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ABSTRACT

To understand how object vision develops in infancy and childhood, it will be nec-
essary to develop testable computational models. Deep neural networks (DNNs)
have proven valuable as models of adult vision, but it is not yet clear if they have
any value as models of development. As a first model, we measured learning
in a DNN designed to mimic the architecture and representational geometry of
the visual system (CORnet). We quantified the development of explicit object
representations at each level of this network through training by freezing the con-
volutional layers and training an additional linear decoding layer. We evaluate
decoding accuracy on the whole ImageNet validation set, and also for individual
visual classes. CORnet, however, uses supervised training and because infants
have only extremely impoverished access to labels they must instead learn in an
unsupervised manner. We therefore also measured learning in a state-of-the-art
unsupervised network (DeepCluster). CORnet and DeepCluster differ in both su-
pervision and in the convolutional networks at their heart, thus to isolate the effect
of supervision, we ran a control experiment in which we trained the convolutional
network from DeepCluster (an AlexNet variant) in a supervised manner. We make
predictions on how learning should develop across brain regions in infants. In all
three networks, we also tested for a relationship in the order in which infants and
machines acquire visual classes, and found only evidence for a counter-intuitive
relationship. We discuss the potential reasons for this.

1 INTRODUCTION

1.1 THE DEVELOPMENT OF OBJECT RECOGNITION IN INFANTS

Visual discrimination of objects begins to develop early in infancy. Even newborns orient towards
faces rather than other stimuli, showing that they can discriminate them from an early age (Johnson
et al., 1991). By 3-4 months old, infants can identify statistical regularities across exemplars - for
example, when presented a sequence of images from one visual class (e.g., cats) they prefer to
look at a subsequently presented animal if it is from a deviating class (e.g., a dog) (Quinn et al.,
1993; French et al., 2004). At 6 months, infants start to look at a visual class corresponding to a
concurrently spoken label (Bergelson & Swingley, 2012), although vocabulary remains very limited
until after the first birthday, when it typically begins to grow rapidly.

In addition to measuring behaviour, neuroimaging can measure activity in the ventral visual stream,
the brain system responsible for object vision. In adults, functional magnetic resonance imaging
(fMRI) has found that there are regions that are selective for particular visual classes, such as faces,
body parts or places (Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Downing et al., 2001). In
4-6 month old infants, selectivity is already present in the ventral visual stream (Deen et al., 2017),
although it continues to develop for many years (Gomez et al., 2017).
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1.2 DEEP LEARNING AS A MODEL OF THE DEVELOPMENT OF VISION

In studies of object vision in adults, DNNs have proven valuable (Yamins & DiCarlo, 2016). By
examining which visual classes evoke similar or dissimilar patterns of activity, it has been found
that the representational geometry in these DNNs can capture some of the representational geoeme-
try of the ventral visual stream, as measured with functional magenetic resonance imaging (fMRI)
(Khaligh-Razavi & Kriegeskorte, 2014; Guclu & van Gerven; Wen et al., 2018), electroencephalog-
raphy (EEG) and behavioural studies (Cichy et al., 2016).

Thus, fully-trained DNNs are valuable models of the adult ventral visual stream, but this does not
imply that they will be valuable models of the developmental process. It is the overarching goal
of our work to develop ways to test the value of DNNs in explaining infant behaviour and brain
development.

1.3 AIMS OF THE CURRENT STUDY

We begin to test the parallel between learning in infants and DNNs by addressing two open ques-
tions:

1. Should we expect representations in brain regions of the visual hierarchy to develop si-
multaneously or asynchronously? A principle of infant development is that brain regions
underlying simpler functions develop first, and are followed by those underlying more com-
plex functions [Charles A. Nelson in Shonkoff & Phillips (2000)]. To provide a model of
whether this might happen in the visual hierarchy we examined how representations devel-
oped in different layers of a DNN during training.

2. Are visual classes that are learned earlier by infants also learned earlier by DNNs and/or
represented in shallower layers? In infants, the acquisition of visual classes can be esti-
mated by the onset of the receptive or expressive use of the words for the classes. It has
been found that, when measured this way, some visual classes are learned before others,
e.g., body parts and vehicles precede food and clothing (Braginsky et al., 2015). We ask
whether some of this ordering is attributable to visual complexity, as reflected in the DNN
learning rates and/or layers.

2 METHODS

2.1 CHOICE OF NETWORKS AND TRAINING

2.1.1 CORNET-S WITH SUPERVISED TRAINING

Studies that have shown a parallel between DNNs and the adult brain have used networks trained in a
supervised manner (Khaligh-Razavi & Kriegeskorte, 2014; Guclu & van Gerven; Cichy et al., 2016;
Wen et al., 2018; Jozwik et al., 2018). For comparison with these studies, we therefore started with a
supervised network. Specifically, we used CORnet-S (Kubilius et al., 2018), as this was designed to
capture the architectural principles and representational geometry of the ventral visual stream while
achieving good classification performance. It has four blocks mapping onto regions in the ventral
visual stream (V1, V2, V4 and IT).

2.1.2 DEEPCLUSTER WITH UNSUPERVISED TRAINING

Infants’ access to labels is extremely impoverished and so to develop computational models that
capture the dynamics of infant learning it will be necessary to evaluate unsupervised training. One
current state-of-the-art unsupervised strategy for learning visual features for object recognition is
DeepCluster (Caron et al., 2018). This uses a simple but elegant technique for self-supervised learn-
ing, in which at the start of an epoch, each image (from ImageNet) is passed forward through a
convolutional network, and the resulting output activations are clustered across all of the images
using k-means. These clusters are assigned labels, which are then used to learn the weights of the
convolutional network with stochastic gradient descent on batches of images in the typical way.

Like Caron et al. (2018) we used 10,000 clusters. As a convolutional network, we used AlexNet
(Krizhevsky et al., 2012) which contains five blocks each with a single convolutional layer. These
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blocks were modified as in Caron et al. (2018), with the local response normalisation layers removed
and batch normalisation used instead (Ioffe & Szegedy, 2015). Also like Caron et al. (2018), a fixed
linear transformation based on Sobel filters was used on the input to remove colour and increase
local contrast.

2.1.3 ALEXNET WITH SUPERVISED TRAINING

CORnet was trained in a supervised way, and DeepCluster in an unsupervised way. Any difference
in the results might be due to this difference in supervision. However, the convolutional networks at
the heart of these two networks also differ, which could also cause differences. To control for this,
we therefore repeated the experiments using the same AlexNet variant as in DeepCluster, but trained
in a supervised way.

2.2 LEARNING TRAJECTORIES

The value for object recognition of the representations was assessed for each of the blocks in the net-
works (4 blocks for CORnet, and 5 blocks for DeepCluster and Alexnet). Specifically, we quantified
the explicit representation (DiCarlo & Cox, 2007) of object class using the method by Zhang et al.
(2017) of freezing weights in the convolutional layers, and training a linear decoder on the output of
each block to decode the ImageNet categories. This was done across epochs in the learning process,
to capture the development of the representations in each of the layers.

2.3 SUMMARISING LEARNING OF VISUAL CLASSES

To summarise the learning curves of the individual classes we fitted the performance with the curve

p = A(1− exp(−kt))

where p is top-5 precision, t the epoch, A the asymptotic level of performance, and k the learning
rate. Fitting minimised least squares with the addition to the cost function of two regularisation
terms equal to k2 (to discourage implausibly high learning rates) and (A < 100) ∗ (A− 100)4 (to
discourage A values greater than 100

2.4 AOA IN INFANTS

We also compared the order in which visual classes are acquired in infants and machines. To assess
when infants acquire each visual class, we used estimates for the age of acquisition (AoA) of the
word for the class (Kuperman et al., 2012). A number of linguistic factors are known to affect when
words are first used, including the frequency of the word in language and its number of phonemes,
but the second strongest factor is the ”concreteness” of the word (Braginsky et al., 2015). This
suggests that the strength of the visual representation of a class has an effect on when its label is
acquired. We tested this in two ways: by relating the AoA of a class in infants to the speed of
acquisition in a network; and by relating it to the degree to which a class is decoded in early vs. late
layers.

Using the Natural Language Toolkit (NLTK), the WordNet synsets for the 1000 ImageNet classes
were compared to Kuperman et al. (2012) database of 30,000 English words with age-of-acquisition
ratings using Leacock et al. (1998) semantic similarity metric. The classes with the highest simi-
larity score were considered as matching, and manually inspected for any incorrect comparisons or
synset definitions. These were deleted, leaving a total of 308 classes in which further analyses were
conducted.

2.5 CLASS CATEGORISATION

To provide a visualisation of when different types of classes were learned, we clustered the 308
classes using Leacock et al. (1998)’s metric and then clustering (scipy.cluster.hierarchy.fcluster) to
yield 20 classes. By visual inspection, we then attached a label to each of the classes.
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Figure 1: Top-5 precision as a function of training epochs of the top decoding layer for DeepCluster.

2.6 IMPLEMENTATION

Training was run on AWS using the Deep Learning AMI version 24.0 on either a p2.8xlarge instance
(8 x NVIDIA K80 GPUs with 488 GB of RAM) or a p3.8xlarge instance type (4 NVIDIA Tesla
V100 GPUs and 244 GB RAM), using Python 3.6 with Pytorch 1.1. Spot instances were used
to reduce cost. The three networks were trained from scratch. The ISLVRC 2012 set was used
for training and validation. The CORnet-S code was obtained from https://github.com/
dicarlolab/CORnet. DeepCluster, Alexnet and the linear classifier implementation were from
https://github.com/facebookresearch/DeepCluster.

3 RESULTS

3.1 DETERMINING NUMBER OF TRAINING EPOCHS FOR THE OBJECT DECODER

Training the object decoders was the most computationally expensive part of this project, as one
was trained for every layer across many epochs and models. It was therefore desirable to use as few
training epochs as possible. To evaluate how many were needed, we trained decoders for 5 epochs on
features from a sample of convolutional training epochs (0, 20, 40, 60) and all layers 1. It was found
that while there was a steady increase in decoding performance up to (and presumably beyond) the
5 epochs, the relative performance across different layers, or epochs, was broadly captured by epoch
2. For further analyses we therefore used 2 epochs of training for the decoding layer.

3.2 AIM 1: DEVELOPMENT OF REPRESENTATIONS IN DIFFERENT LAYERS DURING TRAINING

3.2.1 CORNET

Explicit representation of object class in the four blocks of the CORnet network during training is
shown in Fig. 2a. The earlier blocks in the hierarchy (V1, V2 and V4) reached their asymptotic level
quickly (around epoch 1), but IT continued to learn until at least epoch 25. However, although IT
took longer to reach its asymptote, even after minimal training (epoch 1) it contains greater explicit
information than the lower layers.

Extrapolating from this model, therefore, we might expect in the infant brain to see substantially
earlier maturation of lower-order visual processing regions (V1, V2 and V4), than higher-order
brain regions (e.g., IT). However, even early in development, infant IT would be expected to contain
stronger explicit representations of object class.
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Figure 2: Explicit representation of visual class measured in the three networks during training. The
left panels show top-5 precision and the right panels cross-entropy loss.
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Figure 3: The unsupervised network, DeepCluster, learned more slowly than the supervised net-
works. To test if the layers with the strongest explicit object representation changed over a longer
period of extended learning, we trained the convolutional layers to 70 epochs.

3.2.2 DEEPCLUSTER

In contrast, for DeepCluster, representations mature in a more ”bottom-up” manner (Fig. 2b).
Specifically, the explicit representation of object class does not monotonically increase with layer -
even at the end of 60 training epochs, layer 4 contains stronger representation of object class than
layer 5. Furthermore, the order of the layers varies through training, with layer 3 stronger than layer
4 early in training, and layer 2 containing stronger representations of object class than layer 5.

As DeepCluster learned more slowly than the supervised networks, we extended training to 70
epochs 3. It can be seen that it was continuing to learn, particularly in the higher layers, but the
order of the layers did not change within this range.

This more developmentally plausible unsupervised model predicts not only that higher-order vi-
sual regions will develop more slowly, but that earlier regions may initially lead in the presence of
representations of object class.

In supervised training, object labels are provided at the top layer of the network, and so it is perhaps
not surprising that even at early epochs the entire network including the upper layers are matur-
ing. In contrast, in unsupervised learning, the only source of information is the visual input, and
so it is perhaps not surprising that maturation proceeds in a more bottom up manner: until good
representations have developed in the early layers, there is poorer information at higher layers.

3.2.3 ALEXNET

However, CORnet and DeepCluster are not just different in their training strategies, but also the
convolutional networks at their heart. To control for this, we repeated training with AlexNet. The
results, in Fig. 2c show that even when the same convolutional network as DeepCluster is used,
but with a supervised training strategy, the bottom-up learning trajectories of DeepCluster are elim-
inated.

Strikingly, explicit object representation in the lower layers actually reduced from epochs 3-5 on-
wards, when assessed with top-5 or loss. This was seen much more weakly for CORnet, and not at
all for DeepCluster. It appears to be a feature of supervised learning.

3.3 AIM 2: ACQUISITION OF VISUAL CLASSES

The learning curves were fit well by the model (left two columns of Fig. 4). The joint distribution
(Fig. 4, right column) showed that classes which are learned quickest are ultimately learned best, as

6



Under review as a conference paper at ICLR 2020

CORnet

DeepCluster

AlexNet

To
p-

5 
pr

ec
is

io
n

To
p-

5 
pr

ec
is

io
n

To
p-

5 
pr

ec
is

io
n

Epochs of training

Figure 4: Left: Precision for each visual class during training, in the most informative layer of the
network - the top layer for CORnet and AlexNet, and the penultimate layer for DeepCluster. The
color of the curves shows AoA of the class’s name for infants (blue to red for low to high AoA).
Centre: The learning curves were parameterised with a fit, shown here. Right: Distributions of the
fit parameters. They were correlated for all networks, showing that classes that were learned more
quickly were also converging on a higher asymptote.

the two fit parameters were strongly correlated for all three models (CORnet r(308)=0.62; p¡0.001;
DeepCluster r(308)=0.36, p¡0.01; AlexNet r(308)=0.39, p¡0.001)

These fit parameters were then used to compare the machine with human learning. Paradoxically,
classes learned more precisely by the model were if anything learned later by infants (Fig. 5, cor-
relation of AoA and parameter A, CORnet r(308)=0.11 p=0.06; DeepCluster r(308)=0.10, p=0.09
; AlexNet r(308)=0.14, p¡0.02). Although classes learned more precisely were in general learned
more quickly in the model, there was no relationship observed between learning rate parameter (k)
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and infant age of acquisition. Examination of the best and worst classes (top-5) suggested that pos-
sibly the object’s context strongly drove machine categorisation (e.g., presence of water or snow).
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Figure 5: Relationship between infant age of acquisition
and asymptote of machine performance for each visual
class in the most informative layer of each network. The
colours show different semantic groupings.

Furthermore, from CORnet, although
some classes were explicitly well repre-
sented as early as V1, there was no ev-
idence that these classes were acquired
earlier in infants (r=0.02, 0.01, 0.03 in
V1, V2 and V4, respectively, all N.S.).
As in the fits, classes with higher preci-
sion in IT were acquired later by infants
(r=0.15, p¡0.01).

4 LIMITATIONS

The AoA measure used was obtained
from self-report in adults. This has been
validated in many ways in psycholin-
guistics, but it is possible that for our
goal, it would be preferable to use par-
ent report of AoA (e.g., wordbank.
standford.edu), measures of cate-
gory discrimination, or neuroimaging.

The ImageNet classes are esoteric and
unecological. More human-like learn-
ing will probably require more human-
like (or baby-like) training sets.

5 CONCLUSIONS

DNNs have the potential to provide a
quantitative model of infant learning. In
all models, later layers learned more
slowly than earlier layers. However, we
found qualitatively different trajectories
of learning for supervised and unsuper-
vised training. Specifically, unsuper-
vised learning led to a more bottom-up
progression in learning, so that earlier
in learning, lower layers contained more
explicit information about object class
than higher layers, but this partially re-
versed through training. We did not find
a correspondence between the order in
which infants and machines learn visual
classes, but there are a number of ways
in which the approach may be devel-
oped.
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