist
our goal is not to achieve the highest accuracy =
but evaluate predictive uncertainty. To this end, ;
we choose classification tasks with known and
unknown classes, e.g. a network is not only 2000
trained and evaluated on MNIST but also tested T —— YIS 4 S50 5
using notMNIST. Note that under such tests, any T Ewopyt) T Eweye
probabilistic methods should report their eval-

uations on both known and unknown classes Figure 2: Normalized Entropy histogram (left: de-
with the same hyperparameter settings. This is terministic and right: ours) on MNIST vs notM-
because one can make a neural network to be NIST experiments.

always highly uncertain, which may seem to

work well on out-of-distribution samples but are

always overestimating uncertainty, even for the correctly classified samples within the distribution
similar to the train data. For evaluating predictive uncertainty on known classes, Expectation Calibra-
tion Error (ECE) has been used. As we found it more intuitive, normalized entropy is reported for
evaluating predictive uncertainty on unknown classes.

Count (-)

On MNIST dataset, we compare our method to dropout (Gal, 2016), deep ensemble (Lakshmi+
narayanan et al. 2017) with size 15, diagonal and KFAC Laplace (Ritter et al., [2018a). These
methods have merits that no changes in the training procedure is required (in contrast to variational
methods). This is crucial for a fair comparison as we can use the same experiment settings (Mukhoti
et al.| |[2018)). EFB Laplace is introduced as an ablation study. Regarding the architectures, LeNet
with RELU activations and a L2 coefficient of 1e-8 has been the choice of architecture. In particular,
this typically makes a neural network overconfident, and we can see the effects of model uncertainty.
This architecture validates our claim as it has the parameters of size 63 € R3137<1924 ip the 3™ Jayer.
Obviously, its covariance is intractable as it is quadratic in size. The results can be found in table

Table 1: MNIST-notMNIST experiments. Accuracy and ECE are evaluated on MNIST. Entropy is
evaluated on notMNIST. Lower the better for ECE. Higher the better for entropy.

NN Diag KFAC Dropout Ensemble EFB DEF
Accuracy 0.993 0.9935 0.9929 0.9929 0.9937 0.9929 0.9927
ECE 0.395 0.0075 0.0078 0.0105 0.0635 0.012 0.0069

Entropy 0.055+0.133 0.555+0.196 0.599 £0.199 0.562+0.19 0596 +0.133 0.618 £0.185 0.635 + 0.1904

[Firstly all the methods improved significantly over the deterministic one. They showed similar
performance on calibration except the deep ensemble. On notMNIST experiments, Diag Laplace and
dropout made the least uncertain predictions while other methods performed quite similarly. Lastly,
within these experiments, DEF Laplace achieved the lowest ECE, at the same time, predicted with
the highest mean entropy on out-of-distribution samples. Figure 2] shows this result. There are fewer

Under review as a conference paper at ICLR 2020

= DEF b DEF + o= DEF
051 a4 Diag AAs Diag Ada Diag
@®e KFAC 0.5l (@@ KFAC] 0.5 @8 KFAC|
0.4{ #44 EKB 49 EKB 44 EXB

i o 7 i % % s 3 5
dimension [%] dimension [%] dimension [%]

(a) Diagonal error (b) Off-diagonal error (c) Overall error

Figure 3: Effects of LRA in Frobenius norm of error normalized from O to 1. Lower the better.
Laplace based methods such as EFB, Diag, KFAC and DEF are compared in terms of diagonal,
off-diagonal and overall resulting approximation error to exact block diagonal hessian. Effects of LRA
with DEF is shown by lowering down the dimensions. This figure shows the working principle of our
method that diagonal variance of information matrix is accurately captured, while the off-diagonal
approximation error largely depend on the reduced rank, and how its eigenvalues are distributed.

overconfident predictions on the data from unknown classes (out-dist) while being confident on the
correctly classified samples from the known class (in-dist). To ensure a fair comparison, we have
performed an extensive grid search for the parameters of Laplace based methods (see section D).

Further tests were performed on CIFAR10 (known) and SVHN (unknown). We trained a 5 layer
architecture with 2 convolutional and 3 fully connected layers with batch normalization and data
augmentation. The results are reported in table[2} Similar to MNIST experiments, our method resulted
in a better calibration performance and out-of-distribution detection overall. Note that for Diag,
KFAC and EFB Laplace, grid searches on hyperparameters were rather non-trivial here. Increasing 7/
had the tendency to reduce ECE on CIFAR10, but in return resulted in underestimating the uncertainty
on SVHN and vice versa. DEF Laplace instead, required smallest regularization hyperparameters to
strike a good balance between these two objectives. We omitted dropout as using it as a stochastic
regularization instead of batch normalization would result in a different network and thus, comparison
would be not meaningful. Implementation details and further results are presented in section D]

Table 2: CIFAR10-SHVN experiments. Accuracy and ECE evaluated on CIFAR10. Entropy evaluated
on SHVN. Lower the better for ECE. Higher the better for entropy.

NN Diag KFAC Ensemble EFB DEF
Accuracy 0.8606 0.8659 0.8572 0.8651 0.8638 0.8646
ECE 0.0819 0.0358 0.0351 0.0809 0.0343 0.0084

Entropy 0.245+0.215 04129+0.197 0408 £0.197 0370+0.192 0417 +0.196 0.4338 + 0.186

Importantly, we demonstrate that when projected to different success criteria, no inference methods
largely win uniformly. Yet these experiments also show empirical evidence that our method works in
principle and compares well to the state-of-the-art. Representing layer-wise MND in a sparse infor-
mation form, and demonstrating a low rank inverse/sampling computations, we show an alternative
approach of designing scalable and practical inference framework. Finally, these results also indicate
that keeping the diagonals of IM accurate while sparsifying the off-diagonals can lead to outstanding
performance in terms of predictive uncertainty and generalizes well to various data, models and even
measures. For future works, we share the view that comparing different approximations to the true
posterior is quite challenging for DNNs. Consequently, better metrics and benchmarks that show-case
the benefits of model uncertainty can be an important direction of future research.

4.2 ErreEcTSs OF Low RANK APPROXIMATION

Next, we quantitatively study the effects of LRA by directly evaluating on the approximations of
IM. This is because uncertainty estimation, despite being a crucial entity, are confounded from the
problem itself and may not reveal the algorithmic insights to its full potential. For this, we revisit the

Under review as a conference paper at ICLR 2020

30000
= 2500000
) 2000000|
=

-
o

S o000

500000}

50 100 150 200 250 El n“noa 0.005 0010 0015 0020 0025 0030 0035 0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006

eigenvalues [-] eigenvalues [-] eigenvalues [-]

(a) Toy dataset layer 1 (b) LeNet layer 1 (c) LeNet layer 3

Figure 4: Eigenvalue histograms. Its values and counts are plotted as histograms. In particular, part
(a) depicts the eigenvalue histogram from the analysis of toy experiments (figure[3). On the other
hand, part (b) and (c) are two extreme cases from the classification experiments. This figure indicate
that our assumption

toy regression problem and provide a direct evaluation of IM with measure on normalized Frobenius
norm of error erryr in the first layer of the network.

The results are shown in figure [3] Here, the reduced dimension is not proportional to the ranks
(e.g. many zero or close to eigenvalues as shown in figure 4] (a)). Figure 3] (a) depicts that DEF
results in accurate estimates on I; regardless of the chosen dimensions L while EFB has the more
approximation error, which we believe is due to inaccurate estimates of eigenvectors. KFAC on the
other hand, produces the most errors on diagonal elements, which indicate that its assumption of
Kronecker factorization induces crude approximation in this experiment. Regarding the off-diagonal
errors EFB also outperforms KFAC and Diag estimates. Furthermore, error profile of off-diagonal
error I;; also explains the principles of the LRA that as we decrease the ranks, the error increases but
in preserving manner (similar to factor analysis Bishop| (2016)). This reflects our theoretical analysis
that it depends on how eigenvalues are distributed (depicted in figure E] (a)).

For the classification experiments, two other extremes in eigenvalue histograms are also reported
in figure [] (b) and (c). As shown, figure] (b), the layer 1 of LeNet contains less close to zero
eigenvalues when compared to the layer 3. This is also in line with experimental findings of [Sagun
et al.| (2018) that when the network is over-parameterized, its Hessian tend to have many close to zero
eigenvalues. From this insight, we deduce that within our experiments, the LRA is an effective tool
for the Hessian of over-parameterized layer since our algorithmic assumption reasonably holds well.

These analysis reveal the methodological design principles which exploits the insights on loss
landscape of neural networks, we show-case that our representation of model uncertainty is accurate
in capturing the information of the parameters while removing weak correlations between the
parameters. However, this also brings a limitation of our approach, which is, its dependency on how
DNNgs are trained, and the loss-landscape is structured. Consequently, an interesting direction of
future research can be studies on how loss-landscape, approximate inference and true posterior can
be together exploited to tackle the challenges in deep Bayesian Neural Networks. During our study,
we found information form of Normal distribution more intuitive to understand as they tend to be
rather sparse with its probabilistic interpretations (Thrun et al.,[2004).

5 CONCLUSION

In this paper, we proposed a method to estimate model uncertainty of deep neural networks in
information form of Multivariate Normal Distribution. As a first step, a practical approximate
inference procedure has been imposed with Laplace Approximation, which, involves two steps namely
(1) re-scale the information matrix in its eigen-basis and (2) correct the diagonals in parameter space.
In order to keep the computation tractable, we have further proposed to use low rank approximation
while maintaining the Kronecker structure. With the devised algorithms, we have demonstrated a
memory efficient sampling computations, and a method to preserve top eigenvalues with Kronecker
factored eigendecomposed matrices. Our theoretical and empirical evaluation confirms that our
method compares well to the current state-of-the art, not only in terms of reliability of uncertainty
estimates, but also in terms of scalability to larger networks and data.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoftrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 265-283, 2016.

Sivaram Ambikasaran and Michael O’Neil. Fast symmetric factorization of hierarchical matrices
with applications. CoRR, abs/1405.0223, 2014.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using kronecker-
factored approximations. In ICLR, 2017.

Juhan Bae, Guodong Zhang, and Roger Grosse. Eigenvalue corrected noisy natural gradient. CoRR,
abs/1811.12565, 2018.

S. Becker and Yann Lecun. Improving the convergence of back-propagation learning with second-
order methods. In D. Touretzky, G. Hinton, and T. Sejnowski (eds.), Proceedings of the 1988
Connectionist Models Summer School, San Mateo, pp. 29-37. Morgan Kaufmann, 1989.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York,
2016.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In ICML, 2017.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503-528, 08 1989.

Sheng-Wei Chen, Chun-Nan Chou, and Edward Y. Chang. Bda-pch: Block-diagonal approximation
of positive-curvature hessian for training neural networks. CoRR, abs/1802.06502, 2018.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and koray kavukcuoglu. Natural Neural
Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 28, pp. 2071-2079. Curran Associates, Inc., 2015.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pp. 9573-9583, 2018.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing
Systems 24, pp. 2348-2356. Curran Associates, Inc., 2011.

Roger B. Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pp. 573-582, 2016.

Chuan Guo, Geoft Pleiss, Yu Sun, and Kilian Weinberger. On calibration of modern neural networks.
In Proc of the 34th International Conference on Machine Learning (ICML), 2017.

A K. Gupta and D.K. Nagar. Matrix Variate Distributions. Monographs and Surveys in Pure and
Applied Mathematics. Taylor & Francis, 1999. ISBN 9781584880462.

Philipp Hennig. Fast probabilistic optimization from noisy gradients. In Sanjoy Dasgupta and David
McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning, volume
28-1 of Proceedings of Machine Learning Research, pp. 62-70, Atlanta, Georgia, USA, 17-19 Jun
2013. PMLR.

11

Under review as a conference paper at ICLR 2020

Jose Miguel Herandez-Lobato and Ryan P. Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pp. 1861-1869. JMLR.org,
2015.

Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, COLT °93, pp. 5-13, New York, NY, USA, 1993. ACM. ISBN 0-89791-611-5.
doi: 10.1145/168304.168306.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava.
Fast and scalable bayesian deep learning by weight-perturbation in adam. In /CML, volume 80 of
Proceedings of Machine Learning Research, pp. 2616-2625. PMLR, 2018.

Durk P Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Reparame-
terization Trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 28, pp. 2575-2583. Curran Associates, Inc.,
2015.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences of the United
States of America, 114 13:3521-3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Canadian
Institute for Advanced Research, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 25, pp. 1097-1105. Curran Associates, Inc.,
2012.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6405-6416, 2017.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pp. 2278-2324, 1998.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix
gaussian posteriors. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1708-1716, New York, New York, USA, 20-22 Jun 2016. PMLR.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
2218-2227, International Convention Centre, Sydney, Australia, 06—11 Aug 2017. PMLR.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Computation, 4(3):448-472, 1992.

James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 2408-2417, 2015.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark W. Schmidt, and Mohammad Emtiyaz
Khan. SLANG: fast structured covariance approximations for bayesian deep learning with natural
gradient. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montreal, Canada., pp.
6248-6258, 2018.

12

Under review as a conference paper at ICLR 2020

Jishnu Mukhoti, Pontus Stenetorp, and Yarin Gal. On the importance of strong baselines in bayesian
deep learning. CoRR, abs/1811.09385, 2018.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996. ISBN 0387947248.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized optimiza-
tion in deep neural networks. CoRR, abs/1506.02617, 2015.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018a.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pp. 3742-3752, 2018b.

Nicolas Le Roux and Andrew W. Fitzgibbon. A fast natural newton method. In ICML, 2010.

Levent Sagun, Utku Evci, V. Ugur Giiney, Yann Dauphin, and Léon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. In 6¢h International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings, 2018.

Tim Salimans and Durk P Kingma. Weight Normalization: A Simple Reparameterization to Acceler-
ate Training of Deep Neural Networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 901-909. Curran
Associates, Inc., 2016.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In Y. Weiss,
B. Scholkopf, and J. C. Platt (eds.), Advances in Neural Information Processing Systems 18, pp.
1257-1264. MIT Press, 2006.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning Structured Weight Uncertainty
in Bayesian Neural Networks. In Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pp. 1283—-1292, Fort Lauderdale, FL, USA, 20-22 Apr 2017. PMLR.

S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simultaneous local-
ization and mapping with sparse extended information filters. International Journal of Robotics
Research, 2004.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3987-3995,
International Convention Centre, Sydney, Australia, 0611 Aug 2017. PMLR.

Guodong Zhang, Shengyang Sun, David K. Duvenaud, and Roger B. Grosse. Noisy natural gradient

as variational inference. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, pp. 5847-5856, 2018.

A NOTATIONS ON DISTRIBUTIONS

A.1 Marrix NorRMAL DISTRIBUTION
The matrix normal distribution is a probability density function for the random variable X € R™?

in matrix form. It can be parameterized with mean M € R"™*?, scales U € R”" and V € R”*", It is
essentially a multivariate Gaussian distribution with mean vec(M) and covariance U ® V.

13

Under review as a conference paper at ICLR 2020

exp (- 4tr [V=I(X = MU' (X - M)))
2% VI3 U2

pX|M, U, V) = 5)

We denote this distribution with MN parameterized by M, U and V. Refer to|Gupta & Nagar| (1999)
for more details.

A.2 EIGENVALUE-CORRECTED MATRIX VARIATE DISTRIBUTION

The eigenvalue corrected matrix variate distribution (introduced by Bae et al.| (2018))) is a probability
density function for the random variable X € R™” in matrix form again. Difference to matrix
normal distribution is that it extends its representation to Kronecker factored eigenbasis which is
parameterized by M € R scales U € R™", V € R”*? and R € R"7*"P,

exp(-1PTR'P)
pPXIM,U,V.R) = —— 57—

16
277 |R|% (16)

where P = vec(VlT/ (X — M)Vy). In the main text, this distribution is denoted with EMN.

A.3 INFORMATION FORM OF MULTIVARIATE NORMAL DISTRIBUTION

Information form of Multivariate Normal Distribution is a dual representation for the well known
canonical form of Multivariate Normal Distribution (equation[I7). In equation[I7] x € R", u € R"
and ¥ € R™" represent a random variable, mean and covariance respectively.

1
p(xlu, Z) oc exp {‘szzlx + uTZIu} (17)

Equation T8 shows the Information form of Multivariate Normal Distribution.

p(x|b, F) < exp {—%xTFx + bx} (18)

Here, x € R” represent the random variable as well. b € R" = ™!y and F € R™ = X! are
information vector (denoted IV in the main text with superscript) and matrix respectively. As this
formulation is completely described by an information vector and matrix, we use 7 N.

Information matrix is also widely known as precision matrix. Note that the canonical form of
Multivariate Normal Distribution can be fully parameterized with mean and covariance. Likewise,
information vector and matrix fully parameterize the information form of Multivariate Normal
Distribution. [Thrun et al. (2004) in Simultaneous Localization and Mapping (SLAM) literature
provides a good overview and explanations.

B DERIVATIONS

B.1 DERIVATION 1: DIAGONAL CORRECTION WITHOUT EVALUATING THE KRONECKER PRODUCTS

Evaluating A® G may not be computationally feasible. Therefore, we derive the analytical form of the
diagonal elements of (A®G)A(A®G)T without having to fully evaluate it. Let A € R™" and G € R™"
be the square matrices. A € R™" ig a diagonal matrix by construction. V= A ® G € R is a
Kronecker product with elements v, g with @ = p(i — 1) + k (from definition of Kronecker product).
Then, the diagonal entries of (A ® G)A(A ® G)T can be computed as follows:

[Aaec)re6)| = i(vm VAL (19)
k=1

14

Under review as a conference paper at ICLR 2020

Derivation: As a first step of the derivation, we express (A ® B)A(A ® B)T in the following form:
ARGAA®G) =(A®G)AIAI(A®G)T
- [A®0A][asc)At] (20)
=uu”

Then, diag(UUT); = [UUT]ii = Y™ u>. Now, (A® B)A? = VA with A being a diagonal matrix.
Therefore, uy = voo VA Substituting back results in [(A ® BIA(A® B)T]ii = 2t (vap VAR?.
Formulating equatio and using non-square matrices (after low rank approximation) for A;., €
R™N and Gi.g € R™M is rather trivial and hence, they are omitted.

B.2 DERIVATION 2: ANALYTICAL FORM FOR THE EFFICIENT AND CHEAP SAMPLER

Let W/ € R™ " Wyap € R and X € R be the random variable, its mean and the samples
from a standard Multivariate Normal Distribution respectively. Furthermore, let Aj.; € RYL and
D € R™>™ gre the low ranked form of the re-scaled eigen-values and the diagonal correction term
respectively. Uy,, € R™" and Ug,, € R™M are the low ranked eigen-basis so thatm > M, n > M
and L = MN.

Given the multivariate normal distribution with the covariance structure as equation [21]

-1
vecW') ~ NvecWaiap), ((Us,, ® U, JA1a(Un,, © Ug,) + D)) @)

1 1
an analytical form of the sampler by given by equation|[22{where we have P = A}, LR> € RI*E with
L=C '+ VIV)yleRX V= D‘%(UGl:g ®Ua)AL, eR™Land C = AT (B-1)A™ e RPE,
A and B are Cholesky decomposed matrices of V7'V € RPE and V'V + I € RP*L respectively. © is
a notation for element-wise matrix multiplication.

W= vec(WMAp)—kvec(X’@D_%)—Vec((UG]:guvec(Pvec(Ugl:g (Xseuvec(D_%))UAI:E)UXM)@uvec(D_%))
(22)

Derivation: Firstly, sampling from a standard multivariate Gaussian for X* € R™™ is computa-
tionally cheap (see equation . Given a symmetrical factor for the covariance £ = AAT (e.g. by
Cholesky decomposition), samples can be drawn via W’ = vec(Wpap) + vec(AX*). Our derivation
involves finding such symmetrical factor for the given form of covariance matrix while exploring
the Kr(L)nLecker structure aiming for efficient and cheap computations. We denote I, € R™"" and
I; € R&%E,

vec(X*) ~ N(0, 1,,) or X* ~MN(Q,I,,1,) (23)

Let us first reformulate the covariance as follows.

-1
E = ((UAl:u ® UGI:g)Al:L(UAI:a ® UGI:g)T + D)

11 -1
- % (Di%(UA‘:" ® UGl:g)Alz:LAIZ:L(UAIZ“ ® UGlrg)TDi% + Inm)D%] (24)

1 1 -1
DH|(0H U, ® Vs,)AL YD WUy, ® U, D[+ Tan)| - D7
.

HVVT 1| D

1
Here, V = D"z (Ua,,, ®Ug, A}, - Now, a symmetrical factor for X = AAT can be found by exploiting

the above structure. We let W be a symmetrical factor for VV7 + I, so that A = D :W-!is the
symmetrical factor of Z. Following the work of | Ambikasaran & O’Neil (2014)) the symmetrical factor
W can be found using equations below.

W=1,,+VCVT

25
C=ATB-1)A™! (23)

15

Under review as a conference paper at ICLR 2020

Note that A and B are Cholesky decomposed matrices of V'V and V7'V + I, respectively. Now the
symmetrical factor for X can be expressed as follows.

A=D:W' =D (1, + VCVT)!
26
- D—%(I,,m v+ VTV)‘IVT) (20)

Woodbury’s Identity were used here. Now, multiplication in ny X ny space is too expensive for
computing Yy = vec(Wyap) + Avec(X*). We derive more efficient sampling scheme exploiting the
Kronecker structure.

Avec(X®) = D—%(Inm -V +vTy)! VT)vec(X-‘)

1 1
D’%(Inm ~ D 3(Ua,, ® Ug,)AL LAY, (U, ® UGl:g)TD’%)Vec(X‘Y)

1 1
D_%VCC(XS) - D_I(UAlza ® UGl:g)AIZ:LLAIZ:L(UAm ® UGl:g)TveC(XX O UVCC(D_%))

= D vec(X*) = DN (Uy,, ® UGl:g)Pvec(Ugl:g(Xs o) uvec(D‘%))UAm)

= vee(X’ @ uvee(D™)) - Vec((UG]:g uvee(Pvec(Uf, (X*© D™)UAI:E)UZM) ©uvec(D™))
27

1
Here, L=(I-V(C'+VTV) land P = Af (LR 3 uvec() is inverse of vectorization operation. All the
operations does not need the evaluation of Kronecker products. Inversion and matrix multiplication
are performed in lower dimensional space L = NM. Note that inversion can be done in off-line
setting (before full Bayesian analysis). A crucial component for making the sampling cheap is the
Kronecker structure of our covariance matrix in low ranked form.

C Proors

Proposition 1: Let I € RVN be the real Fisher information matrix, and let I,; € RNV and

fdef € RV*N be our estimates of it with rank d and k such that k < d. Their diagonal entries are equal
that is Ij; = Iy = Iy foralli=1,2, ..., N.

proof: The proof trivially follows from the definitions of T € RNV, Iy.r € RNV and Iger € RNV, As
the exact Fisher is an expectation on outer products of back-propagated gradients, its diagonal entries

equal I = E|6¢?| foralli=1,2,...,N.
In the case of full ranked I, substituting D;; = E [66?,.2] = M Vo VAR? With X1 (ve.o VAK)? =
(Us ® Ug)A(Ux ® Ug)?, results in equation28|foralli=1,2,...,N.

Lies, = (Us ® Ug)A(Ua @ Ug)}; + Dy

28
= (Ua ® Uc)A(Ux ® Ug)}, +E 66| - (Ur ® Ug)A(Ua ® Ug)}; = E |66 | (28)

Similarly, we substitute D;; = E[(sef] — I (D VALLD? with SV (0,0 VALL? = (Ua,, ®
UG,)A1:L(Ua,y ® Ug,,,)’: which results in equation[29|for alli=1,2,...,N.

IAdﬂ’fu = (UAI:N ® UG]:M)AIIL(UAI:N ® UG]:M)I?; + D
= (UAI:N ® UG]:M)AliL(UAl:N ® UG]:M)I'II: +E [5912] - (UAI:N ® UGl:M)AliL(UAl:N ® UGI:M)I'IIT (29)
=E |06}

Therefore, we have I;; = Iy, = IAdef,.’. foralli=1,2,...,N.

16

Under review as a conference paper at ICLR 2020

Lemma 1: Let I € RV pe the real Fisher information matrix, and let Ise RYN gnd Iy e RNXN
be the DEF and EFB estimates of it respectively. It is guaranteed to have ”I - Igﬂ,n = ”I - Idgfn P

proof: Let e = ||A- BII% define a squared Frobenius norm of error between the two matrices
A € RV*N and B e RYN Now, €2 can be formulated as,

el = A~ B>

=Y (A-BE+ > > A-BY (30)

i

The first term of equation [30] belongs to errors of diagonal entries in B wrt A whilst the second term
is due to the off-diagonal entries.

Now, it follows that,

I = LeplF > ||21 — Taetllp
€t Z Chef
Sild = L)y + 2 2 jsild = L)}, = Sild = Laen)j; + X B jei(T = Lae)};
2l = Iefb)izi + 2 Djzid — Ietb),-zj > X 2 — Idef)izj
i\t = Lefb)y; i Zujrit T Letb)i = Zui Zujri\t T Lefb)j;
ST = L + 2 S = Lo, > 2 2T = L)

Note that 3;(I — Isp)7 = 0 using proposition 1. Furthermore, ; 3’ ;..(I —Idef)?j =3 Y- Iefb)l.zj
since by definition, I and 4 have the same off-diagonal terms.

Corollary 1: Let Iz, € RNN and 1 € RNN be KFAC and our estimates of real Fisher Information
matrix I € RN respectively. Then, it is guaranteed to have |I — Ixpacllr > HI - Id@f“F'

For interested readers, find the proof ||[I — Ixpacllr = [T — Lepl|r in|George et al.[(2018). Note that
I ~ Ixpaclly = I — Lglly may not mean that |[I" = Igh, || > [T = I1]|.- Yet, our proposed
approximation yield better estimates than KFAC and EFB in the information form of multivariate
normal distribution.

Lemma 2: Let I € RV*N be the real Fisher information matrix, and let I ioz e RVN 1 ;Oi € RN
and I1.; € RV be the low rank estimates of I of EKB obtained by preserving top K, L and top K
plus additional J resulting in L eigenvalues. Here, we define K < L. Then, the approximation error of
1,1 is bounded as follows: ”I - Ii‘:I’;”F > = I.Llp = ”I - Ii"{ lF.
proof: From the definition, (U ® Ug)A(Us ® Ug)T = VAVT is PSD as A; = E[(VT(SH)?] >
0 for all elements i and VVT = I with I as an identity matrix (orthogonality). Naturally, low
rank approximations (Us ® Ug) 1.z Ap:or(Ua ® Ug)] jop» (Ua ® Ug) 1k Ar:gor(Up ® Ug)] guop and
(UAW ® UG];g)Al:L(UAW ® UG]:g)T =(Ua®Ug) 1.t A1..(Upg ® UG)lT:L are again PSD by the fact that
low rank approximation does not introduce negative eigenvalues.

Now, a well known fact from dimensional reduction literature is that low rank approximation
preserving the top eigenvalues result in best approximation errors in terms of Frobenius norm for the
given rank. Informally stating Wely’s ideas on eigenvalue perturbation:

Let B € R™" with rank smaller or equal to p (one can also use complex space C instead of R) and let
E = A — B with A € R™", Then, it follows that,

2
IA=Bl} =c1(A=BY +-+0u(A=B) > 0pi(A=B)* +--- + 0 (A= B’ = A = By |[,.. 3D)

where o1, - - - 0, are the singular values of A with g = min(n, m). The convention here is that o7;(A) is
the ith largest singular value and o;(A) = 0 for i > rank(A). Using this insight, and the fact that in the
given settings, squared singular values are variances in new space lead to:

-1

ol 2 M = Lglle > |11 - I3F

l:L“F

17

Under review as a conference paper at ICLR 2020

This bound provides insight that if preserving top L eigenvalues result in prohibitively too large
covariance matrix, our LRA provides an alternative better than preserving top K eigenvalues given K <
L. In practise, note that I;.; can be memory efficient as we formulate I;.; = (Ua,, ® UG, IA1:L(Ua,, ®

UGl:g)T = Ua®Ug)1LA1.L(Us ® UG)1T:L- Consequently, preserving smaller matrices can often be
more efficient than even I}.

Lemma 3: The low rank matrix ¥ = ((UA]:U ® UG,)A1.L(Ua,, ® UGl;g)T + D)_l € RN s a non-
degenerate covariance matrix if the diagonal correction matrix D and LRA (Ua,,, ® Ug,)A1.L(Ua,, ®
UGI:g)T are both symmetric and positive definite. This condition is satisfied if (Ua,,®Ug,,)A1..(Ua,,®
Uc,,)k < E|66?| foralli € 1,2, ,N} and with Ay, € 0.

proof: Let us first rewrite Tyt = (Uy,, ® UG,)A1.L(Ua,, ® UG]:g)T + D in the following form.

1 1
(UAI;,I ® UGl;g)AI:L(UAI;a ® UGl:g)T +D= (UAI:a ® UG]:g)Alz;LAlz;L(UAI:u ® UGI:g)T +D
1 11T
= (UAl:a ® UGl:g)AIZ:L:| [(UAl:a ® UGl:g)AlzzL + D (32)
=UU"+D

Now, if D and (Uy,, ® Ug, ,)A1.L(Ua,, ® Ug,)" is both symmetric and positive definite, it follows
that for an arbitrary vector x € R, x’ UU” x > 0 as eigen-values R; > 0 by construction. Furthermore,
x" Dx > 0 also holds by the definition of positive definiteness. Therefore, we have x" (UU” + D)x =
xTUUTx + x'Dx > 0 which leads to the proof that I is positive definite if D and (Uy,, ®
UG,)A1.L(Ua,, ® UGl:g)T is both symmetric and positive definite. As this results in non-degenerate
IM, the canonical covariance X is non-degenerate as well.

Trivially following the definition of D;; = E [6912] —(Upa®Ug)A(Uys ® U(;)g, D;; > 0 for all i when

(Us,, ® Ug,)A1L(Us,, ® Ug,)% < E[662]. Again, by the definition of A; = E[(V/66)?| 2 0, A1
containing no zero eigenvalues result in the positive definite matrix (Ua,, ® Ug,)JA1.L(Ua,, ® UGl:g)T.

Lemma 4: Let I € RN be the real Fisher information matrix, and let IAdef e RVN
Iy € RN and Lo € RMN pe the low rank DEF, EFB and KFAC estimates of it respec-
tively. Then, it is guaranteed to have ” diag(I) — diag(Igﬂ,ﬁ)HF > || diag(I;) — diag(fdeﬁi)”F =0
and H diag(I;) — diag(kaaCii)”F > H diag(I;) — diag(IAdgfii)”F = 0. Furthermore, if the eigenvalues of
fdef contains all non-zero eigenvalues of 1, it follows: ||I - Ieﬂ’“F > ||I - fdef||F

proof: The first part follows from proposition 1 which states that for all the elements i, I;; =
Laes,. || diag(I) - diag(Lem,)|| > || diag(I) — diag(Iger,)||, = 0 and || diag(T;) - diag(Tesac,)|, =
H diag(I;) — diag(fdefii)|| F= 0. This results by the design of the method, in which, we correct the
diagonal entries in parameter space after the LRA.

For the second part of the proof, lets recap that Lemma 2 (Wely’s idea on eigenvalue perturbation)
that removing zero eigenvalues does not affect the approximation error in terms of Frobenius norm.

This then implies that off-diagonal elements of jdef and I.g, are equivalent. Then,:

T = Lepllp > [T - Lae -
egfb 2 eczlef A A
Yild = L)y + 3 X i — Iefb),-zj > N = Tgep)f + X X jui(L — Idef),-zj
Yild = Iep)i + 3 X i — Iefb),-zj WP B Idef),-zj
Sl = L)i + 3 X ji(X - Iefb),-zj EDWPIHE B Iefb)izj

Again,),;(I — fdef)fi = 0 according to proposition 1 for all the elements i.

18

Under review as a conference paper at ICLR 2020

D IMPLEMENTATION DETAILS AND FURTHER RESULTS

KFAC library from Tensorflow E] was used to implement the Fisher estimator (Martens & Grosse),
2015) for our methods and the works of Ritter et al.|(2018a)). Note that empirical Fisher usually is
not a good estimates as it is typically biased (Martens & Grosse|, 2015) and therefore, we did not
use it. KFAC library offers several estimation modes for both fully connected and convolutional
layers. We have used the gradients mode for KFAC Fisher estimation (which is also crucial for
our pipelines) whereas the exact mode was used for diagonal approximations. We did not use the
exponential averaging for all our experiments as well as the inversion scheme in the library. However,
when using it in practice, it might be useful especially if there are too many layers that one cannot
access convergence of the Fisher estimation. We have used NVIDIA Tesla for grid searching the
parameters of Diag and KFAC Laplace, and 1080Ti for all other experiments.

D.1 Toy REGRESSION DATASET

Apart from the architecture choices discussed in section 4] the training details are as follows. A
gradient descent optimizer from tensorflow has been used with a learning rate of 0.001 with zero prior
precision or L2 regularization coefficient (7 = 0.2 for KFAC, 7 = 0.45 for Diag, N = 1 and 7 = O for
both FB and DEF have been used). Mean squared error (MSE) has been used as its loss function.
Interestingly, the exact block-wise Hessian and their approximations for the given experimental setup
contained zero values on its diagonals. This can be interpreted as zero variance in information matrix,
meaning no information, resulting in information matrix being degenerate for the likelihood term. In
such cases, the covariance may not be uniquely defined (Thrun et al.|[2004)). Therefore, we treated
these variances deterministic, making the information matrix non-degenerate (motivated from Lemma
3 in section 3).

More importantly, we present a detailed analysis to avoid misunderstanding about our toy dataset
experiments. As a starting remark, a main advantage of this toy regression problem is that it simplifies
the understandings of on-going process, in lieu of sophisticated networks with a large number of
parameters. Typically, as of Herandez-Lobato & Adams| (2015)), Ritter et al.| (2018al), |Gal| (2016)),
or even originating back to Gaussian processes literature, this example has been used to check the
predictive uncertainty by qualitatively evaluating on whether the method predicts high uncertainty
in the regimes of no training data. However, a drawback exists: no quantitative analysis has been
reported to our knowledge other than qualitatively comparing it to community wide accepted ground
truth such as Hamiltonian Monte Carlo Sampling (Neall |1996), and LA using KFAC and Diag seem
to be sensitive to hyperparameters in this dataset which makes the comparison difficult.

This is illustrated in figure [5| where we additional introduce Random which is just a user-set 7/ for
covariance estimation in order to demonstrate this. Qualitatively analyzing from the first look, all the
methods look very similar in delivering high uncertainty estimates in the regimes of no training data.
Here, we note that the same hyperparameter settings have been used for Diag, KFAC and FB Laplace
whereas the user-set 7 = 7 has been found for Random. This agrees to the discussions of Ritter et al.
(2018a) as KFAC resulted in less T when compared to Diag Laplace.

However, we also observed that without the approximation step of equation {4|(denoted OKF), using
the same hyper parameter as above resulted in visible over-prediction of uncertainty and inaccurate
estimates on the prediction. This is shown in figure [f] Again, tuning the parameter to a higher
precision 7, similar behavior to figure [5]can be reproduced. This can be analyzed by visualizing the
covariance of KFAC and OKF. As it can be seen, in this experiment settings, figure [6] shows that
equation 4] damps the magnitude of estimated covariance matrix.

A possible explanation is that if the approximate Hessian is degenerate, then small 7/ places a big
mass on areas of low posterior probabilities for some network parameters with no information (zero
variance and correlations in the approximate Hessian). This can be seen in figure[6|part (a) where
the approximate Hessian contains 3 parameters with exactly zero diagonal elements and zeros in
its off-diagonal elements. If one tries to add a small 7 = 0.001 here, then the covariance of these
parameters get close to its inverse 7-' = 1000 as shown in figure E]part (c). This would in return
result in over prediction of uncertainty and inaccurate predictions which explains figure[6|part (a).

3https://github.com/tensorflow/kfac

19

https://github.com/tensorflow/kfac

Under review as a conference paper at ICLR 2020

150

100

=50

—100]

—150]

~200%

—100]

—150]

150

100

=50

—100]

—150]

-4

(a) KFAC Laplace

-2

0

2

4

2004

4 -2 0 2 4

(b) Diag Laplace

(c) Random

B e S S

(d) FB Laplace

Figure 5: Toy regression uncertainty. User-set Laplace means user-set 7/ for covariance estimation.
This shows that if one tries to tune the "regularizing" parameters, all these approximations to the true

Hessian behaves similarly within this experiment. Now trained with 20 data points.

150

100§

50

—100

—150

—~200!

(a) OKF Laplace

(b) OKF Laplace (tuned)

(c) OKF inverse

1000

200

(d) KFAC inverse

Il

Figure 6: Toy regression uncertainty and covariance visualization (only the first layer is shown here).
OKF Laplace means using the left hand side of equation [4] without further approximation (only
possible with this small model and data-set).

20

Under review as a conference paper at ICLR 2020

Another interesting experiments are studying the effects of dataset size to number of parameters.
For this, we have increased the dataset size to 100 in oppose to 20. Again, we now compare the
approximate Hessian by visualizing them. Notably, at using 100 data points resulted in more number
of zero diagonal entries and corresponding rows and columns. This is due to over parameterization of
the model which results in under determined Hessian.

changes its structure, and can lead to under- , e |
determined approximation (therefore, changing

its loss landscape). Finally, if the Hessian is (a) the Hessian [100]. (b) the Hessian [20]
under-determined, hyperparameters 7 affects the

resulting predictive uncertainty (or covariance) Figure 7: Visualization of the approximate Hessian
if its magnitude significantly differs (and in case with 20 and 100 data points (a and b respectively).
of KFAC). However, as more detailed experi- Only the first layer shown here.

mental analysis is outside the scope of the paper,

can be an interesting future work to further ana-

lyze the relation between the hyperparameters, their probabilistic interpretation and resulting loss
landscape of neural network.

These insights hint for the followings. Accu-
rately estimating the Hessian while forcing its
estimates non-degeneracy via not considering
zero eigenvalues for this data and model can
lead to less sensitivity to its hyperparameters
or 7 in particular. Secondly, further increasing
or decreasing the ratio of data points to num-
ber of parameters change the approximate Hes-
sian (similarly found for estimates of Fisher)

D.2 CrassIFicATION TASKS

Most of the implementations for MNIST and CIFAR10 experiments were taken from Tensorflow
tutorials E] including the network architectures and training pipelines if otherwise stated in the main
text. This is in line of argument that our method can be directly applied to existing, and well trained
neural networks. For MNIST experiments, the architecture choices are the followings. Firstly, no
down-scaling has been performed to its inputs. The architecture constitutes 2 convolutional layers
followed by 2 fully connected layer (each convolutional layer is followed by a pooling layer of size 2
by 2, and a stride 2). For flattening from the second convolutional layer to the first fully connected
layer, a pooling operation of 49 by 64 has been naturally used. RELU activation have been used for
all the layers except the last layer which computes the softmax output. Dropout has been applied
to the fully connected layer with dropout rate of 0.6 after a grid search (explained in section [D.2.T]).
Regarding the loss functions, cross entropy loss has been used with ADAM as its optimizer and
learning rate of 0.001. An important information is the size of each layers. The first layer constitutes
32 filters with 5 by 5 kernel, followed by the second layer with 64 filters and 5 by 5 kernel. The first
fully connected layer then constitutes 1024 units and the last one ends with 10 units. We note that,
this validates our method on memory efficiency as the third layer has a large number of parameters,
and its covariance, being quadratic in its size, cannot be stored in our utilized GPUs.

Regarding the architecture selection of CIFAR10 experiments, no down-scaling of the inputs has be
done. The chosen architecture is composed of 2 convolutional layers followed by 3 fully connected
layers. Pooling layers of size 3 by 3 with strides 2 have been applied to outputs of the convolutional
layers. Obviously, the third convolutional layer is pooled to match the input size of the following
fully connected layers. Batch normalization has been applied to each outputs of convolutional layer
before pooling, with bias 1, @ of 0.001/9.0 and S of 0.75 (notations are different to the main text, and
this follows that of tensorflow library). A weight decay factor of 0.004 has been used, and trained
again with cross entropy loss, now with a stochastic gradient descent. Learning rate of 0.001 has been
used. Again, the most relevant settings are: the first layer constitutes 5 by 5 kernel with 64 filters.
This is then again followed by the same (but as input to CIFAR10 is RGB, the second layer naturally
has more number of parameters). Units of 384, 192, and 10 have been used for the fully connected
layers in an ascending order. Lastly, random cropping, flipping, brightness changes and contract have

“https://wuw.tensorflow.org/tutorials

21

https://www.tensorflow.org/tutorials

Under review as a conference paper at ICLR 2020

been applied as the data augmentation scheme. Similar to MNIST experiments, we validate our claim
that the LRA is necessary with CIFAR10 data sets.

Unlike Ritter et al.| (2018a) we did not artificially augment the data for MNIST experiments because
the usual training pipeline did not require it. We have augmented the data for the Fisher estimation
only if the network architecture required it (e.g. one we used for CIFAR10 experiments). For our
low rank approximation, we always have used the maximum rank we could fit, after removing all the
zero eigenvalues. The details are listed as follows: In MNIST experiments, 450, 5185, 20625 and
4775 have been the resulting rank of our sparsification algorithm for layers of sequential order. For
CIFAR10 experiments, 4800, 2112, 398, 5499 and 1920 have been the used ranks in a sequential order
to the layers. It would be useful to understand the reasons behind such differences per layer. Lastly
we have used 1000 Monte-Carlo samples for MNIST experiments, and 100 samples for CIFAR10
and toy regression dataset experiments.

D.2.1 BENCHMARK IMPLEMENTATIONS

Implementation of deep ensemble (Lakshminarayanan et al.,2017)) was kept rather simple by not using
the adversarial training, but we combined 15 networks that were trained with different initialization.
The same architecture and training procedure were used for all. Note that CIFAR10 experiments with
similar convolutional architectures were not present in the works of (Lakshminarayanan et al., [2017)
to the best of our knowledge. On MNIST, |Louizos & Welling|(2017) found similar results to ours that
deep ensemble performed similar to the MC-dropout (Gall | 2016)). For dropout, we have tried a grid
search of dropout probabilities of 0.5 and 0.8, and have reported the best results. For the methods
based on Laplace approximation, we have performed grid search on hyperparameters N of (1, 50000,
100000) and 100 values of T were tried using known class validation set. Note that for every method,
and different data-sets, each method required different values of 7/ to give a reasonable accuracy. The
starting point of the grid-search were determined based on if the mean values of their predictions
were obtained similar accuracy to the deterministic counter parts. The figure below are the examples
on MNIST where minimum ece points were selected and reported.

0.994, 0.09 0.9935, 0.14

0.993] 0.08 0.9930) 012
0.07
0.992 0.9925/ 0.10}
0.06

<0991 = 0.05 = 0.9920 = 0.08

I+ g o g

® 0.990 9 0.04 ® 0.9915| @ 0.06|
0.03
0.989 0.9910 0.04
0.02

0.988] 0.01 0.9905| 0.02]

0!
0.987 50 100 150 200 250 300 0.0 50 100 150 200 250 300 0.9900, 20 40 60 80 100 120 0.00 20 40 60 80 100 120

damping (-) damping (-) damping (-) damping (-)

Figure 8: Grid search for diag Laplace (left two figures) and KFAC Laplace (right two) with pseudo
observation term 50000 on MNIST.

22

	Introduction
	Related Works

	Background and Notation
	Methodology
	Laplace Approximation with a diagonal correction
	Low Rank Form of Kronecker Factored Eigenvalue Decomposition for sampling

	Experimental Results
	Predictive Uncertainty Estimation
	Effects of Low Rank Approximation

	Conclusion
	Notations on Distributions
	Matrix Normal Distribution
	Eigenvalue-corrected Matrix Variate Distribution
	Information Form of Multivariate Normal Distribution

	Derivations
	Derivation 1: Diagonal correction without evaluating the Kronecker products
	Derivation 2: Analytical form for the efficient and cheap sampler

	Proofs
	Implementation Details and Further Results
	Toy Regression Dataset
	Classification Tasks
	Benchmark implementations

