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ABSTRACT

The advance of node pooling operations in Graph Neural Networks (GNNs) has
lagged behind the feverish design of new message-passing techniques, and pool-
ing remains an important and challenging endeavor for the design of deep archi-
tectures. In this paper, we propose a pooling operation for GNNs that leverages
a differentiable unsupervised loss based on the minCUT optimization objective.
For each node, our method learns a soft cluster assignment vector that depends on
the node features, the target inference task (e.g., a graph classification loss), and,
thanks to the minCUT objective, also on the connectivity structure of the graph.
Graph pooling is obtained by applying the matrix of assignment vectors to the
adjacency matrix and the node features. We validate the effectiveness of the pro-
posed pooling method on a variety of supervised and unsupervised tasks.

1 INTRODUCTION

A fundamental component in deep convolutional neural networks is the pooling operation, which re-
places the output of convolutions with local summaries of nearby points and is usually implemented
by maximum or average operations (Lee et al., 2016). State-of-the-art architectures alternate convo-
lutions, which extrapolate local patterns irrespective of the specific location on the input signal, and
pooling, which lets the ensuing convolutions capture aggregated patterns. Pooling allows to learn
abstract representations in deeper layers of the network by discarding information that is superflu-
ous for the task, and keeps model complexity under control by limiting the growth of intermediate
features.

Graph Neural Networks (GNNs) extend the convolution operation from regular domains, such as
images or time series, to data with arbitrary topologies and unordered structures described by
graphs (Battaglia et al., 2018). The development of pooling strategies for GNNs, however, has
lagged behind the design of newer and more effective message-passing (MP) operations (Gilmer
et al., 2017), such as graph convolutions, mainly due to the difficulty of defining an aggregated
version of the original graph that supports the pooled signal.

A naı̈ve pooling strategy in GNNs is to average all nodes features (Li et al., 2016), but it has lim-
ited flexibility since it does not extract local summaries of the graph structure, and no further MP
operations can be applied afterwards. An alternative approach consists in pre-computing coarsened
versions of the original graph and then fit the data to these deterministic structures (Bruna et al.,
2013). While this aggregation accounts for the connectivity of the graph, it ignores task-specific
objectives as well as the node features.

In this paper, we propose a differentiable pooling operation implemented as a neural network layer,
which can be seamlessly combined with other MP layers (see Fig. 1). The parameters in the pool-
ing layer are learned by combining the task-specific loss with an unsupervised regularization term,
which optimizes a continuous relaxation of the normalized minCUT objective. The minCUT iden-
tifies dense graph components, where the nodes features become locally homogeneous after the
message-passing. By gradually aggregating these components, the GNN learns to capture coarser
properties of the graph. The proposed minCUT pooling operator (minCUTpool) yields partitions that
1) cluster together nodes which have similar features and are strongly connected on the graph, and
2) take into account the objective of the downstream task.
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Figure 1: A deep GNN architecture where message-passing is followed by minCUT pooling.

2 BACKGROUND

2.1 MINCUT AND SPECTRAL CLUSTERING

Given a graph G = {V, E}, |V| = N , and the associated adjacency matrix A ∈ RN×N , the K-way
normalized minCUT (simply referred to as minCUT) aims at partitioning V in K disjoint subsets by
removing the minimum volume of edges. The problem is equivalent to maximizing
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where the numerator counts the edge volume within each cluster, and the denominator counts the
edges between the nodes in a cluster and the rest of the graph (Shi & Malik, 2000). Let C ∈ RN×K

be a cluster assignment matrix, so that Ci,j = 1 if node i belongs to cluster j, and 0 otherwise. The
minCUT problem can be expressed as

maximize
1
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, s.t. C ∈ {0, 1}N×K , C1K = 1N , (2)

where D = diag(A1N ) is the degree matrix (Dhillon et al., 2004). Since problem (2) is NP-hard,
it is usually recast in a relaxed formulation that can be solved in polynomial time and guarantees a
near-optimal solution (Yu & Shi, 2003):

arg max
Q∈RN×K
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2 , QTQ = IK . (3)

While the optimization problem (3) is still non-convex, there exists an optimal solution Q∗ = UKO,
where UK ∈ RN×K contains the eigenvectors of A corresponding to the K largest eigenvalues,
and O ∈ RK×K is an orthogonal transformation (Ikebe et al., 1987).

Since the elements of Q∗ are real values rather than binary cluster indicators, the spectral clustering
(SC) approach can be used to find discrete cluster assignments. In SC, the rows of Q∗ are treated
as node representations embedded in the eigenspace of the Laplacian, and are clustered together
with standard algorithms such as k-means (Von Luxburg, 2007). One of the main limitations of SC
lies in the computation of the spectrum of A, which has a memory complexity of O(N2) and a
computational complexity of O(N3). This prevents its applicability to large datasets.

To deal with such scalability issues, the constrained optimization in (3) can be solved by gradient
descent algorithms that refine the solution by iterating operations whose individual complexity is
O(N2), or even O(N) (Han & Filippone, 2017). Those algorithms search the solution on the
manifold induced by the orthogonality constraint on the columns of Q, by performing gradient
updates along the geodesics (Wen & Yin, 2013; Collins et al., 2014). Alternative approaches rely on
the QR factorization to constrain the space of feasible solutions (Damle et al., 2016), and alleviate
the cost O(N3) of the factorization by ensuring that orthogonality holds only on one minibatch at a
time (Shaham et al., 2018).
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Other works based on neural networks include an autoencoder trained to map the ith row of the
Laplacian to the ith components of the first K eigenvectors, to avoid the spectral decomposi-
tion (Tian et al., 2014). Yi et al. (2017) use a soft orthogonality constraint to learn spectral em-
beddings as a volumetric reparametrization of a precomputed Laplacian eigenbase. Shaham et al.
(2018); Kampffmeyer et al. (2019) propose differentiable loss functions to partition generic data and
process out-of-sample data at inference time. Nazi et al. (2019) generate balanced node partitions
with a GNN, but adopt an optimization that does not encourage cluster assignments to be orthogonal.

2.2 GRAPH NEURAL NETWORKS

Many approaches have been proposed to process graphs with neural networks, including recurrent
architectures (Scarselli et al., 2009; Li et al., 2016) or convolutional operations inspired by filters
used in graph signal processing (Defferrard et al., 2016; Levie et al., 2018; Bianchi et al., 2019).
Since our focus is on graph pooling, we base our GNN implementation on a simple MP operation,
which combines the features of each node with its 1st-order neighbors. To account for the initial node
features, it is possible to introduce self-loops by adding a (scaled) identity matrix to the diagonal of
A (Kipf & Welling, 2017). Since our pooling will modify the structure of the adjacency matrix, we
prefer a MP implementation that leaves the original A unaltered and accounts for the initial node
features by means of skip connections.

Let Ã = D−
1
2 AD−

1
2 ∈ RN×N be the symmetrically normalized adjacency matrix and X ∈ RN×F

the matrix containing the node features. The output of the MP layer is

X(t+1) = MP (X(t), Ã) = ReLU(ÃX(t)Wm + X(t)Ws), (4)

where ΘMP = {Wm,Ws} are the trainable weights relative to the mixing and skip component of
the layer, respectively.

3 PROPOSED METHOD

The minCUT pooling strategy computes a cluster assignment matrix S ∈ RN×K by means of a
multi-layer perceptron, which maps each node feature xi into the ith row of S:

S = softmax(ReLU(XW1)W2), (5)

where ΘPool = {W1 ∈ RF×H ,W2 ∈ RH×K} are trainable parameters. The softmax function
guarantees that si,j ∈ [0, 1] and enforces the constraints S1K = 1N inherited from the optimization
problem in (2). The parameters ΘMP and ΘPool are jointly optimized by minimizing the usual
task-specific loss, as well as an unsupervised loss Lu, which is composed of two terms

Lu = Lc + Lo = −Tr(ST ÃS)

Tr(ST D̃S)︸ ︷︷ ︸
Lc

+

∥∥∥∥ STS

‖STS‖F
− IK√

K

∥∥∥∥
F︸ ︷︷ ︸
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, (6)

where ‖ · ‖F indicates the Frobenius norm.

The cut loss term, Lc, evaluates the minCUT given by the cluster assignment S, and is bounded by
−1 ≤ Lc ≤ 0. Minimizing Lc encourages strongly connected nodes to be clustered together, since
the inner product 〈si, sj〉 increases when ãi,j is large. Lc has a single maximum, reached when the
numerator Tr(ST ÃS) = 1

K

∑K
k=1 ST

k ÃSk = 0. This occurs if, for each pair of connected nodes
(i.e., ãi,j > 0), the cluster assignments are orthogonal (i.e., 〈si, sj〉 = 0). Lc reaches its minimum,
−1, when Tr(ST ÃS) = Tr(ST D̃S). This occurs when in a graph with K disconnected com-
ponents the cluster assignments are equal for all the nodes in the same component and orthogonal
to the cluster assignments of nodes in different components. However, Lc is a non-convex func-
tion and its minimization can lead to local minima or degenerate solutions. For example, given a
connected graph, a trivial optimal solution is the one that assigns all nodes to the same cluster. As
a consequence of the continuous relaxation, another degenerate minimum occurs when the cluster
assignments are all uniform, that is, all nodes are equally assigned to all clusters. This problem is
exacerbated by prior message-passing operations, which make the node features more uniform.
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The orthogonality loss term, Lo, penalizes the degenerate minima of Lc by encouraging the cluster
assignments to be orthogonal and the clusters to be of similar size. Since the two matrices in Lo

have unitary norm it is easy to see that 0 ≤ Lo ≤ 2. Therefore, Lo does not dominate over Lc and
the two terms can be safely summed directly (see Fig. 4 for an example). IK can be interpreted as a
(rescaled) clustering matrix IK = ŜT Ŝ, where Ŝ assigns exactly N/K points to each cluster. The
value of the Frobenius norm between clustering matrices is not dominated by the performance on
the largest clusters (Law et al., 2017) and thus can be used to optimize intra-cluster variance.

Contrarily to SC methods that search for feasible solutions only within the space of orthogonal
matrices, Lo only introduces a soft constraint that can be violated during the learning procedure.
Since Lc is non-convex, the violation compromises the theoretical guarantee of convergence to the
optimum of (3). However, we note that:

1. in the GNN architecture, the minCUT objective is a regularization term and, therefore, a
solution which is sub-optimal for (3) could instead be adequate for the specific objective of
the downstream task;

2. optimizing the task-specific loss helps the GNN to avoid the degenerate minima of Lc.

3.1 COARSENING

The coarsened version of the adjacency matrix and the graph signal are computed as

Apool = ST ÃS; Xpool = STX, (7)

where the entry xpool
i,j in Xpool ∈ RK×F is the weighted average value of feature j among the

elements in cluster i. Apool ∈ RK×K is a symmetric matrix, whose entries apooli,i are the total
number of edges between the nodes in the cluster i, while apooli,j is the number of edges between
cluster i and j. Since Apool corresponds to the numerator of Lc in (7), the trace maximization yields
clusters with many internal connections and weakly connected to each other. Hence, Apool will be
a diagonal-dominant matrix, which describes a graph with self-loops much stronger than any other
connection. Because self-loops hamper the propagation across adjacent nodes in the MP operations
following the pooling layer, we compute the new adjacency matrix Ãpool by zeroing the diagonal
and by applying the degree normalization

Â = Apool − IKdiag(Apool); Ãpool = D̂−
1
2 ÂD̂−

1
2 . (8)

where diag(·) returns the matrix diagonal.

3.2 DISCUSSION AND RELATIONSHIP WITH SPECTRAL CLUSTERING

The proposed method is straightforward to implement: the cluster assignments, the loss, graph
coarsening, and feature pooling are all computed by a sequence of standard linear algebra operations.

There are several differences between minCUTpool and classic SC methods. SC partitions the graph
based on the Laplacian, but does not account for the node features. Instead, the cluster assignments
si found by minCUTpool depend on xi, which works well if connected nodes have similar features.
This is a reasonable assumption in GNNs since, even in disassortative graphs (i.e., networks where
dissimilar nodes are likely to be connected (Newman, 2003)), the features tend to become similar
due to the MP operations.

Another difference is that SC handles a single graph and is not conceived for tasks with multiple
graphs to be partitioned independently. Instead, thanks to the independence of the model parameters
from the number of nodes N and from the graph spectrum, minCUTpool can generalize to out-
of-sample data. This feature is fundamental in problems such as graph classification, where each
sample is a graph with a different structure, and allows to train the model on small graphs and process
larger ones at inference time. Finally, minCUTpool directly uses the soft cluster assignments rather
than performing k-means afterwards.
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4 RELATED WORK ON POOLING IN GNNS

Trainable pooling methods. Similarly to our method, these approaches learn how to generate
coarsened version of the graph through differentiable functions, which take as input the nodes fea-
tures X and are parametrized by weights optimized for the task at hand.

The work that is most related to our approach is Diffpool (Ying et al., 2018), which uses two MP
layers in parallel: one to compute the new node features X(t+1) (as in Eq. (4)), and another to gener-
ate the cluster assignments S. In minCUTpool, instead, we compute S by means of a MLP applied
on X(t+1). However, the main difference is in the regularization loss Lu, which in Diffpool consists
of two terms. The first is the link prediction term ‖A − SST ‖F , which minimizes the Frobenius
norm of the difference between the adjacency and the Gram matrix of the cluster assignments, and
encourages nearby nodes to be clustered together. The second term 1

N

∑N
i=1 H(Si) minimizes the

entropy of the cluster assignments to make them alike to one-hot vectors.

The approach dubbed Top-K pooling (Hongyang Gao, 2019; Cangea et al., 2018), learns a projection
vector that is applied to each node feature to obtain a score. The nodes with the K highest scores
are retained, while the remaining ones are dropped. Since the top-K selection is not differentiable,
the scores are also used as a gate/attention for the node features, letting the projection vector to
be trained with backpropagation. Top-K is more memory efficient as it avoids generating cluster
assignments. To prevent A from becoming disconnected when the nodes are removed, Top-K drops
the rows and the columns from A2 and uses it as the new adjacency matrix. However, computing
A2 costs O(N2) and it is inefficient to implement with sparse operations.

Topological pooling methods. These methods pre-compute a pyramid of coarsened graphs, only
taking into account the topology (A), but not the node features (X). During training, the node
features are pooled with standard procedures and are fit into these deterministic graph structures.
These methods are less flexible, but provide a stronger bias that can prevent degenerate solutions
(e.g., coarsened graphs collapsing in a single node).

The approach proposed by Bruna et al. (2013), which has been adopted also in other GNN ar-
chitectures (Defferrard et al., 2016; Fey et al., 2018), exploits GRACLUS (Dhillon et al., 2004), a
hierarchical algorithm based on SC. At each pooling level l, GRACLUS indetifies the pairs of max-
imally similar nodes il and jl to be clustered together into a new vertex k(l+1). At inference phase,
max-pooling is used to determine which node in the pair is kept. Fake vertices are added so that the
number of nodes can be halved each time, but this injects noisy information in the graph.

Node decimation is a method originally proposed in graph signal processing literature (Shuman
et al., 2016), which as been adapted also for GNNs (Simonovsky & Komodakis, 2017; Bianchi
et al., 2019). The nodes are partitioned in two sets, according to the signs of the Laplacian eigen-
vector associated to the largest eigenvalue. One of the two sets is dropped, reducing the number of
nodes each time approximately by half. Kron reduction is used to compute a pyramid of coarsened
Laplacians from the remaining nodes.

A procedure proposed in Gama et al. (2018) diffuses a signal from designated nodes on the graph
and stores the observed sequence of diffused components. The resulting stream of information is
interpreted as a time signal, where standard CNN pooling is applied.

We also mention a pooling operation for coarsening binary unweighted graphs by aggregating max-
imal cliques (Luzhnica et al., 2019). Nodes assigned to the same clique are summarized by max or
average pooling and become a new node in the coarsened graph.

5 EXPERIMENTS

We consider both supervised and unsupervised tasks, and compare minCUTpool with other popular
pooling strategies described above. The Appendix provides further details on the experiments and
a schematic depiction of the architectures used in each task. In addition, the Appendix reports two
additional experiments: i) graph reconstruction by means of an Auto Encoder with bottleneck, im-
plemented with pooling and un-pooling layers, ii) an architecture with pooling for graph regression.
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5.1 CLUSTERING THE GRAPH NODES

To evaluate the effectiveness of the proposed loss, we perform different node clustering tasks with
a simple GNN composed of a single MP layer followed by a pooling layer. The GNN is trained by
minimizing Lu only.

Clustering on synthetic networks We consider two simple graphs: the first is a network with 6
communities and the second is a regular grid. The adjacency matrix A is binary and the features X
are the 2-D node coordinates. Fig. 2 depicts the node partitions generated by SC (a, d), Diffpool (b,
e), and minCUTpool (c, f). Cluster indexes for Diffpool and minCUTpool are obtained by taking
the argmax of S row-wise. Compared to SC, Diffpool and minCUTpool leverage the information
contained in X. minCUTpool generates very accurate and balanced partitions, demonstrating that
the cluster assignment matrix S is well formed. On the other hand, Diffpool assigns some nodes to
the wrong community in the first example, and produces an imbalanced partition of the grid.

(a) SC (b) Diffpool (c) minCUTpool

(d) SC (e) Diffpool (f) minCUTpool

Figure 2: Node clustering on a community network (K=6) and on a grid graph (K=5).

Image segmentation Given an image, we build a Region Adjacency Graph (Trémeau & Colan-
toni, 2000) using as nodes the regions generated by an oversegmentation procedure (Felzenszwalb
& Huttenlocher, 2004). The SC technique used in this example is the recursive normalized cut (Shi
& Malik, 2000), which recursively clusters the nodes until convergence. For Diffpool and minCUT-
pool, the node features consist of the average and total color in each oversegmented region. We set
the number of desired clusters to K = 4. The results in Fig. 3 show that minCUTpool yields a more
precise segmentation. On the other hand, SC and Diffpool aggregate wrong regions and, in addition,
SC finds too many segments.

Clustering on citation networks We cluster the nodes of three popular citation networks: Cora,
Citeseer, and Pubmed. The nodes are documents represented by sparse bag-of-words feature vectors
stored in X and the binary undirected edges in A indicate citation links between documents. Each
node i is labeled with the document class yi. To test the quality of the partitions generated by
each method we check the agreement between the cluster assignments and the original classes.
Tab. 1 reports the Completeness Score CS(ỹ,y) = 1− H(ỹ|y)

H(ỹ) and Normalized Mutual Information

NMI(ỹ,y) = H(ỹ)−H(ỹ|y)√
H(ỹ)−H(y)

, where H(·) is the entropy.

The GNN architecture configured with minCUTpool achieves a higher NMI score than SC, which
does not account for the node features X when generating the partitions. Our pooling operation

6



Under review as a conference paper at ICLR 2020

(a) Original image (b) Oversegmentation (c) Region Adjacency Graph

(d) SC (e) Diffpool (K = 4) (f) minCUTpool (K = 4)

Figure 3: Image segmentation by clustering the nodes of the Region Adjacency Graph.

0 5000 10000
Iteration

397.9

398.0

398.1

398.2

398.3

398.4 Tot loss

0 5000 10000
Iteration

0.1

0.2

0.3

0.4

NMI

(a) Diffpool

0 5000 10000
Iteration

1.0

0.5

0.0

0.5

1.0 Tot loss
c

o

0 5000 10000
Iteration

0.1

0.2

0.3

0.4

NMI

(b) minCUTpool

Figure 4: Unsupervised losses and NMI of Diffpool and minCUTpool on Cora.

outperforms also Diffpool, indicating that the unsupervised loss in Diffpool is unable to converge
to an optimal solution, possibly due to its highly non-convex nature. This can be seen from Fig. 4,
which depicts the evolution of the unsupervised losses and NMI scores of Diffpool and minCUTpool
during training.

Table 1: NMI and CS obtained by clustering the nodes on citation networks over 10 different runs.
The number of clusters K is equal to the number of node classes.

Dataset K Spectral clustering Diffpool minCUTpool

NMI CS NMI CS NMI CS
Cora 7 0.025 ± 0.014 0.126 ± 0.042 0.315 ± 0.005 0.309 ± 0.005 0.404 ± 0.018 0.392 ± 0.018

Citeseer 6 0.014 ± 0.003 0.033 ± 0.000 0.139 ± 0.016 0.153 ± 0.020 0.287 ± 0.047 0.283 ± 0.046

Pubmed 3 0.182 ± 0.000 0.261 ± 0.000 0.079 ± 0.001 0.085 ± 0.001 0.200 ± 0.020 0.197 ± 0.019

5.2 SUPERVISED GRAPH CLASSIFICATION

In this task, the i-th datum is a graph with Ni nodes represented by a pair {Ai,Xi} and must be
associated to the correct label yi. We test the models on different graph classification datasets. For
featureless graphs, we used the node degree information and the clustering coefficient as surrogate
node features. We evaluate model performance with a 10-fold train/test split, using 10% of the
training set in each fold as validation for early stopping. We adopt a fixed network architecture,
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MP(32)-pool-MP(32)-pool-MP(32)-GlobalAvgPool-softmax, where MP is the message-passing op-
eration in (4) with 32 hidden units. The pooling module is implemented either by Graclus, Deci-
mation pooling, Top-K pooling, Diffpool, or the proposed minCUTpool. Each pooling method is
configured to drop half of the nodes in a graph (K = N/2 in Top-K, Diffpool, and minCUTpool).
As baselines, we consider the popular Weisfeiler-Lehman (WL) graph kernel (Shervashidze et al.,
2011), a network with only MP layers (Flat), and a fully connected network (Dense).

Table 2: Graph classification accuracy. Significantly better results (p < 0.05) are in bold.

Dataset WL Dense Flat Graclus Decim. Diffpool Top-K minCUT

Bench-easy 92.6 29.3±0.3 98.5±0.3 97.5±0.5 97.9±0.5 98.6±0.4 82.4±8.9 99.0±0.0

Bench-hard 60.0 29.4±0.3 67.6±2.8 69.0±1.5 72.6±0.9 69.9±1.9 42.7±15.2 73.8±1.9

Mutagenicity 81.7±1.1 68.4±0.3 78.0±1.3 74.4±1.8 77.8±2.3 77.6±2.7 71.9±3.7 79.9±2.1

Proteins 71.2±2.6 68.7±3.3 72.6±4.8 68.6±4.6 73.3±3.7 72.7±3.8 69.6±3.5 76.5±2.6

DD 78.6±2.7 70.6±5.2 76.8±1.5 70.5±4.8 72.0±3.1 79.3±2.4 69.4±7.8 80.8±2.3

COLLAB 74.8±1.3 79.3±1.6 82.1±1.8 77.1±2.1 79.1±1.5 81.8±1.4 79.3±1.8 83.4±1.7

Reddit-Binary 68.2±1.7 48.5±2.6 80.3±2.6 79.2±0.4 84.3±2.4 86.8±2.1 74.7±4.5 91.4±1.5

Tab. 2 reports the classification results, highlighting those that are significantly better (p-value
< 0.05 w.r.t. the method with the highest mean accuracy). The comparison with Flat helps to
understand if a pooling operation is useful or not. The results of Dense, instead, help to quantify
how much additional information is brought by the graph structure, with respect to the node features
alone. It can be seen that minCUTpool obtains always equal or better results with respect to every
other GNN architecture. On the other hand, some pooling procedures do not always improve the
performance compared to the Flat baseline, making them not advisable to use in some cases. The
WL kernel generally performs worse than the GNNs, except for the Mutagenicity dataset. This is
probably because Mutagenicity has smaller graphs than the other datasets, and the adopted GNN
architecture is overparametrized for this task. Interestingly, in some dataset such as Proteins and
COLLAB it is possible to obtain fairly good classification accuracy with the Dense architecture,
meaning that the graph structure only adds limited information.

TopK DiffPool minCUT Graclus Decim.
0

1

2

3

4

se
c 

/ e
po

ch Figure 5: Average duration of one epoch using the
same GNN with different pooling operations. Times
were computed with an Nvidia GeForce GTX 1050,
on the DD dataset with batch size of 1.

Fig. 5 reports a comparison of the execution time per training epoch for each pooling algorithm.
Graclus and Decimation are understandably the fastest methods, since the coarsened graphs are pre-
computed. Among the differentiable pooling methods, minCUTpool is faster than Diffpool, which
uses a slower MP layer rather than a MLP to compute cluster assignments, and than Top-K, which
computes the square of A at every forward pass.

6 CONCLUSIONS

We proposed a pooling layer for GNNs that coarsens a graph by taking into account both the the
connectivity structure and the node features. The layer optimizes a regularization term based on the
minCUT objective, which is minimized in conjunction with the task-specific loss to produce node
partitions that are optimal for the task at hand.

We tested the effectiveness of our pooling strategy on unsupervised node clustering tasks, by op-
timizing only the unsupervised clustering loss, as well as supervised graph classification tasks on
several popular benchmark datasets. Results show that minCUTpool performs significantly better
than existing pooling strategies for GNNs.
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APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 GNN AUTOENCODER

To compare the amount of information retained by the pooling layers in the coarsened graphs, we
train an autoencoder (AE) to reconstruct a input graph signal X from its pooled version. The AE
architecture is MP(32)-MP(32)-pool-unpool-MP(32)-MP(32)-MP, and is trained by minimizing the
mean squared error between the original and the reconstructed graph signal, ‖X −Xrec‖2. All the
pooling operations are configured to retain 25% of the original nodes.

In Diffpool and minCUTpool, the unpool step is simply implemented by transposing the original
pooling operations

Xrec = SXpool; Arec = SApoolST . (9)

Top-K does not generate a cluster assignment matrix, but returns a binary mask m = {0, 1}N
that indicates the nodes to drop (0) or to retain (1). Therefore, an upsamplig matrix U is built by
dropping the columns of the identity matrix IN that correspond to a 0 in m, U = [IN ]:,m==1. The
unpooling operation is performed by replacing S with U in (9), and the resulting upscaled graph is
a version of the original graph with zeroes in correspondence of the dropped nodes.

(a) Original (b) Top-K (c) Diffpool (d) minCUTpool

Figure 6: AE reconstruction of a ring graph

(a) Original (b) Top-K (c) Diffpool (d) minCUTpool

Figure 7: AE reconstruction of a grid graph

Fig. 6 and 7 report the original graph signal X (the node features are the 2-D coordinates of the
nodes) and the reconstruction Xrec obtained by using the different pooling methods, for a ring graph
and a regular grid graph. The reconstruction produced by Diffpool is worse for the ring graph,
but is almost perfect for the grid graph, while minCUTpool yields good results in both cases. On
the other hand, Top-K clearly fails in generating a coarsened representation that maintains enough
information from the original graph.

This experiment highlights a major issue in Top-K pooling, which retains the nodes associated to
the highest K values of a score vector s, computed by projecting the node features onto a train-
able vector p: s = Xp. Nodes that are connected on the graph usually share similar features, and
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their similarity further increases after the MP operations, which combine the features of neighbor-
ing nodes. Retaining the nodes associated to the top K scores in s corresponds to keeping those
nodes that are alike and highly connected, as it can be seen in Fig. 6-7. Therefore, Top-K discards
entire portions of the graphs, which might contain important information. This explains why Top-K
fails to recover the original graph signal when used as bottleneck for the AE, and yields the worse
performance among all GNN methods in the graph classification task.

A.2 GRAPH REGRESSION OF MOLECULAR PROPERTIES ON QM9

The QM9 chemical database is a collection of ≈135k small organic molecules, associated to con-
tinuous labels describing several geometric, energetic, electronic, and thermodynamic properties1.
Each molecule in the dataset is represented as a graph {Ai,Xi}, where atoms are associated to
nodes, and edges represent chemical bonds. The atomic number of each atom (one-hot encoded;
C, N, F, O) is taken as node feature and the type of bond (one-hot encoded; single, double, triple,
aromatic) can be used as edge attribute. In this experiment, we ignore the edge attributes in order to
use all pooling algorithms without modifications.

The purpose of this experiment is to compare the trainable pooling methods also on a graph re-
gression task, but it must be intended as a proof of concept. In fact, the graphs in this dataset are
extremely small (the average number of nodes is 8) and, therefore, a pooling operation is arguably
not necessary. We consider a GNN with architecture MP(32)-pool-MP(32)-GlobalAvgPool-Dense,
where pool is implemented by Top-K, Diffpool, or minCUTpool. The network is trained to predict
a given chemical property from the input molecular graphs. Performance is evaluated with a 10-fold
cross-validation, using 10% of the training set for validation in each split. The GNNs are trained for
50 epochs, using Adam with learning rate 5e-4, batch size 32, and ReLU activations. We use the
mean squared error (MSE) as supervised loss.

The MSE obtained on the prediction of each property for different pooling methods is reported in
Tab. 3. As expected, the flat baseline with no pooling operation (MP(32)-MP(32)-GlobalAvgPool-
Dense) yields a lower error in most cases. Contrarily to the graph classification and the AE task,
Top-K achieves better results than Diffpool in average. Once again, minCUTpool significantly
outperforms the other methods on each regression task and, in one case, also the flat baseline.

Property Top-K Diffpool minCUTpool Flat baseline

mu 0.600±0.085 0.651±0.026 0.538±0.012 0.559±0.007

alpha 0.197±0.087 0.114±0.001 0.078±0.007 0.065±0.006

homo 0.698±0.102 0.712±0.015 0.526±0.021 0.435±0.013

lumo 0.601±0.050 0.646±0.013 0.540±0.005 0.515±0.007

gap 0.630±0.044 0.698±0.004 0.584±0.007 0.552±0.008

r2 0.452±0.087 0.440±0.024 0.261±0.006 0.204±0.006

zpve 0.402±0.032 0.410±0.004 0.328±0.005 0.284±0.005

u0 atom 0.308±0.055 0.245±0.006 0.193±0.002 0.163±0.001

cv 0.291±0.118 0.337±0.018 0.148±0.004 0.127±0.002

Table 3: MSE on the graph regression task. The best results with a statistical significance of p < 0.05
are highlighted: the best overall are in bold, the best among pooling methods are underlined.

B EXPERIMENTAL DETAILS

For the WL kernel, we used the implementation provided in the GraKeL library2. The pooling
strategy based on Graclus, is taken from the ChebyNets repository3.

1http://quantum-machine.org/datasets/
2https://ysig.github.io/GraKeL/dev/
3https://github.com/mdeff/cnn_graph
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B.1 CLUSTERING ON CITATION NETWORKS

Diffpool and minCUTpool are configured with 16 hidden neurons with linear activations in the MLP
and MP layer, respectively used to compute the cluster assignment matrix S. The MP layer used
to compute the propagated node features X(1) uses an ELU activation in both architectures. The
learning rate for Adam is 5e-4, and the models are trained for 10000 iterations. The details of the
citation networks dataset are reported in Tab. 4.

Table 4: Details of the citation networks datasets
Dataset Nodes Edges Node features Node classes

Cora 2708 5429 1433 7
Citeseer 3327 9228 3703 6
Pubmed 19717 88651 500 3

B.2 GRAPH CLASSIFICATION

We train the GNN architectures with Adam, an L2 penalty loss with weight 1e-4, and 16 hidden
units (H) both in the MLP of minCUTpool and in the internal MP of Diffpool. Mutagenicity,
Proteins, DD, COLLAB, and Reddit-2k are datasets representing real-world graphs and are taken
from the repository of benchmark datasets for graph kernels4. Bench-easy and Bench-hard5 are
datasets where the node features X and the adjacency matrix A are completely uninformative if
considered alone. Hence, algorithms that account only for the node features or the graph structure
will fail to classify the graphs. Since Bench-easy and Bench-hard come with a train/validation/test
split, the 10-fold split is not necessary to evaluate the performance. The statistics of all the datasets
are reported in Tab. 5.

Table 5: Summary of statistics of the graph classification datasets

Dataset samples classes avg. nodes avg. edges node attr. node labels

Bench-easy 1800 3 147.82 922.66 – yes
Bench-hard 1800 3 148.32 572.32 – yes
Mutagenicity 4337 2 30.32 30.77 – yes
Proteins 1113 2 39.06 72.82 1 no
DD 1178 2 284.32 715.66 – yes
COLLAB 5000 3 74.49 2457.78 – no
Reddit-2K 2000 2 429.63 497.75 – no

C ARCHITECTURES SCHEMATA

Fig. 8 reports the schematic representation of the minCUTpool layer; Fig. 9 the GNN architecture
used in the clustering and segmentation tasks; Fig. 10 the GNN architecture used in the graph clas-
sification task; Fig. 12 the GNN architecture used in the graph regression task; Fig. 11 the graph
autoencoder used in the graph signal reconstruction task.

4https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
5https://github.com/FilippoMB/Benchmark_dataset_for_graph_

classification
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Figure 8: Schema of the minCUTpool layer.

7/5/2019 clustering_scheme.xml

1/1

𝐗

𝐀

𝐒MP Pool

Figure 9: Architecture for clustering/segmentation.

𝑦
𝐗

𝐀
MP Pool MP Pool MP Global

Pool
Dense

(softmax)

Figure 10: Architecture for graph classification.

𝐗

𝐀
MP UnpoolMP Pool MP MP 𝐗

recMP
(linear)

Figure 11: Architecture for the autoencoder.
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Figure 12: Architecture for graph regression.

14


	Introduction
	Background
	Mincut and spectral clustering
	Graph Neural Networks

	Proposed method
	Coarsening
	Discussion and relationship with spectral clustering

	Related work on pooling in GNNs
	Experiments
	Clustering the graph nodes
	Supervised graph classification

	Conclusions
	Additional experiments
	GNN Autoencoder
	Graph regression of molecular properties on QM9

	Experimental details
	Clustering on citation networks
	Graph classification

	Architectures schemata

