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ABSTRACT

Stochastic gradient descent (SGD) has been the dominant optimization method
for training deep neural networks due to its many desirable properties. One of
the more remarkable and least understood quality of SGD is that it generalizes
relatively well on unseen data even when the neural network has millions of pa-
rameters. We hypothesize that in certain cases it is desirable to relax its intrinsic
generalization properties and introduce an extension of SGD called deep gradient
boosting (DGB). The key idea of DGB is that back-propagated gradients inferred
using the chain rule can be viewed as pseudo-residual targets of a gradient boost-
ing problem. Thus at each layer of a neural network the weight update is calculated
by solving the corresponding boosting problem using a linear base learner. The re-
sulting weight update formula can also be viewed as a normalization procedure of
the data that arrives at each layer during the forward pass. When implemented as
a separate input normalization layer (INN) the new architecture shows improved
performance on image recognition tasks when compared to the same architecture
without normalization layers. As opposed to batch normalization (BN), INN has
no learnable parameters however it matches its performance on CIFAR10 and Im-
ageNet classification tasks.

1 INTRODUCTION

Boosting, along side deep learning, has been a very successful machine learning technique that
consistently outperforms other methods on numerous data science challenges. In a nutshell, the
basic idea of boosting is to sequentially combine many simple predictors in such a way that their
combined performance is better than each individual predictor. Frequently, these so called weak
learners are implemented as simple decision trees and one of the first successful embodiment of
this idea was AdaBoost proposed by Freund & Schapire (1997). No too long after this, Breiman
et al. (1998) and Friedman (2001) made the important observation that AdaBoost performs in fact a
gradient descent in functional space and re-derived it as such. Friedman (2001) went on to define a
general statistical framework for training boosting-like classifiers and regressors using arbitrary loss
functions. Together with Mason et al. (2000) they showed that boosting minimizes a loss function
by iteratively choosing a weak learner that approximately points in the negative gradient direction
of a functional space.

Neural networks, in particular deep neural nets with many layers, are also trained using a form of
gradient descent. Stochastic gradient descent (SGD) (Robbins & Monro, 1951) has been the main
optimization method for deep neural nets due to its many desirable properties like good general-
ization error and ability to scale well with large data sets. At a basic level, neural networks are
composed of stacked linear layers with differentiable non-linearities in between. The output of the
last layer is then compared to a target value using a differentiable loss function. Training such a
model using SGD involves updating the network parameters in the direction of the negative gradient
of the loss function. The crucial step of this algorithm is calculating the parameter gradients and this
is efficiently done by the backpropagation algorithm (Rumelhart et al., 1988; Werbos, 1974).

Backpropagation has many variations that try to achieve either faster convergence or better gener-
alization through some form of regularization. However, despite superior training outcomes, ac-
celerated optimization methods such as Adam (Kingma & Ba, 2015), Adagrad (Duchi et al., 2011)
or RMSprop (Graves, 2013) have been found to generalize poorly compared to stochastic gradient
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descent (Wilson et al., 2017). Therefore even before using an explicit regularization method, like
dropout (Srivastava et al., 2014) or batch normalization (Ioffe & Szegedy, 2015), SGD shows very
good performance on validation data sets when compared to other methods. The prevalent explana-
tion for this empirical observation has been that SGD prefers ”flat” over ”sharp” minima, which in
turn makes these states robust to perturbations. Despite its intuitive appeal, recent work by (Dinh
et al., 2017) cast doubt on this explanation.

This work introduces a simple extension of SGD by combining backpropagation with gradient boost-
ing. We propose that each iteration of the backpropagation algorithm can be reinterpreted by solving,
at each layer, a regularized linear regression problem where the independent variables are the layer
inputs and the dependent variables are gradients at the output of each layer, before non-linearity is
applied. We call this approach deep gradient boosting (DGB), since it is effectively a layer-wise
boosting approach where the typical decision trees are replaced by linear regressors. Under this
model, SGD naturally emerges as an extreme case where the network weights are highly regular-
ized, in the L2 norm sense. We hypothesize that for some learning problems the regularization
criteria doesn’t need to be too strict. These could be cases where the data domain is more restricted
or the learning task is posed as a matrix decomposition or another coding problem. Based on this
idea we further introduce a novel layer normalization method and show that it achieves competitive
results on benchmark image recognition problems.

2 DEEP GRADIENT BOOSTING

Consider a learning problem where training examples (x, y) are generated from a probability dis-
tribution P (x, y) where x ∈ RN is the space of measurements and y ∈ R is the space of labels.
The goal of gradient boosting is to find an approximation F̂ (x) to a function F (x) that minimizes a
specified loss function L(F (x), y):

F̂ = arg min
F

L(F (x), y) (1)

Gradient boosting solves Eq. 1 by seeking functions ht(x), so called weak learners, from a differen-
tiable class H such that F̂ =

∑
t ht(x). Starting from a constant function F0 and applying steepest

descent we can find F̂ by iteratively updating with learning rate γ:

Ft(x) = Ft−1(x)− γ∇Ft−1L(Ft−1(x), y) (2)

The weak learners ht are thus found by fitting the training data to the pseudo-residuals rt =
∇Ft−1L(Ft−1(x), y) hence in practice:

Ft(x) = Ft−1(x)− γht(x) (3)

Next, consider a neural network F (x) with parameters w[l] comprised of L successive dense linear
layers F [l](x) = xTw[l] with non-linearities ψ: F (x) = F [0](ψ(F [1](...ψ(F [L](x))))). Similarly,
starting from parameter w0 and following steepest descent the network weights are updated at iter-
ation t:

wt = wt−1 − γ∇wt−1L(F (xt), yt) (4)

At each iteration, for a fixed layer l the gradient of the parameter w[l]
ij can be calculated using the

chain rule:
∂Lt

∂w
[l]
ij

=
∂Lt

∂F
[l]
t

∂F
[l]
t

∂w
[l]
ij

=
∂LT

∂F
[l]
t

ψ(F
[l−1]
t )i =

∂Lt

∂F
[l]
t

o
[l]
ti (5)

where o[l]i is the output of the layer l − 1 at iteration t and position i and the gradients ∂Lt

∂F
[l]
t

are

calculated using the backpropagation algorithm.

Alternatively, using the gradient boosting formula from Eq. 3 and plugging in Ft = F [l](xt) =

xTt w
[l] for input xt = o

[l]
t we obtain, after dropping the layer indexes [l] for simplicity:

oTt wt = oTt wt−1 + γh(ot) (6)
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We choose the weak learner h(ot) in this case to be a linear transformation as well h(ot) = oTt vt
and fit it to the pseudo-residuals rt = ∂Lt

∂F
[l]
t

by solving the associated regularized linear regression:

v̂t = arg min
v

(‖rt − oTt vt‖22 + α‖vt‖22), α > 0 (7)

The primal form solution of Eq. 7 is v̂t = (oTt ot + αI)−1otrt and plugging it into Eq. 6 yields the
following update rule: wt = wt−1 − γ(oTt ot + αI)−1otrt where I ∈ RN×N is the identity matrix.
For a given input batch of size B, the update rule becomes:

Wt = Wt−1 − γ(OTt Ot + αI)−1OTt Rt (8)

where Wt ∈ Rn×m is the weight matrix for a given layer, Ot ∈ RB×n is the input matrix at
the same layer while Rt ∈ RB×m is the pseudo-residual matrix ∇FtLt. In practice, the inverse
of matrix OTt Ot can be hard to calculate for neural networks with large number of neurons per
layer. In consequence, it is often more convenient to use the dual form formulation of the ridge
regression solution of Eq. 7 that involves calculating the inverse of OtOTt instead. This is a well
known formulation (e.g. see Chapter 1 of (Camps-Valls et al., 2006)) and leads to the analogous
weight update rule:

Wt = Wt−1 − γOTt (OtO
T
t + αI)−1Rt (9)

The weight update formulas from Eq. 8 and 9 have the drawback that they change in magnitude
with either the number of neurons in the neural network layer or batch size. This is an undesirable
behavior that can lead to differences in scale between weights from layers of different sizes. In
consequence, the terms OTt Ot and OtOTt are scaled accordingly.

For large values of α the terms OTt Ot + αI and OtOTt + αI can be approximated by a constant
diagonal matrix which leads to the classic SGD solution Wt ≈ Wt−1 − γOTt Rt. This shows that
back-propagation with SGD is an extreme case of DGB that implicitly minimizes the magnitude of
weight updates.

2.1 EXPERIMENTS

In the following we will compare the performance of DGB and SGD on a variety of reference data
sets and explore the effect of the α parameter using simple dense layer neural networks. A summary
of the data sets used is given in Table 1:

Data set No samples No features Task

MNIST 70,000 784 Image classification
Higgs 1.5M 28 Higgs boson event classification
Reuters 11,228 1,000 Newswire topic classification
HR 1470 47 Employee attrition classification
Air 7576 12 Air quality regression

Table 1: Data sets used in experiments.

The first data set is the MNIST database of handwritten digits (LeCun et al., 1999) comprised of
60,000 28x28 grayscale images for training and 10,000 for testing. In the case of the Higgs data
set (Baldi et al., 2014) we used a randomly chosen subset with 1 million samples out of 10 million
for training, and 500 thousands samples for testing. This data comes from the field of high energy
physics and was generated by Monte Carlo simulations. The third data set (Reuters-21578) is com-
prised of 11,228 english language news articles from Reuters international news agency, labeled
over 46 topics. The forth data set is the Human Resource (HR) data set (Stacker IV, 2015) which
was put together by IBM Inc. to predict employee attrition based on 47 features and was randomly
split into 1,029 training samples and 441 test samples. The fifth data set is a regression problem for
predicting a measure of air quality based on the outputs from an array of chemical sensors together
with air temperature and humidity (De Vito et al., 2008).

All experiments were performed until test set convergence using a gradient update momentum of
0.9 and no decay. For simplicity, network architecture was fixed for each data set and all activation
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functions were rectified linear units (ReLU) (Nair & Hinton, 2010). The network weights were
initialized using a uniform distribution according to (He et al., 2015). The loss functions used
were cross-entropy loss for classification problems and mean squared loss for regression problems.
The performance metrics used were accuracy for classification tasks and root mean squared error
(RMSE) for regression tasks. In addition, standard deviations were calculated and reported for all
performance measures by repeating each experiment 10 times with different random seeds.

2.1.1 MNIST

For this experiment we found that results were relatively invariant to network architecture passed a
certain complexity, in consequence we chose a dense neural network with three hidden layers each
with 500 ReLU nodes. All models were trained using 100 sample batch size for 25 epochs using a
fixed 0.1 learning rate and achieved 100% accuracy on the training set. The two DGB variants were
labeled DGB(l) if it used the left pseudo-inverse from Eq. 8 and DGB(r) corresponding to the right
pseudo-inverse from Eq. 9.

Model α Learning rate Performance

SGD 0.1[0-25] 98.41%± 0.12
DGB(r) 1.0 0.1[0-25] 98.59%± 0.04
DGB(r) 0.1 0.1[0-25] 98.35%± 0.10
DGB(r) 0.05 0.1[0-25] 97.99%± 0.11
DGB(r) 0.01 0.1[0-25] 96.25%± 0.29
DGB(l) 1.0 0.1[0-25] 98.45%± 0.06
DGB(l) 0.1 0.1[0-25] 98.25%± 0.12
DGB(l) 0.05 0.1[0-25] 98.03%± 0.10
DGB(l) 0.01 0.1[0-25] 96.86%± 0.13

Table 2: Performance on the MNIST data set measured as accuracy.

Both left and right variants achieve increasingly better test set performance with larger α values
culminating with 98.59% average accuracy for the DGB(r) model with α = 1.0. This is marginally
better than 98.41% average accuracy for SGD but more importantly this result shows how increasing
the regularization parameter alpha successfully improves test set performance for an image classifi-
cation problem prone to over-fitting.

Overall DGB(l) and DGB(r) show similar performance with the drawback that for relatively small
batch sizes DGB(l) is considerably slower. This is because it needs to calculate the inverse of
500x500 matrix as opposed to calculating the inverse of 100x100 matrix, as is the case for DGB(r).
In consequence, for the rest of experiments we will just use DGB(r) and simply label it DGB.

2.1.2 HIGGS

Higgs data set was created using Monte Carlo simulations of particle collisions and has 11 mil
samples with 28 features. This is a binary classification problem designed to distinguish between
a signal process which produces Higgs bosons and a background process which does not. For
this exercise we kept only 1 mil samples for training and 500k for testing. All 28 features were
normalized to be between 0 and 1. We used an architecture composed of two hidden linear layers
with 500 ReLU activations each that was trained using a small batch size of 30 samples over 50
epochs. The learning rate was kept constant at 0.01 for SGD and DGB for high α values and was
reduced to 0.001 for α ≤ 0.1.

This data set poses a considerable challenge with its relatively few features and large sample size.
Performance on the training set is relatively poor and doesn’t approach 100% accuracy like in the
other experiments. The best test set accuracy is obtained for a smaller α value (Table A1).

2.1.3 REUTERS

Reuters is a text categorization data set comprised or articles organized into 46 news topics. It
was randomly divided into 8982 training and 2246 test samples that were processed using a binary
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tokenizer for the top 1,000 most common words. This data was then fed into a dense neural network
with two hidden layers each with 500 ReLU nodes and trained for 100 epochs with learning rate
fixed at 0.01.

Table A2 shows the results for experiments run using the SGD optimizer and DGB with α values
1.0, 0.1 and 0.01. This is a relatively small data set with a large number of features that is usually
more successfully addressed using more advanced approaches like recurrent neural networks or
convolutional neural nets. In this case, the results are close for all experiments and only marginally
better at 78.05% mean accuracy for DGB with α = 0.1.

2.1.4 HR

Similar to the other data sets, min-max normalization was used on all 47 features of the Human re-
source attrition data (HR). This is a binary classification task designed to predict employee attrition.
To this end we employed a dense neural network with one hidden layer composed of 100 ReLU
nodes. As before, we used a batch size of 30 samples for speed. All models were trained for 500
epochs with a fixed learning rate of 0.001.

With only 1029 training samples and 441 test samples the error bars (i.e. standard deviation) are too
big to make a claim that DGB outperforms SGD in this case (see Table A3).

2.1.5 AIR

The Air quality data set contains 9358 instances of hourly averaged reads from chemical sensors de-
signed to measure air quality. After removing samples with missing values we divided the remaining
data equally into 3788 training and 3788 test samples, and all the features were min-max normalized
to be between 0 and 1. Unlike the previous experiments this was a regression problem with the goal
of predicting concentrations of benzene, a common pollutant associated with road traffic. For this
we employed a neural network with two hidden layers with 100 ReLU activations each, trained for
1000 epochs using a fixed learning rate of 0.1 and a batch size of 30 samples.

Just as the previous experiments, DGB with larger α values were closer in performance to SGD
(Table A4). In this case, relaxing the regularization parameter led to a gradual increase in test set
performance with almost half the root mean squared error for DGB with α = 0.001 when compared
to SGD.

3 FAST APPROXIMATION OF DGB

We showed in the previous section that deep gradient boosting outperforms regular stochastic gra-
dient descent in some cases. However, this comes at a cost because DGB gradient updates involve
calculating the inverse of a matrix at each step and for each layer. The computational cost for matrix
inversion is roughly O(n3) and this can be significant even for small batch sizes as the ones used
in the previous experiments. A straight forward way of speeding matrix inversion is to keep just
the diagonal terms. This is equivalent of making the simplified assumption that for a layer input
matrix O ∈ RB×n the rows are independent (i.e.

∑
k oikojk for i 6= j) in the case of DGB(r) or the

columns are independent (i.e.
∑
k okiokj for i 6= j) in the case of DGB(l).

For a layer with n input dimensions and a sample batch of size B, plugging in the diagonal approx-
imations of matrices OtOTt and OTt Ot into Eq. 8 & 9 the gradient updates become:

Wt = Wt−1 − γÔTt Rt (10)

where
ôi,j =

oij
1
n

∑n
j=1 o

2
ij + α

(11)

in the case of DGB(r) and
ôi,j =

oij
1
B

∑n
i=1 o

2
ij + α

(12)

in the case of DGB(l).
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In the above notation Ôt is the normalized version of layer input matrix Ot with elements ôij . In the
following paragraphs, FDGB(r) will refer to fast DGB(r) from Eq. 11 and FDGB(l) will refer to fast
DGB(l) from Eq. 12.

3.1 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) are a class of neural networks particularly suited to analyzing
visual imagery. Typically the input at each CNN layer is a tensor of size (B × c× w × h) where B
is the batch size, c is the number of feature maps while w and h are the width and height of the map.
Instead of using a dense network with different weight connecting each point in the (c×w×h) map,
CNNs work by dividing the feature map into usually overlapping sections by scanning the input with
a kernel of a size much smaller than (w×h), usually (3×3). In this way CNNs effectively increase the
number of input samples and simultaneously decrease the number of weights that need to be learned.
This process can be viewed as a form of regularization and it has proven to greatly outperform regular
dense networks that are usually prone to over-fitting on image recognition problems.

For a given CNN layer, assume we have an input of size (B × c0 × w0 × h0) and an output of size
(B×c1×w1×h1) that was generated with a kernel of size (p×q). In this case, the equivalent DGB
formulation based on Eq. 8 & 9 would have an input matrix Ot of size (B×w1×h1, c0× p× q). It
would be extremely costly to first unfold the input as described and then calculate the matrix inverse
of either OTt Ot or OtOTt . In consequence, it is advisable to use the fast versions of DGB however,
one would still have to unfold the input matrix which is still a costly operation.

The key observation for extending FDGB(l) to convolutional neural networks is that for small kernels
with a small step size each position in the kernel matrix will ”visit” roughly the same pixels in a
feature map. Hence, calculating the raw second moment of each feature needs to be done only once
per map. After resizing the input tensor Ot to (B × w0 × h0, c0) the new normalized input Ôt
becomes:

ôi,j =
oij

1
B×w0×h0

∑B×w0×h0

i=1 o2ij + α
(13)

It is not unreasonable to assume a small kernel size given that most modern convolutional network
architectures use kernels of size (3,3) for image recognition.

4 INPUT NORMALIZATION

It is clear from Eq. 10 and previous paragraphs that DGB’s gradient update formulation can also
be viewed as input normalization defined as N(X) := X(XTX + αI)−1 or N(X) := (XXT +
αI)−1X followed by a regular SGD update. Hence this process can also be implemented as a
separate normalization layer, similar to how other layer normalization work like batch norm (BN)
(Ioffe & Szegedy, 2015), layer norm (LN) (Ba et al., 2016), instance norm (IN) (Ulyanov et al.,
2016) and others.

The advantages of these normalization methods are well documented: they accelerate descent by
enabling higher learning rates without the risk of divergence which in turn may help avoid local
sharp minima (Bjorck et al., 2018), make training more resilient to parameter or input data scale
(Ba et al., 2016), and they stabilize layer output variance which prevents gradient exposition in
very deep networks (He et al., 2016). Interestingly, for formulations that operate across samples
like batch norm they also have a regularization effect and virtually eliminate the need for other
regularization methods like dropout (Srivastava et al., 2014). This is because training examples are
seen in conjunction with other examples in the mini-batch, hence the layer outputs are no longer
deterministic. This added noise was found to be beneficial to the generalization of the network.

Batch norm, layer norm and instance norm perform a z-score standardization of features/inputs by
subtracting the mean and dividing by standard deviation which is typically applied to the output
of a layer, before the activation function. This procedure runs the risk of keeping the output of a
layer inside the linear regime of activation functions that are symmetric around zero. In order to
recover the expressive power of the network, after normalization is performed two new parameters
are introduced that scale and shift the output. These parameters are in turn learned during training
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like the rest of the network weights. Interestingly, the scale and shift parameters help convergence
even for neural networks with non-symmetric activation functions (e.g. ReLU).

In contrast to these methods, the normalization procedure described here is applied to the layer
input, it is not scale invariant and has only one parameter α which is predefined before training, not
learned. In addition, ”normalization” in our case doesn’t refer to the process of making the data look
more like a standard normal distribution but instead refers to an algebraic transformation of the data
that improves its condition number.

4.1 INPUT NORMALIZATION OF MULTIPLE LINEAR REGRESSION

In the following we will study the effect of input normalization as defined in the previous paragraph
to the simple problem of ordinary least squares solved by gradient descent. Consider a multiple
linear regression model arg minw(y − Xw)T (y − Xw) where X ∈ RB×n is an input matrix,
y ∈ RB is the output vector and w ∈ Rn is the vector of parameters. It is well known that the
rate of convergence of gradient descent in this case depends on the condition number of the Hessian
H = XTX where high values lead to slow convergence. If X = UΣV T is the singular value
decomposition of input matrix X , where U and V are orthogonal matrices and Σ is a diagonal
matrix, then the condition number of H = XTX = V Σ2V T is:

κ(H) =
σ2
max

σ2
min

(14)

where σmax and σmin are the largest and respectively smallest singular values of X .

Let N(X) := X(XTX + αI)−1 and arg minw(y − N(X)w)T (y − N(X)w) be the resulting
linear regression problem after applying input normalization. The new Hessian matrix is H∗ =
(XTX + αI)−1XTX(XTX + αI)−1. After plugging in X = UΣV T and some linear algebra
manipulation the new condition number becomes:

κ(H∗) =
σ2
max

(σ2
max + α)2

(σ2
min + α)2

σ2
min

= κ(H)

(
σ2
min + α

σ2
max + α

)2

< κ(H) (15)

This result shows that input normalization leads to a smaller condition number of the Hessian matrix
in the case of multiple linear regression. The same result can be obtained when using the alternative
input normalization N(X) := (XXT + αI)−1X (see Prop. A.1 & A.2 in the appendix).

4.2 FORMULATION

In practice, we will define Input Normalization (INN) using the faster diagonal approximations from
Eq. 11 & 12. In addition, similar to other normalization layers we will also mean center the input
data. For a single layer network, centering further improves conditioning of the Hessian of the loss
(LeCun et al., 1991), it brings the input data near the critical point of most activation functions thus
removing the bias towards certain neurons and, it has a regularization effect by shifting the data in a
nondeterministic way during training based on the content of the mini-batch.

For an input matrix X ∈ RB,n with elements xij left input normalization is labeled INN(l) and
defined as

N(xij) :=
xij − 1

B

∑B
i=1 xij

1
B

∑B
i=1 x

2
ij + α

(16)

while right input normalization is labeled INN(r) and defined as

N(xij) :=
xij − 1

n

∑n
j=1 xij

1
n

∑n
j=1 x

2
ij + α

(17)

In the case of INN(l) formulation the batch statistics m1 = 1
B

∑B
i=1 xij and m2 = 1

B

∑B
i=1 x

2
ij can

cause non-deterministic predictions at test time. Instead, running exponential averages are calculated
during training for both m1 and m2. These new values are then used at test time.
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4.3 EXPERIMENTS

We tested the implicit (i.e. FDGB) and explicit (i.e. INN) input normalization models on the CI-
FAR10 data set (Krizhevsky et al., 2009) and compared them to Batch Normalization (BN). We then
validated the best performing models on the ImageNet object recognition data set (ILSVRC2015)
(Russakovsky et al., 2015). In both cases we used versions of the VGG architecture first introduced
by Simonyan & Zisserman (2014) and then modified them to accommodate the different models as
described in Appendix A.

4.3.1 CIFAR10

The CIFAR10 data set consists of 60000 images organized into 10 classes. There are 50000 train-
ing and 10000 test images. According to Table 3 the original VGG11 model achieves a baseline
performance of 89.50% accuracy on this problem. Adding batch normalization layers to this archi-
tecture significantly improves the performance to 91.18% accuracy. The INN(l) model outperforms
both FDGB(l) and VGG11 while matching the performance of batch normalized VGG11 architec-
ture (VGG11 BN). In the next section we validate the performance of INN(l) on a larger image
classification data set using a deeper convolutional network.

Model α Learning rate Performance

VGG11 0.1[0-250], 0.01[250-350] 89.50%± 0.20
VGG11 BN 0.1[0-250], 0.01[250-350] 91.18%± 0.16
FDGB(l) 1.0 0.1[0-250], 0.01[250-350] 87.91%± 0.30
FDGB(l) 3.0 0.1[0-250], 0.01[250-350] 89.10%± 0.25
INN(l) 0.5 0.1[0-250], 0.01[250-350] 91.14%± 0.14
INN(l) 1.0 0.1[0-250], 0.01[250-350] 91.34%± 0.18

Table 3: Performance on the CIFAR10 data set measured as accuracy.

4.3.2 IMAGENET

The ImageNet data set is part of the Large Scale Image Recognition Challenge 2015 (Russakovsky
et al., 2015) and consists of 1,281,167 training and 50,000 validation images organized into 1,000
categories. For this experiment we compared the performance of VGG19 with batch normaliza-
tion (VGG19 BN(a)) to the equivalent architecture with input normalization layers (INN(l)) (See
Appendix A for more details). In addition, for VGG19 BN(b) we disabled the learnable affine pa-
rameters which reduces BN to a basic standardization operation.
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Figure 1: Top-1 (left) and top-5 (right) validation set errors of VGG BN(a) labeled as BN and INN(l)
labeled as INN over 120 epochs.

Similar to CIFAR10 the performance of INN(l) is very close to that of VGG19 BN(a) although
during early epochs INN(l) shows better convergence (Figure 1). For the BN model without affine
parameters (VGG19 BN(b)) the performance drops dramatically when trained using the same learn-
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Model α Top-1 error Top-5 error

VGG19 BN(a) 6.79% 23.64%
VGG19 BN(b) 12.58% 33.96%
INN(l) 1.0 6.59% 23.27%

Table 4: Performance on the ImageNet data set measured as top-1 and top-5 errors.

ing rate schedule showing that extra parameters are essential for the performance of VGG19 with
batch normalization (Table 4).

5 CONCLUSIONS

This work introduces Deep Gradient Boosting (DGB), a simple extension of Stochastic Gradient
Descent (SGD) that allows for finer control over the intrinsic generalization properties of SGD. We
empirically show how DGB can outperform SGD in certain cases among a variety of classification
and regression tasks. We then propose a faster approximation of DGB and extend it to convolutional
layers (FDGB). Finally, we reinterpret DGB as a layer-wise algebraic manipulation of the input data
and implement it as a separate normalization layer (INN). We then test INN on image classification
tasks where its performance proves to be on par with batch normalization without the need for
additional parameters.
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Model α Learning rate Performance

SGD 0.01[0-50] 74.10%± 0.12
DGB 1.0 0.01[0-50] 73.53%± 0.42
DGB 0.1 0.001[0-50] 74.60%± 0.19
DGB 0.01 0.001[0-50] 74.99%± 0.09
DGB 0.001 0.001[0-50] 73.98%± 1.22

Table A1: Performance on the Higgs data set measured as accuracy.

Model α Learning rate Performance

SGD 0.01[0-100] 77.54%± 0.29
DGB 1.0 0.01[0-100] 77.31%± 0.27
DGB 0.1 0.01[0-100] 78.05%± 0.23
DGB 0.01 0.01[0-100] 77.39%± 0.24

Table A2: Performance on the Reuters data set measured as accuracy.

Model α Learning rate Performance

SGD 0.001[0-500] 86.51%± 0.44
DGB 1.0 0.001[0-500] 86.87%± 0.21
DGB 0.1 0.001[0-500] 86.92%± 0.48
DGB 0.01 0.001[0-500] 85.24%± 0.59

Table A3: Performance on the HR data set measured as accuracy.

Model α Learning rate Performance

SGD 0.1[0-1000] 0.0020± 0.00017
DGB 1.0 0.1[0-1000] 0.0020± 0.00020
DGB 0.1 0.1[0-1000] 0.0013± 0.00007
DGB 0.01 0.1[0-1000] 0.0012± 0.00028
DGB 0.001 0.1[0-1000] 0.0010± 0.00015

Table A4: Performance on the Air data set measured as root mean squared error.

A APPENDIX

Proposition A.1. If σ is a singular value of matrix X then (XTX + αI)−1XTX(XTX + αI)−1

has singular values of the form σ2

(σ2+α)2 .

Let X = UΣV T be the singular value decomposition of X then:

(XTX + αI)−1XTX(XTX + αI)−1 = (V Σ2V T + αI)−1V Σ2V T (V Σ2V T + αI)−1

= (V Σ2V T + αV V T )−1V Σ2V T (V Σ2V T + αV V T )−1

= V (Σ2 + αI)−1V TV Σ2V TV (Σ2 + αI)−1V T

= V (Σ2 + αI)−1Σ2(Σ2 + αI)−1V T

Proposition A.2. If σ is a singular value of matrix X then XT (XXT + αI)−2X has singular
values of the form σ2

(σ2+α)2 .
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Let X = UΣV T be the singular value decomposition of X then:

XT (XXT + αI)−2X = V ΣUT (UΣ2UT + αI)−2UΣV T

= V ΣUT (UΣ2UT + αUUT )−2UΣV T

= V ΣUTU(Σ2 + αI)−2UTUΣV T

= V Σ(Σ2 + αI)−2ΣV T

A.1 CIFAR10

For this experiment we used a version of the VGG11 network introduced by Simonyan & Zisserman
(2014) that has 8 convolutional layers followed by a linear layer with 512 ReLU nodes, a dropout
layer with probability 0.5 and then a final softmax layer for assigning the classification probabilities.
A second version of this architecture (VGG11 BN) has batch normalization applied at the output of
each convolutional layer, before the ReLU activation as recommended by Ioffe & Szegedy (2015)
We modified this architecture by first removing all the batch normalization and dropout layers. We
then either replaced all convolutional and linear layers with ones that implement the fast version of
DGB for the FDGB(l) architecture or added INN(l) layers in front of each of the original convo-
lutional and linear layers. Both FDGB(l) and INN(l) models implement input normalization based
on the left pseudo-inverse (see Eq. 12 & 16) in order to take advantage of its regularization effect.
All weights were initialized according to Simonyan & Zisserman (2014) and were trained using
stochastic gradient descent with momentum 0.9 and batch size 128. For the FDGB(l) model the gra-
dients were calculated according to Eq. 12 for linear and 13 for convolutional layers. Training was
started with learning rate 0.1 and reduced to 0.01 after 250 epochs and continued for 350 epochs.
All experiments were repeated 10 times with different random seeds and performance was reported
on the validation set as mean accuracy ± standard deviation.

A.2 IMAGENET

Similar to the CIFAR10 data set we based these experiments on the larger VGG19 architecture of
Simonyan & Zisserman (2014). The VGG19 network has 16 convolutional layers interspersed with
max-pool operations, followed by two linear layers with 4096 ReLU nodes and a final softmax layer
with 1000 outputs. The original VGG19 model uses dropout regularization after each rectified lin-
ear layer. A second version of this architecture (VGG19 BN) has batch normalization applied at
the output of each convolutional layer, before the ReLU activation. We tested VGG19 BN with and
without affine parameters (VGG19 BN(a) and respectively VGG19 BN(b)). After removing all the
dropout and batch normalization layers we created the INN(l) version by adding input normaliza-
tions in front of each remaining layer. Stochastic gradient descent was used to minimize the cross
entropy loss of each network over 120 epochs, using an initial learning rate of 0.05, 0.9 momentum,
a batch size of 128 images, and 0.0001 weight decay. Every 30 epochs the learning rate was de-
creased by a factor of 10. All networks were evaluated by computing the top-1 and top-5 validation
errors on a held out data set using 10 crops per image.
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