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Abstract

In second-order optimization, a potential bottleneck can be computing the Hessian
matrix of the optimized function at every iteration. Randomized sketching has
emerged as a powerful technique for constructing estimates of the Hessian which
can be used to perform approximate Newton steps. This involves multiplication by a
random sketching matrix, which introduces a trade-off between the computational
cost of sketching and the convergence rate of the optimization algorithm. A
theoretically desirable but practically much too expensive choice is to use a dense
Gaussian sketching matrix, which produces unbiased estimates of the exact Newton
step and which offers strong problem-independent convergence guarantees. We
show that the Gaussian sketching matrix can be drastically sparsified, significantly
reducing the computational cost of sketching, without substantially affecting its
convergence properties. This approach, called Newton-LESS, is based on a recently
introduced sketching technique: LEverage Score Sparsified (LESS) embeddings.
We prove that Newton-LESS enjoys nearly the same problem-independent local
convergence rate as Gaussian embeddings, not just up to constant factors but even
down to lower order terms, for a large class of optimization tasks. In particular,
this leads to a new state-of-the-art convergence result for an iterative least squares
solver. Finally, we extend LESS embeddings to include uniformly sparsified
random sign matrices which can be implemented efficiently and which perform
well in numerical experiments.

1 Introduction

Consider the task of minimizing a twice-differentiable convex function f : Rd → R:

find x∗ = argmin
x∈Rd

f(x).

One of the most classical iterative algorithms for solving this task is the Newton’s method, which takes
steps of the form xt+1 = xt − µt∇2f(xt)

−1∇f(xt), and which leverages second-order information
in the d×d Hessian matrix∇2f(xt) to achieve rapid convergence, especially locally as it approaches
the optimum x∗. However, in many settings, the cost of forming the exact Hessian is prohibitively
expensive, particularly when the function f is given as a sum of n � d components, i.e., f(x) =∑n
i=1 fi(x). This commonly arises in machine learning when f represents the training loss over a
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Figure 1: The effect of the density of m× n sketching matrix S applied to an n× d matrix A (with
d,m � n) on the convergence rate of Newton Sketch and the computational cost of constructing
the Hessian estimate. LESS embeddings “interpolate” between Sub-Sampled Newton methods
and Gaussian Newton Sketches, achieving a “sweet spot” in the computation-per-iteration versus
number-of-iterations tradeoff.

dataset of n elements, as well as in solving semi-definite programs, portfolio optimization, and other
tasks. In these contexts, we can represent the Hessian via a decomposition∇2f(x) = Af (x)

>
Af (x),

where Af (x) is a tall n × d matrix, which can be easily formed, and the main bottleneck is the
matrix multiplication which takes O(nd2) arithmetic operations. To avoid this bottleneck, many
randomized second-order methods have been proposed which use a Hessian estimate in place of
the exact Hessian (e.g., [BCNN11, EM15, ABH17, RKM19]). This naturally leads to a trade-off
between the per-iteration cost of the method and the number of iterations needed to reach convergence.
We develop Newton-LESS, a randomized second-order method which eliminates the computational
bottleneck while minimizing the convergence trade-offs.

An important family of approximate second-order methods is known as the Newton Sketch [PW17]:

x̃t+1 = x̃t − µt
(
Af (x̃t)

>
S>t StAf (x̃t)

)−1∇f(x̃t), (1)

where µt is the step size, and St is a random m × n sketching matrix, with m � n, that is used
to reduce Af (x̃t) to a small m × d sketch StAf (x̃t). This brings the complexity of forming the
Hessian down to O(md2) time plus the cost of forming the sketch.

Naturally, sketching methods vary in their computational cost and they can affect the convergence
rate, so the right choice of St depends on the computation-convergence trade-off. On one end of this
spectrum are the so-called Sub-Sampled Newton methods [RKM19, XRKM17, YXRKM18], where
St simply selects a random sample of m rows of Af (x) (e.g., a sample of data points in a training
set) to form the sketch. Here the sketching cost is negligible, since St is extremely sparse, but the
convergence rate can be highly variable and problem-dependent. On the other end, we have what we
will refer to as the Gaussian Newton Sketch, where St is a dense matrix with i.i.d. scaled Gaussian
entries (a.k.a. a Gaussian embedding). While the O(mnd) cost of performing this sketch limits its
practical appeal, Gaussian Newton Sketch has a number of unique and desirable properties [LP19]: it
enjoys strong problem-independent convergence rates; it produces unbiased estimates of the exact
Newton update (useful in distributed settings); and it admits analytic expressions for the optimal
step size.

A natural way to interpolate between these two extremes is to vary the sparsity s of the sketching
matrix St, from s = 1 non-zero element per row (Sub-Sampling) to s = n non-zero elements
(Gaussian embedding), with the sketching complexity O(mds).1 Motivated by this, we ask:

Can we sparsify the Gaussian embedding, making its sparsity closer to that of
Sub-Sampling, without suffering any convergence trade-offs?

In this paper, we provide an affirmative answer to this question. We show that it is possible to
drastically sparsify the Gaussian embedding so that two key statistics of the sketches, namely first

1For a more detailed discussion of other sketching techniques that may not fit this taxonomy, such as the
Subsampled Randomized Hadamard Transform and the CountSketch, see Section 1.2.
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and second inverse moments of the sketched Hessian, are nearly preserved in a very strong sense.
Namely, the two inverse moments of the sparse sketches can be upper and lower bounded by the
corresponding quantities for the dense Gaussian embeddings, where the upper/lower bounds are
matching not just up to constant factors, but down to lower order terms (see Theorem 6). We use this
to show that the Gaussian Newton Sketch can be sparsified to the point where the cost of sketching
is proportional to the cost of other operations, while nearly preserving the convergence rate (again,
down to lower order terms; see Theorem 1). This is illustrated conceptually in Figure 1, showing
how the sparsity of the sketch affects the per-iteration convergence rate as well as the computational
cost of the Newton Sketch. We observe that while the convergence rate improves as we increase the
density, it eventually flattens out. On the other hand, the computational cost stays largely flat until
some point when it starts increasing at a linear rate. As a result, there is a sparsity regime where we
achieve the best of both worlds: the convergence rate and the computational cost are both nearly at
their optimal values, thereby avoiding any trade-off.

To establish our results, we build upon a recently introduced sketching technique called LEver-
age Score Sparsified (LESS) embeddings [DLDM21]. LESS embeddings use leverage score tech-
niques [DMIMW12a] to provide a carefully-constructed (random) sparsification pattern. This is used
to produce a sub-Gaussian embedding with d non-zeros per row of St (as opposed to n for a dense
matrix), so that the cost of forming the sketch StAf (x̃t) matches the cost of constructing the Hessian
estimate, i.e., O(md2) (see Section 2). [DLDM21] analyzed the first inverse moment of the sketch to
show that LESS embeddings retain certain unbiasedness properties of Gaussian embeddings. In our
setting, this captures the bias of the Newton Sketch, but it does not capture the variance, which is
needed to control the convergence rate.

Contributions. In this paper, we analyze both the bias and the variance of Newton Sketch with
LESS embeddings (Newton-LESS; see Definition 2 and Lemma 7), resulting in a comprehensive
convergence analysis. The following are our key contributions:

1. Characterization of the second inverse moment of the sketched Hessian for a class of sketches
including sub-Gaussian matrices and LESS embeddings;

2. Precise problem-independent local convergence rates for Newton-LESS, matching the
Gaussian Newton Sketch down to lower order terms;

3. Extension of Newton-LESS to regularized minimization tasks, with improved dimension-
independent guarantees for the sketch sparsity and convergence rate;

4. Notable corollary: Best known global convergence rate for an iterative least squares solver,
which translates to state-of-the-art numerical performance.

1.1 Main results

As our main contribution, we show that, under standard assumptions on the function f(x), Newton-
LESS achieves the same problem-independent local convergence rate as the Gaussian Newton Sketch,
despite drastically smaller per-iteration cost.
Theorem 1. Assume that f(x) is (a) self-concordant, or (b) has a Lipschitz continuous Hessian.
Also, let H = ∇2f(x∗) be positive definite. There is a neighborhood U containing x∗ such that if
x̃0 ∈ U , then Newton-LESS with sketch size m ≥ Cd log(dT/δ) and step size µt = 1− d

m satisfies:(
Eδ
‖x̃T − x∗‖2H
‖x̃0 − x∗‖2H

)1/T

≈ε
d

m
for ε = O

( 1√
d

)
,

where EδX is expectation conditioned on an event that holds with a 1 − δ probability, ‖v‖M =√
v>Mv, and a ≈ε b means that |a− b| ≤ εb.

Remark 2. The same guarantee holds for the Gaussian Newton Sketch, but it is not known for any
fast sketching method other than Newton-LESS (see Section 1.2). The alternative assumptions of
self-concordance and Lipschitz continuous Hessian are standard in the local convergence analysis of
the classical Newton’s method, and they only affect the size of the neighborhood U (see Section 4).
Global convergence of Newton-LESS follows from existing analysis of the Newton Sketch [PW17].

The notion of expectation Eδ allows us to accurately capture the average behavior of a randomized
algorithm over a moderate (i.e., polynomial in d) number of trials even when the true expectation
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is not well behaved. Here, this guards against the (very unlikely, but non-zero) possibility that the
Hessian estimate produced by a sparse sketch will be ill-conditioned.

To illustrate this result in a special case (of obvious independent interest), we provide a simple
corollary for the least squares regression task, i.e., f(x) = 1

2‖Ax − b‖2. Importantly, here the
convergence rate of ( dm )T holds globally. Also, for this task we have 1

2‖x− x∗‖2H = f(x)− f(x∗),
so the convergence can be stated in terms of the excess function value. To our knowledge, this is the
best known convergence guarantee for a fast iterative least squares solver.
Corollary 3. Let f(x) = 1

2‖Ax − b‖2 for A ∈ Rn×d and b ∈ Rn. Then, given any x̃0 ∈ Rd,
Newton-LESS with sketch size m ≥ Cd log(dT/δ) and step size µt = 1− d

m satisfies:(
Eδ

f(x̃T )− f(x∗)

f(x̃0)− f(x∗)

)1/T

≈ε
d

m
for ε = O

( 1√
d

)
.

Prior to this work, a convergence rate of ( dm )T was known only for dense Gaussian embeddings, and
only for the least squares task [LP19]. On the other hand, our results apply as generally as the standard
local convergence analysis of the Newton’s method, and they include a broad class of sketches. In
Section 3, we provide general structural conditions on a randomized sketching matrix that are needed
to enable our analysis. These conditions are satisfied by a wide range of sketching methods, including
all sub-Gaussian embeddings (e.g., using random sign entries instead of Gaussians), the original
LESS embeddings, and other choices of sparse random matrices (see Lemma 7). Moreover, we
develop an improved local convergence analysis of the Newton Sketch, which allows us to recover
the precise convergence rate and derive the optimal step size. In Appendix D, we also discuss a
distributed variant of Newton-LESS, which takes advantage of the near-unbiasedness properties of
LESS embeddings, extending the results of [DLDM21].

The performance of Newton-LESS can be further improved for regularized minimization tasks.
Namely, suppose that function f can be decomposed as follows: f(x) = f0(x) + g(x), where g(x)
has a Hessian that is easy to evaluate (e.g., l2-regularization, g(x) = λ

2 ‖x‖
2). In this case, a modified

variant of the Newton Sketch has been considered, where only the f0 component is sketched:

x̃t+1 = x̃t − µt
(
Af0(x̃t)

>
S>t StAf0(x̃t) +∇2g(x̃t)

)−1∇f(x̃t), (2)

where, again, we let Af0(x) be an n× d matrix that encodes the second-order information in f0 at
x. For example, in the case of regularized least squares, f(x) = 1

2‖Ax− b‖2 + λ
2 ‖x‖

2, we have
Af0(x) = A and ∇2g(x) = λI for all x. We show that the convergence rate of both Newton-LESS
and the Gaussian Newton Sketch can be improved in the presence of regularization, by replacing
the dimension d with an effective dimension deff. This can be significantly smaller than d when the
Hessian of f0 at the optimum exhibits rapid spectral decay or is approximately low-rank:

deff = tr
(
∇2f0(x∗)∇2f(x∗)−1

)
≤ d.

Theorem 4. Assume that f0 and f are (a) self-concordant, or (b) have a Lipschitz continuous
Hessian. Also, let ∇2f0(x∗) be positive definite and let ∇2g(x∗) be positive semidefinite, with
H = ∇2f(x∗). There is a neighborhood U containing x∗ such that if x̃0 ∈ U , then Regularized
Newton-LESS (2), with sketch size m ≥ Cdeff log(deffT/δ) and step size µt = 1− deff

m , satisfies:(
Eδ
‖x̃T − x∗‖2H
‖x̃0 − x∗‖2H

)1/T

≤ deff

m
· (1 + ε) for ε = O

( 1√
deff

)
.

Remark 5. The same guarantee holds for the Gaussian Newton Sketch. Unlike in Theorem 1, here we
can only obtain an upper-bound on the local convergence rate, because the exact rate may depend on
the starting point x̃0 (see Section 4). For regularized least squares, f(x) = 1

2‖Ax− b‖2 + λ
2 ‖x‖

2,
the above convergence guarantee holds globally, i.e., U = Rd. Note that deff can be efficiently
estimated using sketching-based trace estimators [ACW16, CEM+15].

Finally, our numerical results show that Newton-LESS can be implemented very efficiently on modern
hardware platforms, improving on the optimization cost over not only dense Gaussian embeddings,
but also state-of-the-art sketching methods such as the Subsampled Randomized Hadamard Transform,
as well as other first-order and second-order methods. Moreover, we demonstrate that our theoretical
predictions for the optimal sparsity level and convergence rate are extremely accurate in practice.
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1.2 Related work

LEverage Score Sparsified (LESS) embeddings were proposed by [DLDM21] as a way of addressing
the phenomenon of inversion bias, which arises in distributed second-order methods [WRKXM18,
DM19, DBPM20, GGD+21]. Their results only establish the near-unbiasedness of Newton-LESS
iterates (i.e., that E[x̃t+1] ≈ xt+1), but they did not provide any improved guarantees on the
convergence rate. Also, their notion of LESS embeddings is much narrower than ours, and so it does
not capture Regularized Newton-LESS or uniformly sparsified sketches (LESS-uniform).

Convergence analysis of the Newton Sketch [PW17, LP19, LLDP20] and other randomized second-
order methods [BCNN11, BCNW12, EM15, RKM19] has been extensively studied in the ma-
chine learning community, often using techniques from Randomized Numerical Linear Algebra
(RandNLA) [DM16, DM21]. Some of the popular RandNLA methods include the Subsampled
Randomized Hadamard Transform (SRHT, [AC09]) and several variants of sparse sketches, such
as the CountSketch [CW17, MM13] and OSNAP [NN13, Coh16]. Also, row sampling based on
Leverage Scores [DMM06, AM15] and Determinantal Point Processes [Der19, DCV19, DM21] has
been used for sketching. Note that CountSketch and OSNAP sparse sketches differ from LESS
embeddings in several ways, and in particular, they use a fixed number of non-zeros per column of
the sketching matrix (as opposed to per row), so unlike LESS, their rows are not independent. While
all of the mentioned methods, when used in conjunction with the Newton Sketch, exhibit similar
per-iteration complexity as LESS embeddings (see Section 2), their existing convergence analysis
is fundamentally limited: The best known rate is (C log d · dm )T , which is worse than our result of
( dm )T , by a factor of C log d, where C > 1 is a non-negligible constant that arises in the measure
concentration analysis.

In the specific context of least squares regression where f(x) = 1
2‖Ax − b‖2, the Hessian A>A

remains constant, and an alternative strategy is to keep the random sketch SA fixed at every it-
eration. Many efficient randomized iterative solvers are based on this precondition-and-solve ap-
proach [RT08, AMT10, MSM14]: form the sketch SA, compute an easy-to-invert square-root
matrix H̃

1
2 of A>S>SA and apply an iterative least squares solver to the preconditioned objective

minz
1
2‖AH̃−

1
2 z− b‖2, e.g., Chebyshev iterations or the preconditioned conjugate gradient. In con-

trast to the Newton Sketch, these methods do not naturally extend to more generic convex objectives
for which the Hessian matrix changes at every iteration. Also, similarly as the Newton Sketch, their
convergence guarantees are limited to (C log d · dm )T when used in conjunction with fast sketching
methods such as SRHT, OSNAP, or leverage score sampling.

2 Preliminaries

Notation. We let ‖v‖M =
√

v>Mv. We define a ≈ε b to mean |a− b| ≤ εb, whereas a = b± ε
means that |a− b| ≤ ε, and C denotes a large absolute constant. We use EE to denote expectation
conditioned on E , and for a δ ∈ (0, 1), we use Eδ as a short-hand for: “There is an event E with
probability at least 1− δ s.t. EE ...”. Let pd and psd mean positive definite and positive semidefinite.
Random variable X is sub-Gaussian if Pr{|X| ≥ t} ≤ exp(−ct2) for all t ≥ 0 and some c = Ω(1).

We next introduce some concepts related to LEverage Score Sparsified (LESS) embeddings. We
start with the notion of statistical leverage scores [DMIMW12a], which are importance weights
assigned to the rows of a matrix A ∈ Rn×d. The definition below for leverage scores is somewhat
more general than standard definitions, because it allows for a regularized leverage score, where the
regularization depends on a d× d matrix C. When C is a scaled identity matrix, this matches the
definition of ridge leverage scores [AM15].
Definition 1 (Leverage scores). For given matrices A ∈ Rn×d and psd C ∈ Rd×d, we define the ith
leverage score li(A,C) as the squared norm of the ith row of U = AH−

1
2 , where H = A>A+C is

assumed to be invertible. The effective dimension of A (given C) is defined as deff =
∑
i li(A,C) =

tr(U>U), whereas the coherence of A (given C) is τ = n
deff

maxi li(A,C) ∈ [1, ndeff
].

Next, we define a class of sparsified sub-Gaussian sketching matrices which will be used in our
results. This captures LESS embeddings, as well as other sketching matrices that are supported by
the analysis. To that end, we define what we call a sparsifier, which is an n-dimensional random
vector ξ that specifies the sparsification pattern for one row of the m× n sketching matrix S.
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Definition 2 (LESS embeddings). Let t1, ..., ts be sampled i.i.d. from a distribution p = (p1, ..., pn).

Then, the random vector ξ> =
(√

b1
sp1
, ...,

√
bn
spn

)
, where bi =

∑s
j=1 1[tj=i], is a (p, s)-sparsifier.

A (p, s)-sparsified sub-Gaussian sketch is a random matrix S that consists of i.i.d. row vectors
distributed as c · (x ◦ ξ)>, where ◦ denotes the entry-wise product, x has i.i.d. mean zero, unit
variance and sub-Gaussian entries, and c is some constant. For given matrices A ∈ Rn×d and psd
C ∈ Rd×d, we focus on two variants of Leverage Score Sparsified embeddings:

1. LESS. We assume that pi ≈1/2 li(A,C)/deff, and let s ≈1/2 deff. For C = 0 and s = d,
we recover the LESS embeddings proposed by [DLDM21].

2. LESS-uniform. We simply let pi = 1/n (denoted as p = unif). This avoids the preprocessing
needed for approximating the li(A,C), but we may need larger s to recover the theory.

Computational cost. To implement LESS, we must first approximate (i.e., there is no need to
compute exactly [DMIMW12a]) the leverage scores of A. This can be done in timeO(nnz(A) log n+
d3 log d) by using standard RandNLA techniques [DMIMW12a, CW17], where nnz(A) is the
number of non-zero entries in A and it is bounded by nd. Since the prescribed sparsity for LESS
satisfies s = O(d), the sketching cost is at most O(md2). Thus, the total cost of constructing the
sketched Hessian with LESS is O(nnz(A) log n+md2), which up to logarithmic factors matches
other sparse sketching methods such as leverage score sampling (when implemented with approximate
leverage scores [DMIMW12a]), CountSketch, and OSNAP. In comparison, using the SRHT leads to
O(nd logm+md2) complexity, since this method does not take advantage of data sparsity. Note
that, in practice, the computational trade-offs between sketching methods are quite different, and
significantly hardware-dependent (see Section 5). In particular, the cost of approximating the leverage
scores in LESS embeddings can be entirely avoided by using LESS-uniform. Here, the total cost of
sketching is O(mds), but the sparsity of the sketch that is needed for the theory depends on A and C.
Yet, in Section 5, we show empirically that this approach works well even for s = d.

3 Equivalence between LESS and Gaussian Embeddings

In this section, we derive the basic quantities that determine the convergence properties of the Newton
Sketch, namely, the first and second moments of the normalized sketched Hessian inverse. Our key
technical contribution is a new analysis of the second moment for a wide class of sketching matrices
that includes LESS embeddings and sub-Gaussian sketches.

Consider the Newton Sketch update as in (2), and let ∆̃t = x̃t − x∗. Denoting Ht = ∇2f(x̃t),
gt = ∇f(x̃), and using pt = −µtH−1

t gt to denote the exact Newton direction with step size µt, a
simple calculation shows that:

‖∆̃t+1‖2Ht
− ‖∆̃t‖2Ht

= 2∆̃>t H
1
2
t Q̃H

1
2
t pt + p>t H

1
2
t Q̃2H

1
2
t pt, (3)

where Q̃ = H
1
2
t (Af0(x̃t)

>
S>t StAf0(x̃t) +∇2g(x̃t))

−1H
1
2
t . From this, we have that the expected

decrease in the optimization error is determined by the first two moments of the matrix Q̃, i.e., E[Q̃]

and E[Q̃2]. In the unregularized case, i.e., g(x) = 0, these moments can be derived exactly for the
Gaussian embedding. For instance if we let St be an m× n matrix with i.i.d. standard normal entries
scaled by 1√

m−d−1
, then we obtain that:

E[Q̃] = I, E[Q̃2] = (m−1)(m−d−1)
(m−d)(m−d−3) · I ≈ε

m
m−d · I,

for ε = O(1/d). This choice of scaling for the Gaussian Newton Sketch ensures that each iterate x̃t+1

is an unbiased estimate of the corresponding exact Newton update with the same step size, i.e., that
E[x̃t+1] = x̃t + pt. For most other sketching techniques, neither of the two moments is analytically
tractable because of the bias coming from matrix inversion. Moreover, if we allow for regularization,
e.g., g(x) = λ

2 ‖x‖
2, then even the Gaussian embedding does not enjoy tractable formulas for the

moments of Q̃. However, using ideas from asymptotic random matrix theory, [DLDM21] showed
that in the unregularized case, the exact Gaussian formula for the first moment holds approximately
for sub-Gaussian sketches and LESS embeddings: Eδ[Q̃] ≈ε I. This implies near-unbiasedness of
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the unregularized Newton-LESS iterates relative to the exact Newton step, but it is not sufficient to
ensure any convergence guarantees.

In this work, we develop a general characterization of the first and second moments of Q̃ for a
wide class of sketching matrices, both in the unregularized and in regularized settings. For the
sake of generality, we will simplify the notation here, and analyze the first and second moment
of Q = H

1
2 (A>S>SA + C)−1H

1
2 for some matrices A ∈ Rn×d and C ∈ Rd×d such that

A>A + C = H. In the context of Newton Sketch (2), these quantities correspond to A = Af0(x̃t)
and C = ∇2g(x̃t). Also, as a shorthand, we will define the normalized version of matrix A as
U = AH−

1
2 . The following are the two structural conditions that need to be satisfied by a sketching

matrix to enable our analysis.

The first condition is standard in the sketching literature. Essentially, it implies that the sketching
matrix S produces a useful approximation of the Hessian with high probability (although this
guarantee is still far too coarse by itself to obtain our results).
Condition 1 (Property of random matrix S). Given U ∈ Rn×d, the m×n random matrix S satisfies
‖U>S>SU−U>U‖ ≤ η with probability 1− δ.

This property is known as the subspace embedding property. Subspace embeddings were first used
by [DMM06], where they were used in a data-aware context to obtain relative-error approximations
for `2 regression and low-rank matrix approximation [DMM08]. Subsequently, data-oblivious
subspace embeddings were used by [Sar06] and popularized by [Woo14]. Both data-aware and data-
oblivious subspace embeddings can be used to derive bounds for the accuracy of various algorithms
[DM16, DM18].

For our analysis, it is important to assume that S has i.i.d. row vectors cs>i , where c is an appropriate
scaling constant. The second condition is defined as a property of those row vectors, which makes
them sufficiently similar to Gaussian vectors. This is a relaxation of the Restricted Bai-Silverstein
condition, proposed by [DLDM21], which leads to significant improvements in the sparsity guarantee
for LESS embeddings when the Newton Sketch is regularized.
Condition 2 (Property of random vector s). Given U ∈ Rn×d, the n-dimensional random vector s
satisfies Var

[
s>UBU>s

]
≤ α · tr(UB2U>) for all p.s.d. matrices B and some α = O(1).

Given these two conditions, we are ready to derive precise non-asymptotic analytic expressions
for the first two moments of the regularized sketched inverse matrix, which is the main technical
contribution of this work (proof in Appendix A).

Theorem 6. Fix A and assume that C is psd. Define H = A>A + C and U = AH−
1
2 . Let S

consist of m i.i.d. rows distributed as 1√
m−deff

s>, where E[ss>] = In and deff = tr(U>U). Also,

let d̃eff = tr((U>U)2). Suppose that the matrix consisting of the first m/3 rows of S scaled by
√

3
satisfies Condition 1 w.r.t. U, for η ≤ 1/2 and probability 1− δ/3, where δ ≤ 1/m3. Suppose also
that s satisfies Condition 2 w.r.t. U. If m ≥ O(deff), then, conditioned on event E that holds with
probability 1− δ, matrix Q = H

1
2 (A>S>SA + C)−1H

1
2 satisfies ‖Q− I‖ ≤ O(η) and:∥∥EE [Q]− I

∥∥ ≤ O(√deff
m

)
,

∥∥EE [Q2]−
(
I + deff

m−d̃eff
U>U

)∥∥ ≤ O(√deff
m

)
.

Theorem 6 shows that, for a wide class of sketching matrices, we can approximately write E[Q] ≈ I

and E[Q2] ≈ I+ deff

m−d̃eff
U>U, with the error term scaling asO(

√
deff
m ). In the case of the first moment,

this is a relatively straightforward generalization of the unregularized formula for the Gaussian case.
However, for the second moment this expression is considerably more complicated, including not one
but two notions of effective dimension, d̃eff 6= deff. To put this in context, in the unregularized case,
i.e., C = 0, we have deff = d̃eff = d and U>U = I, so we get I + deff

m−d̃eff
U>U = m

m−dI, which
matches the second moment for the Gaussian sketch (up to lower order terms).

In the case of the first moment, the proof of Theorem 6 follows along the same lines as in [DLDM21],
using a decomposition of E[Q] that is based on the Sherman-Morrison rank-one update of the inverse.
This approach was originally inspired by the analysis of Stieltjes transforms that are used to establish
the limiting spectral distribution in asymptotic random matrix theory (e.g., [BS10, CD11]), and
applied to sketching by [DLLM20, DLDM21]. Our key contribution lies in deriving the bound for
the second moment, which requires a substantially more elaborate decomposition of E[Q2].
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In the following lemma, we establish that the assumptions of Theorem 6 are satisfied not only by
Gaussian, but also sub-Gaussian and LESS embedding matrices (proof in Appendix C).
Lemma 7. Fix A and assume that C is psd. Let S be a sketching matrix withm i.i.d. rows distributed
as 1√

m−deff
s>. Then, S satisfies Conditions 1 and 2 as long as one of the following holds:

1. Sub-Gaussian: s is an i.i.d. sub-Gaussian random vector and m ≥ C(deff + log(1/δ))/η2;

2. LESS: s is a (p, deff)-sparsified i.i.d. sub-Gaussian random vector with pi ≈1/2

li(A,C)/deff, and m ≥ Cdeff log(deff/δ)/η
2;

3. LESS-uniform: s is a (unif, τdeff)-sparsified i.i.d. sub-Gaussian random vector, where τ is
the coherence of A, i.e., n

deff
maxi li(A,C), and m ≥ Cdeff log(deff/δ)/η

2.

4 Convergence Analysis for Newton-LESS

In this section, we demonstrate how our main technical results can be used to provide improved
convergence guarantees for Newton-LESS (and, more broadly, any sketching methods that satisfy the
conditions of Theorem 6). Here, we will focus on the more general regularized setting (2), where
we can only show an upper bound on the convergence rate (Theorem 4). The unregularized result
(Theorem 1) with matching upper/lower bounds follows similarly.

To start, we introduce the standard assumptions on the function f , which are needed to ensure strong
local convergence guarantees for the classical Newton’s method [BV04].
Assumption 8. Function f : Rd → R has a Lipschitz continuous Hessian with constant L, i.e.,
‖∇2f(x)−∇2f(x′)‖ ≤ L ‖x− x′‖ for all x,x′ ∈ Rd.

Assumption 9. Function f : Rd → R is self-concordant, i.e., for all x,x′ ∈ Rd, the function
φ(t) = f(x + tx′) satisfies: |φ′′′(t)| ≤ 2(φ′′(t))3/2.

Only one of those two assumptions needs to be satisfied for our analysis to go through, and the
choice of the assumption only affects the size of the neighborhood around the optimum x∗ for which
our local convergence guarantee is satisfied. To clarify this, below we give an expanded version of
Theorem 4 (proof in Appendix B).
Theorem 10 (Expanded Theorem 4). Let H0 = ∇2f0(x∗) be pd and C = ∇2g(x∗) be psd. Define
deff = tr(H0H

−1) and d̃eff = tr((H0H
−1)2) for H = H0 + C. Assume one of the following:

1. f0 and f satisfy Assumption 8, and U = {x : ‖x − x∗‖H <
√
deff
m (λmin)3/2/L}, where

λmin is the smallest eigenvalue of H0;

2. f0 and f satisfy Assumption 9, and U = {x : ‖x− x∗‖H <
√
deff
m }.

Then, Newton Sketch (2) starting from x̃0 ∈ U , using any St from Lemma 7 (i.e., sub-Gaussian, LESS,
or LESS-uniform) with δ replaced by δ/T , and step size µt = 1− deff

m+deff−d̃eff
, satisfies:(

Eδ
‖x̃T − x∗‖2H
‖x̃0 − x∗‖2H

)1/T

≤ deff · (1 + ε)

m+ deff − d̃eff
≤ deff

m
· (1 + ε), for ε = O

( 1√
deff

)
.

Note that, compared to Theorem 4, here we present a slightly sharper bound which uses both types
of effective dimension, d̃eff ≤ deff, that are present in Theorem 6. The statement from Theorem 4 is
recovered by replacing d̃eff with deff in the step size and in the bound. The key step in the proof of the
result is the following lemma, which uses Theorem 6 to characterize the Newton Sketch iterate x̃t+1

in terms of the corresponding Newton iterate xt+1. Note that this result holds globally for arbitrary
x̃t and without the smoothness assumptions on f . Recall that we let ∆̃t = x̃t − x∗ denote the error
residual at step t.
Lemma 11. Fix Ht = ∇2f(x̃t) and let x̃t+1 be the Newton Sketch iterate with St as in Lemma 7.
If the exact Newton step xt+1 = x̃t − µtH−1

t gt is a descent direction, i.e., ‖∆t+1‖Ht
≤ ‖∆̃t‖Ht

where ∆t+1 = xt+1 − x∗, then

Eδ ‖∆̃t+1‖2Ht
= ‖∆t+1‖2Ht

+ deff(x̃t)

m−d̃eff(x̃t)
‖xt+1 − x̃t‖2∇2f0(x̃t)

±O
(√

deff
m

)
‖∆̃t‖2Ht

.
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Importantly, the second term on the right-hand side uses the norm ‖ · ‖∇2f0(x̃t), which is different
than the norm ‖ ·‖Ht

used for the remaining terms. As a result, in the regularized setting, it is possible
that the second term will be much smaller than the last term (the approximation error). This prevents
us from obtaining a matching lower-bound for the convergence rate of Regularized Newton-LESS.
On the other hand, when g(x) = 0, then f0 = f and we obtain matching upper/lower bounds.

The remainder of the proof of Theorem 10 is essentially a variant of the local convergence analysis
of the Newton’s method. Here, note that typically, we would set the step size to µt = 1 and we
would expect superlinear (specifically, quadratic) convergence rate. However, for Newton Sketch,
convergence is a mixture of linear rate and superlinear rate, where the linear part is due to the
approximation error in sketching the Hessian. Sufficiently close to the optimum, the linear rate
will dominate, and so this is what we focus on in our local convergence analysis. The key novelty
here is that, unlike prior work, we strive to describe the linear rate precisely, down to lower order
terms. As a key step, we observe that the convergence of exact Newton with step size µt < 1, letting
∆t+1 = xt+1 − x∗, is given by:

‖∆t+1‖2Ht
= (1− µt)2‖∆̃t‖2Ht︸ ︷︷ ︸

linear rate

+µt(∆t+1 + (1− µt)∆̃t)
>(Ht∆̃t − gt)︸ ︷︷ ︸

superlinear rate

, (4)

where recall that ∆̃t = x̃t−x∗ corresponds to the previous iterate, and gt = ∇f(x̃t). Here, (1−µt)2

represents the linear convergence rate. The superlinear term vanishes near the optimum x∗, because
of the presence of Ht∆̃t − gt, which (under the smoothness assumptions on f ) vanishes at the
same rate as ‖∆̃t‖2Ht

. Interestingly, with this precise analysis, the superlinear term does not have
a quadratic rate, but rather a 3/2 rate. Entering (4) into the guarantee from Lemma 11, we obtain
that the local rate of Newton Sketch can be expressed as (1− µt)2 + deff

m−d̃eff
µ2
t , and minimizing this

expression over µt we obtain the desired quantities from Theorem 10. Finally, we note that while the
norms and effective dimensions in the above exact calculations are stated with respect to the Hessian
Ht at the current iterate x̃t, these can all be approximated by the corresponding quantities computed
using the Hessian at the optimum x∗ (as in Theorem 10), relying on smoothness of f .
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(a) High-coherence synthetic data
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(b) Musk dataset
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(c) CIFAR-10 dataset
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(d) WESAD dataset

Figure 2: LESS-uniform embeddings: convergence rate of the Newton Sketch for least squares
regression and wall-clock time of forming SA versus row density, with sketch size m = 8d. The
results were averaged over 100 trials and error bars show twice the empirical standard deviation.

5 Numerical Experiments

We evaluated our theory on a range of different problems, and we have found that the more precise
analysis that our theory provides describes well the convergence behavior for a range of optimization
problems. In this section, we present numerical simulations illustrating this for regularized logistic
regression and least squares regression, with different datasets ranging from medium to large scale:
the CIFAR-10 dataset, the Musk dataset, and WESAD [SRD+18]. Data preprocessing and implemen-
tation details, as well as additional numerical results for least squares and regularized least squares,
can be found in Appendix E.

We investigate first the effect of the row density of a LESS-uniform embedding on the Newton
Sketch convergence rate and on the time for computing the sketch SA for least squares regression. In
Figure 2, we report these two performance measures versus the row density. (This is the empirical
analog for real data of Figure 1). Note that here we also consider a synthetic data matrix with high-
coherence, which aims to be more challenging for a uniform sparsifier. Remarkably, our prescribed
row density of d non-zeros per row offers an excellent empirical trade-off: except for the CIFAR-10
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Figure 3: Top plots show the convergence of Newton Sketch (NS) and baselines for logistic regression.
We use a sketch size m = d/2 for NS. In the bottom plots, we report the CPU and GPU wall-clock
times to reach a 10−6 accurate solution for NS with different sketching methods.

dataset, for which random row sampling performs equally well to Gaussian embeddings, we observe
that one can drastically decrease the row density without significantly impairing the convergence rate.

Next, in Figure 3, we investigate a minimization task for the regularized logistic regression loss.
Namely, given a data matrix A ∈ Rn×d with rows ai, a target vector b ∈ {±1}n and a regularization
parameter λ > 0, the goal is to solve:

min
x∈Rd

1

n

n∑
i=1

log(1 + exp(−bia>i x)) +
λ

2
‖x‖22 .

For each dataset, we choose the value of λ among {10−j | j = 0, . . . , 8} that minimizes the error
on a hold out validation set. For CIFAR-10 and Musk, we pick λ = 10−4. For WESAD, we pick
λ = 10−5. We plot the error versus wall-clock time for the Newton Sketch with LESS-uniform,
Gaussian, Subsampled Randomized Hadamard Transform (SRHT) and Random Row Sampling
(RRS) matrices, and we compare it with two standard second-order optimization baselines: Newton’s
method and BFGS. We also included three first-order baselines: Gradient Descent (GD), Accelerated
GD (AGD), and Stochastic GD (SGD), observing much worse performance. Based on the top plots in
Figure 3, we conclude that Newton-LESS (i.e., NS LESS uniform) offers significant time speed-ups
over all baselines.

Finally, we compare wall-clock time on different hardwares (CPU versus GPU) for the Newton
Sketch to reach a 10−6-accurate solution (see Appendix E for hardware details). From Figure 3
(bottom plots), we conclude the following: first, when switching from CPU to GPU for WESAD and
CIFAR-10, Gaussian embeddings become more efficient than SRHT, despite a worse time complexity,
by taking better advantage of the massively parallel architecture; second, Random Row Sampling
performs better than either of them, despite having much weaker theoretical guarantees; and third,
LESS-uniform is more efficient than all three other methods, on both CPU and GPU hardware
platforms, observing a significant speed-up when switching to the parallel GPU architecture.

6 Conclusions

We showed that, when constructing randomized Hessian estimates for second-order optimization,
we can get the best of both worlds: the efficiency of Sub-Sampling methods and the precision
of Gaussian embeddings, by using sparse sketching matrices known as LEverage Score Sparsified
(LESS) embeddings. Our algorithm, called Newton-LESS, enjoys both strong theoretical convergence
guarantees and excellent empirical performance on a number of hardware platforms. An important
future direction is to explain the surprising effectiveness of the simpler LESS-uniform method,
particularly on high-coherence matrices, which goes beyond the predictions of our current theory.
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A Characterization of Inverse Moments (Proof of Theorem 6)

In this section, we prove Theorem 6. The proof consists of two parts corresponding to the first and
second moment of Q. The analysis of the first moment bound is nearly the same as in [DLDM21], so
we only outline it here, highlighting the differences coming from the regularization matrix C. The
analysis of the second moment is our main contribution in this proof, and we discuss it in detail. First,
however, we define the high probability event E which is common to both parts.

To simplify the proof, we will letm be divisible by 3. Note that we have Q = (U>S>SU+D)−1 for
D = H−

1
2 CH−

1
2 . Moreover, let S−i denote S without the ith row, and let Q−i = (U>S>−iS−iU +

D)−1. Also, define S̃1, S̃2, S̃3 as the matrices consisting of the first, second and third group of m/3
rows in S, all scaled by

√
3, so that S>S = 1

3

∑3
j=1 S̃>j S̃j . Next, using Σ = U>U, similarly as in

[DLDM21] we let t = m/3 and define three independent events:

Ej :
∥∥Σ−U>S̃>j S̃jU

∥∥ ≤ η, for j = 1, 2, 3, (5)

with E =
∧3
j=1 Ej defined as the intersection of the events. Conditioned on E , we have:

‖I− (U>S>SU + D)‖ =
∥∥∥1

3

3∑
j=1

(
Σ−U>S̃>j S̃jU

)∥∥∥ ≤ 1

3

3∑
j=1

‖Σ−U>S̃>j S̃jU‖ ≤ η,

which implies that ‖Q− I‖ ≤ η
1−η ≤ 2η. Furthermore, an important property of the definition of

E is that for each i ∈ {1, ...,m} there is a j ∈ {1, 2, 3} such that Ej is independent of xi, and after
conditioning only on Ej we get ‖Q−i‖ ≤ 6. From Condition 1 and the union bound we conclude
that Pr(E) ≥ 1− δ.

The analysis of both the first and second moment uses the Sherman-Morrison formula, to separate
one of the rows from the rest of the sketch. We state this formula in the following lemma.
Lemma 12 (Sherman-Morrison). For A ∈ Rn×n invertible and u,v ∈ Rn, A + uv> is invertible
if and only if 1 + v>A−1u 6= 0 and

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

From the above formula, it follows that:

(A + uv>)−1u =
A−1u

1 + v>A−1u
.

A.1 Proof of first moment bound

In this part of the proof we recall the decomposition of EE [Q] used by [DLDM21]. Most of their
analysis is unaffected by the presence of the regularization matrix D, so we will focus on the
steps that will also be needed for our analysis of the second moment. Let the ith row of S be

1√
m−deff

s>i , and define xi = mU>si, so that U>S>SU = γ
m

∑
i xix

>
i , where γ = m

m−deff
. Using

γi = 1 + γ
mx>i Q−ixi, we have:

EE [Q]− I = EE [Q(Σ + D)−Q(U>S>SU + D)]

= EE [QΣ]− EE [QU>S>SU]

(∗)
= EE [QΣ]− EE [ γγi Q−ixix

>
i ]

= EE [Q−Q−i]Σ + EE [Q−i(Σ− xix
>
i )] + EE [(1− γ

γi
)Q−ixix

>
i ],

where (∗) follows from the Sherman-Morrison formula. From this point, the analysis of [DLDM21]
proceeds to bound the spectral norm of the first two terms by O(1/m), and the spectral norm of the
last term by O(

√
tr(U>U)/m). In their setup, C = 0, which means that tr(U>U) = d, whereas in

our more general statement, we let deff = tr(U>U). This does not affect the proofs. For the sake of
our analysis of the second moment, we separate out the following guarantees obtained by [DLDM21],
given here in a slightly more general form than originally.
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Lemma 13 ([DLDM21]). The following bounds hold for k ∈ {1, 2}:

‖EE [Qk −Qk
−i]Σ‖ = O(1/m),

‖EE [Qk
−i(xix

>
i −Σ)]‖ = O(1/m),

‖EE [( γγi − 1)Qk
−ixix

>
i ]‖ = O(

√
deff/m).

A.2 Proof of second moment bound

We next present the analysis of the second moment, EE [Q2], which requires a considerably more
elaborate decomposition. Using ρ = deff

m−d̃eff
and Σ = U>U, we have:

EE [Q2]− (I + ρΣ) =
(
EE [Q]− I

)︸ ︷︷ ︸
T1

+
(
EE [Q(Q− I)]− ρΣ

)
.

Recalling that Σ + D = I, we can rewrite the last term as:

EE [Q(Q− I)] = EE [Q(Q(Σ + D)−Q(U>S>SU + D))]

= EE [Q(QΣ−QU>S>SU)]

(a)
= EE [Q(QΣ− γ

γi
Q−ixix

>
i )]

(b)
= EE [Q2]Σ− EE [ γγi Q

2
−ixix

>
i ] + EE

[
x>i Q2

−ixi

m
γ2

γ2
i
Q−ixix

>
i

]
= EE [Q2 −Q2

−i]Σ︸ ︷︷ ︸
T2

+EE [Q2
−i(Σ− xix

>
i )]︸ ︷︷ ︸

T3

+EE [(1− γ
γi

)Q2
−ixix

>
i ]︸ ︷︷ ︸

T4

+EE
[
x>i Q2

−ixi

m
γ2

γ2
i
Q−ixix

>
i

]
,

for a fixed i, where we denote γi = 1 + γ
mx>i Q−ixi. Note that we used the Sherman-Morrison

formula twice, in steps (a) and (b). We can put everything together as follows:

EE [Q2]− (I + ρΣ) = T1 + T2 + T3 + T4

+ ρ(EE [Q−i]− I)Σ︸ ︷︷ ︸
T5

+ ρEE [Q−i(xix>i −Σ)]︸ ︷︷ ︸
T6

+EE
[(

x>i Q2
−ixi

m
γ2

γ2
i
− ρ
)
Q−ixix

>
i

]
︸ ︷︷ ︸

T7

.

From the bound on the first moment of Q, we conclude that ‖T1‖ = O(
√
deff/m) and that ‖T5‖ =

O(
√
deff/m). Without loss of generality, assume that events E1 and E2 are both independent of xi,

and let E ′ = E1 ∧ E2 as well as δ3 = Pr(¬E3). Next, we will use the fact that for a p.s.d. random
matrix M in the probability space of S, we have EE [M] � 1

1−δEE′ [M] � 2 · EE′ [M].

Using k = 2 in Lemma 13, we can bound ‖T2‖, ‖T3‖ and ‖T4‖ by O(
√
deff/m), and setting k = 1,

we can do the same for ‖T6‖.
Thus, it remains to bound ‖T7‖. Let γ̃ = m

m−d̃eff
. We first use the Cauchy-Schwartz inequality twice,

obtaining that:

‖T7‖ ≤
1

m

√
EE
[(
γ̃deff − x>i Q2

−ixi ·
γ2

γ2
i

)2]
· sup
‖u‖=1

4

√
EE
[
(u>Q−ixi)4

]
· sup
‖u‖=1

4

√
EE
[
(x>i u)4

]
.

(6)

The latter two terms can each be bounded easily by O( 4
√
α+ 1) using Condition 2. For instance,

considering the middle term, we have:

EE
[
(u>Q−ixi)

4
]
≤ 2EE′

[
E
[
(x>i Q−iuu>Q−ixi)

2 | Q−i
]]

= 2EE′
[
Var
[
x>i Q−iuu>Q−ixi | Q−i

]
+
(
E[x>i Q−iuu>Q−ixi | Q−i]

)2]
≤ 2EE′

[
α tr

(
U(Q−iuu>Q−i)

2U>
)

+ 2
(
tr(UQ−iuu>Q−iU

>)
)2]

≤ 2EE′
[
O(α) u>i Q−iU

>UQ−iui + (u>i Q−iU
>UQ−iui)

2
]

≤ 2EE′
[
O(α)‖Q−iΣQ−i‖+ ‖Q−iΣQ−i‖2

]
= O(α+ 1),
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where we also used that matrices Q−i, Σ and uu> have spectral norms bounded by O(1). Similarly,
we obtain that EE [(x>i u)4] = O(α+ 1). For the first term in (6), we have:

EE
[(
γ̃deff − x>i Q2

−ixi ·
γ2

γ2
i

)2]
≤ 2 · EE′

[(
γ̃deff − x>i Q2

−ixi ·
γ2

γ2
i

)2]
≤ 4 · EE′

[
(γ̃deff − x>i Q2

−ixi)
2
]

+ 4 · EE′
[(

x>i Q2
−ixi

)2(γ2

γ2
i
− 1
)2]

.

We can further break down the first term as follows:

EE′
[
(γ̃deff − x>i Q2

−ixi)
2
]

= (γ̃deff − EE′ [tr(Q2
−iΣ)])2 + VarE′ [tr(Q

2
−iΣ)] + EE′

[
(tr(Q2

−iΣ)− x>i Q2
−ixi)

2
]

(7)

The latter term can be bounded immediately using Condition 2. The middle term is handled by a
separate lemma, which is an immediate extension of Lemma 25 in [DLDM21].
Lemma 14 ([DLDM21]). Let VarE′ [·] be the conditional variance with respect to event E ′ = E1∧E2.
Then, for k ∈ {1, 2},

VarE′
[
tr(Qk

−iΣ)
]

= O(deff).

Next, note that |γ
2

γ2
i
− 1| = |γ − γi| · γ+γi

γ2
i
≤ |γ − γi| · γ+1

γi
, since γi > 1, so we get:

EE′
[(

x>i Q2
−ixi

)2(γ2

γ2
i
− 1
)2]
≤ 62(γ + 1)2 · EE′

[
(x>i Q−ixi)

2 (γ − γi)2

γ2
i

]
≤ 62(γ + 1)2 · EE′

[ (x>i Q−ixi)
2

(1 + γ
mx>i Q−ixi)2

(γ − γi)2
]

≤ O(m2) · EE′
[
(γ − γi)2

]
≤ O(m2) ·O(αdeff/m

2) = O(αdeff).

Finally, we analyze the first term in (7) as follows:∣∣γ̃deff − EE′ [tr(Q2
−iΣ)]

∣∣ =
∣∣tr((EE − EE′)[Q2

−iΣ])− tr(T2) + tr(γ̃Σ− EE [Q2]Σ)
∣∣

=
∣∣tr((EE − EE′)[Q2

−iΣ])− tr(T2) + tr((I + ρΣ− EE [Q2])Σ)
∣∣

≤ O(deff/m
3) + deff ·O(α

√
deff/m) + |tr(T7Σ)|,

where to bound the first term we used the fact that Pr(¬E3 | E ′) ≤ 1/m3 and for the last term, recall
that deff = tr(Σ) and d̃eff = tr(Σ2), which leads to the following identity:

tr
(
γ̃Σ− (I + ρΣ)Σ

)
= tr

(
d̃eff

m−d̃eff
Σ− deff

m−d̃eff
Σ2
)

= 0.

Further, note that from the analysis of T7 we have:

|tr(T7)| ≤ deff

m

√
4
(
γ̃deff − EE′ [tr(Q2

−i)]
)2

+O(αdeff) ·O(
√
α)

≤ O(αdeff/m) ·
(
|γ̃deff − EE′ [tr(Q2

−i)] +
√
deff
)
.

Putting this together with the previous inequality, we conclude that for sufficiently large m:∣∣γ̃deff − EE′ [tr(Q2
−i)]

∣∣ ≤ O(α
√
deff)

1−O(αdeff/m)
= O(α

√
deff).

Plugging this back into the analysis of ‖T7‖, we can bound it by O(α
√
d/m), which concludes the

proof.

B Local Convergence Rate of Newton-LESS

In this section, we present the convergence analysis of Newton Sketch for sketching matrices satisfying
the structural conditions of Theorem 6. We start by proving Lemma 11, then we show how it can be
used to establish the guarantee from Theorem 10. Finally, we discuss how the analysis needs to be
adjusted to obtain the two-sided bound from Theorem 1.
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B.1 Proof of Lemma 11

Let ∆̃t = x̃t − x∗, ∆t+1 = xt+1 − x∗, and pt = xt+1 − xt. Also, define ρ = deff

m−d̃eff
as well as the

matrices Q̃ = H
1
2
t (Af0(x̃t)

>
S>t StAf0(x̃t) +∇2g(x̃t))

−1H
1
2
t and Ut = Af0(x̃)H

− 1
2

t . We have:

EE ‖∆̃t+1‖2Ht
− ‖∆t+1‖2Ht

= 2∆>t+1HtEE [x̃t+1 − xt+1] + EE ‖x̃t+1 − xt+1‖2Ht

= 2∆>t+1H
1
2
t (I− EEQ̃)H

1
2
t pt + p>t H

1
2
t EE(I− Q̃)2H

1
2
t pt

≤ ρ · p>t H
1
2
t U>t UtH

1
2
t pt + 2‖I− EEQ̃‖ ·

(
‖∆t+1‖Ht‖pt‖Ht + ‖pt‖2Ht

)
+ ‖I + ρU>t Ut − EEQ̃2‖ · ‖pt‖2Ht

≤ ρ ‖pt‖2∇2f0(x̃t)
+O

(√
deff
m

)
‖∆̃t‖2Ht

,

where the last step follows by applying Theorem 6 and observing that ‖pt‖Ht
≤ ‖∆̃t‖Ht

+

‖∆t+1‖Ht
≤ 2‖∆̃t‖Ht

and ‖∆t+1‖Ht
‖pt‖Ht

≤ 1
2 (‖∆t+1‖2Ht

+ ‖pt‖2Ht
) ≤ 3‖∆̃t‖2Ht

. The
matching lower-bound follows identically.

B.2 Proof of Theorem 10

We start by analyzing the exact Newton step xt+1 = x̃t − µtH−1
t gt wih step size µt, gradient

gt = ∇f(x̃t), and Hessian Ht = ∇2f(x̃t). Letting ∆̃t = x̃t−x∗ and ∆t+1 = xt+1−x∗, we have:

‖∆t+1‖2Ht
= (1− µt)∆>t+1gt + ∆>t+1(Ht∆̃t − gt)

= (1− µt)∆>t+1Ht∆̃t − (1− µt)∆>t+1(Ht∆̃t − gt) + ∆>t+1(Ht∆̃t − gt)

= (1− µt)
(
∆̃>t Ht∆̃t − µtg>t ∆̃t

)
+ µt∆

>
t+1(Ht∆̃t − gt)

= (1− µt)2‖∆̃t‖2Ht
+ µt

(
∆t+1 + (1− µt)∆̃t

)>
(Ht∆̃t − gt).

Before we proceed, we make the following assumptions, which will be addressed later.

Assume: ‖Ht∆̃t − gt‖H−1
t
≤ εβ‖∆̃t‖Ht

, Ht ≈ε H, (8)

where ε = O( 1√
deff

) and β = ρ
1+ρ will become the convergence rate of Newton-LESS, and recall that

ρ = deff

m−d̃eff
. Now, using the Cauchy-Schwartz inequality we obtain that:

‖∆t+1‖2Ht
≤ (1− µt)2‖∆̃t‖2Ht

+ µt‖∆t+1 + (1− µt)∆̃t‖Ht‖Ht∆̃t − gt‖H−1
t

≤ (1− µt)2‖∆̃t‖2Ht
+ εβµt‖∆t+1‖Ht‖∆̃t‖Ht + εβµt(1− µt)‖∆̃t‖2Ht

.

Solving for ‖∆t+1‖Ht
(we use that if x2 ≤ ax+ b then x2 ≤ a2 + 2b), we obtain the following:

‖∆t+1‖2Ht
≤ 2(1− µt)2‖∆̃t‖2Ht

+ 2εβµt(1− µt)‖∆̃t‖2Ht
+ ε2β2µ2

t‖∆̃t‖2Ht

≤ 2
(
(1− µt)2 + εβµt

)
‖∆̃t‖2Ht

.

Setting µt = 1
1+ρ , we conclude that ‖∆t+1‖2Ht

≤ 2ρ
1+ρ

ρ+ε
1+ρ‖∆̃t‖2Ht

≤ β‖∆̃t‖2Ht
whenm ≥ 4deff +2

and ε < 1/4. Next, we return to the Newton Sketch. Recall that using Lemma 11 with the event E
having failure probability δ/T , we have:

EE ‖∆̃t+1‖2Ht
− ‖∆t+1‖2Ht

= ρ‖pt‖2∇2f0(x̃t)
±O

(√
deff
m

)
‖∆̃t‖2Ht

≤ ρ‖pt‖2Ht
+O

(√
deff
m

)
‖∆̃t‖2Ht

, (9)

where we also used the fact that ∇2f0(x̃t) � Ht. The leading term in the above decomposition can
be written as follows:

ρ‖pt‖2Ht
= ρµ2

t (gt∆̃t − g>t H−1
t (Ht∆̃t − gt))

= ρµ2
t (∆̃>t Ht∆̃t − ∆̃>t (Ht∆̃t − gt)− g>t H−1

t (Ht∆̃t − gt))

= ρµ2
t‖∆̃t‖2Ht

− ρµ2
t (∆̃t + H−1

t gt)
>(Ht∆̃t − gt).
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Putting everything together, and then setting µt = 1
1+ρ , we obtain:

EE ‖∆̃t+1‖2Ht
≤
(

(1− µt)2 + ρµ2
t +O

(√
deff
m

))
‖∆̃t‖2Ht

+
(
(1 + ρ)µt(∆t+1 − ∆̃t) + (1− ρµ2

t )∆̃t

)>
(Ht∆̃t − gt)

=
(
β +O

(√
deff
m

))
‖∆̃t‖2Ht

+
(
∆t+1 − βµt∆̃t

)>
(Ht∆̃t − gt).

We can bound the second term by using Cauchy-Schwartz, the first assumption in (8) and µt ≤ 1:∣∣(∆t+1 − βµt∆̃t

)>
(Ht∆̃t − gt)

∣∣ ≤ εβ‖∆t+1‖Ht
‖∆̃t‖Ht

+ εβ2‖∆̃t‖2Ht
≤ 2εβ‖∆̃t‖2Ht

.

Combining this with the assumption Ht ≈ε H, which implies that ‖v‖2Ht
≈ε ‖v‖2H, we obtain:

Eδ/T
‖∆̃t+1‖2H
‖∆̃t‖2H

≤ β ·
(

1 +O
(

1√
deff

))
. (10)

Note that since ρ = deff

m−d̃eff
, we have β = deff

m+deff−d̃eff
and µt = deff

m+deff−d̃eff
. Alternatively, if

throughout the analysis we use ρ = deff
m−deff

≤ deff

m−d̃eff
, then we obtain the simpler (and slightly weaker)

convergence rate β = deff
m with step size µt = 1− deff

m , as in Theorem 4.

It remains to address the assumptions from (8), and then carefully chain the expectations together.
Next, we define the neighborhood U in which we can establish our convergence guarantee, and show
that when the iterate lies in the neighborhood, then (8) is satisfied. This part of the proof will depend
on what type of function f(x) we are minimizing.

Lipschitz Hessian. Suppose that function f(x) has a Lipschitz continuous Hessian with constant L
(Assumption 8). We define the neighborhood U through the following condition:

‖∆̃t‖H <

√
deff

m

(λmin)3/2

L
,

where λmin denotes the smallest eigenvalue of H. Suppose that the condition holds for some t. Then,
we have:

‖H− 1
2 (Ht −H)H−

1
2 ‖ ≤ 1

λmin
‖Ht −H‖ ≤ L

λmin
‖∆̃t‖ ≤

L

(λmin)3/2
‖∆̃t‖H ≤

√
deff

m
≤ ε,

for ε = O( 1√
deff

), showing that Ht ≈ε H. In particular, this implies that ‖H−1
t ‖ ≥ 1

λmin(1−ε) . To get
the second assumption in (8), we first follow standard analysis of the Newton’s method [BV04]:

‖Ht∆̃t − gt‖ =

∥∥∥∥Ht∆̃t −
(∫ 1

0

∇2f(x∗ + τ∆̃t)dτ
)

∆̃t

∥∥∥∥
≤ ‖∆̃t‖ ·

∫ 1

0

∥∥∇2f(x̃t)−∇2f(x∗ + τ∆̃t)
∥∥dτ

≤ ‖∆̃t‖ ·
∫ 1

0

(1− τ)L‖∆̃t‖dτ ≤
L

2
‖∆̃t‖2.

Then, we simply use the fact that ‖H−1
t ‖ ≥ 1

λmin(1−ε) to conclude:

‖Ht∆̃t − gt‖H−1
t
≤ 1√

λmin(1− ε)
‖Ht∆̃t − gt‖

≤ 1√
λmin(1− ε)

L

2
‖∆̃t‖2

≤ L

(λmin)3/2
‖∆̃t‖2H ≤ εβ‖∆̃t‖Ht ,

since β = O(deff
m ), thus establishing the assumptions from (8).
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Self-concordant function. Suppose that function f(x) is self-concordant (Assumption 9). We will
define the neighborhood U through the following condition:

‖∆̃t‖H <

√
deff

m
.

Now, using a standard property of self-concordant functions [BV04, Chapter 9], we have:

(1− ‖∆̃t‖H)2 H � Ht �
1

(1− ‖∆̃t‖H)2
H,

and note that 1

(1−‖∆̃t‖H)2
≤ 1 + ε for ε = O( 1√

deff
), so it follows that Ht ≈ε H. Furthermore, for

self-concordant functions, it follows that:

‖Ht∆̃t − gt‖H−1
t

=

∥∥∥∥H 1
2
t ∆̃t −H

− 1
2

t

(∫ 1

0

∇2f(x∗ + τ∆̃t)dτ
)

∆̃t

∥∥∥∥
=

∥∥∥∥(∫ 1

0

(
I−H

− 1
2

t ∇2f(x∗ + τ∆̃t)H
− 1

2
t

)
dτ
)
H

1
2
t ∆̃t

∥∥∥∥
≤ ‖∆̃t‖Ht

·
∫ 1

0

∥∥I−H
− 1

2
t ∇2f(x∗ + τ∆̃t)H

− 1
2

t

∥∥dτ
≤ ‖∆̃t‖Ht

·
∫ 1

0

1

(1− τ‖∆̃t‖Ht
)2
dτ =

‖∆̃t‖2Ht

1− ‖∆̃t‖Ht

.

Using the neighborhood condition, we conclude that
‖∆̃t‖2Ht

1−‖∆̃t‖Ht

≤ O(
√
deff
m )‖∆̃t‖Ht

≤ εβ‖∆̃t‖Ht
.

Chaining the expectations. Let Et denote the high-probability event corresponding to the con-
ditional expectation in (10) for the iteration t. It remains to show that after conditioning on event
E =

∧T−1
t=0 Et, we maintain that x̃t ∈ U for all t. Assume that this holds for t = 0. Then, it suffices

to show that ‖∆̃t+1‖H ≤ ‖∆̃t‖H for every t almost surely (conditioned on E). Recall that Theorem
6 implies that conditioned on Et we have

‖I− Q̃‖ ≤ η,

where Lemma 7 ensures that η is small. We use this to show the following coarse convergence
guarantee that holds almost surely conditioned on Et, but is substantially weaker than β. First, note
that using the derivation as in the proof of Lemma 11 and the analysis of the exact Newton step,

‖∆̃t+1‖2Ht
≤ ‖∆t+1‖2Ht

+O
(
‖I− Q̃‖

)
· ‖∆̃t‖2Ht

≤
(
β +O(η)

)
· ‖∆̃t‖2Ht

.

Using a sufficiently large constant C in Lemma 7 so that β +O(η) is small enough, and given the
assumption Ht ≈ε H, we obtain ‖∆̃t+1‖2H ≤ ‖∆̃t‖2H. Thus, we conclude that all of the iterates will
lie in the neighborhood U , and so (10) will hold for all t = 0, 1, ..., T − 1. Finally, note that by the
union bound, event E holds with probability 1− δ, which completes the proof.

Lower-bound from Theorem 1 The matching lower-bound from Theorem 1 holds only in the
unregularized setting. In this case, we have ∇2f0(x̃t) = Ht, so instead of an inequality in (9), we
can obtain a two-sided approximation. The rest of the proof proceeds identically.

C Sketches Satisfying Structural Conditions (Proof of Lemma 7)

In this section, we prove Lemma 7, showing that sub-Gaussian, LESS, and LESS-uniform embeddings
all satisfy the assumptions of Theorem 6, which are derived from Conditions 1 and 2. This analysis
follows along similar lines as in [DLDM21], except for extending LESS embeddings to LESS-
uniform, and allowing for the presence of regularization.
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C.1 Sub-Gaussian embeddings

For sub-Gaussian embeddings, both conditions follow from existing results. To establish Condition 1,
we rely on a covariance estimation result of [KL17], stated as in [MZ20]. Here, we say that a random
vector x is sub-Gaussian if v>x is a sub-Gaussian variable for all unit vectors v.

Lemma 15 ([MZ20, Theorem 1.4]). For i ∈ {1, . . . ,m}, let xi ∈ Rn be independent sub-Gaussian
random vectors such that E[xi] = 0 and E[xix

>
i ] = Σ. Then, it holds with probability at least

1− 2 exp(−t2) that∥∥∥∥∥ 1

m

m∑
i=1

xix
>
i −Σ

∥∥∥∥∥ ≤ C‖Σ‖
(√

trΣ/‖Σ‖
m

+
trΣ/‖Σ‖

m
+

t√
m

+
t2

m

)
.

Now, to establish Condition 1 for the sub-Gaussian sketching matrix S, i.e., where the m rows are
distributed as 1√

m−deff
s>i for si having i.i.d. zero mean, unit variance and sub-Gaussian entries, we

let xi = U>si. Recall that U = AH−
1
2 for H = A>A + C, so ‖U‖ ≤ 1, so it follows that xi is a

sub-Gaussian random vector. Therefore, letting γ = m
m−deff

and Σ = U>U, we have E[xix
>
i ] = Σ

and with probability 1− δ:

‖U>S>SU−Σ‖ ≤ γ ·
∥∥∥ 1

m

m∑
i=1

xix
>
i −Σ

∥∥∥+ (γ − 1) · ‖Σ‖

≤ C
(√

deff

m
+

√
log(1/δ)

m

)
+

deff

m− deff
,

thus setting m ≥ O(1) · (deff + log(1/δ))/η2, we can bound the above by η, obtaining Condition 1.

To show Condition 2 for sub-Gaussian embeddings, we can again rely on a more general moment
bound for quadratic forms, which is a special case of Lemma B.26 in [BS10].

Lemma 16 ([BS10]). Let M be a n× n matrix, and let x be an n-dimensional random vector with
independent, mean zero, unit variance entries such that E[x4

i ] = O(1). Then,

Var[x>Mx] ≤ O(1) · tr(MM>).

To obtain Condition 2, we simply set x = s and M = UBU>. Note that since ‖U‖ ≤ 1, we have
tr(MM>) = tr(UBU>UBU>) ≤ tr(UB2U>).

C.2 LESS embeddings: Condtion 1

Now, we demonstrate that Condition 1 also holds for LESS embeddings. We will use the following
matrix concentration inequality which is a straightforward combination of two standard results.

Lemma 17 ([Tro12, Theorem 6.2] and [Tro15, Theorem 7.7.1]). For i = 1, 2, ..., consider a finite
sequence Xi of d× d independent symmetric random matrices such that E[Xi] = 0, and one of the
following holds for all i:

1. E[Xp
i ] �

p!
2 ·R

p−2A2
i for p = 2, 3, ...;

2. ‖Xi‖ ≤ R and E[X2
i ] � A2

i .

Then, defining the variance matrix V =
∑
i A

2
i , parameter σ2 = ‖V‖ and deff = tr(V)/‖V‖, for

any t ≥ σ +R we have:

Pr

{
λmax

(∑
i
Xi

)
≥ t
}
≤ 4deff · exp

(
−t2/2
σ2 +Rt

)
.

Before we can use matrix concentration, we must first establish high-probability concentration of
the quadratic form s>UU>s, for a leverage score sparsified sub-Gaussian random vector s. This is
an analog of the Hanson-Wright inequality, which holds for non-sparsified sub-Gaussian random
vectors, as given below.
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Lemma 18 (Hanson-Wright inequality, [RV13, Theorem 1.1]). Let x have independent sub-Gaussian
entries with mean zero and unit variance. Then, there is c = Ω(1) such that for any n× n matrix B
and t ≥ 0,

Pr
{
|x>Bx− tr(B)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

‖B‖2F
,
t

‖B‖

})
.

Our version of this result for sparsified sub-Gaussian vectors is an extension of Lemma 31 of
[DLDM21], introducing the effective dimension deff as opposed to the regular dimension d, and
allowing a broader class of sparsifiers, so that we can cover the results for LESS-uniform embeddings.

Lemma 19. Let U = AH−
1
2 for H = A>A + C, and let deff = tr(U>U). Let ξ be a (p, s)-

sparsifier and x have indepedent sub-Gaussian entries with mean zero and unit variance. If pi =
Ω(li(A,C)/s) for all i, then for any t ≥ Cdeff, vector s = x ◦ ξ satisfies:

Pr
{

s>UU>s ≥ t
}
≤ exp

(
− c

(√
t+ t/deff

))
.

Proof. The analysis follows along the same lines as the proof of Lemma 31 in [DLDM21]. First,
we define the shorthand Ū = diag(ξ)U, and use Lemma 17 to bound the spectral norm ‖Ū‖.
Observe that from the definition of the sparsifier ξ we have the following decomposition: Ū>Ū =∑s
i=1

1
spti

utiu
>
ti , where u>i denotes the ith row of U and t1, ..., ts are the independently sampled

indices from p. Note that since li(A,C) = ‖ui‖2, we have that pi = Ω(‖ui‖2/s), so Xi =
1
spti

utiu
>
ti −

1
sU

>U satisfies E[Xi] = 0, ‖Xi‖ = O(1), and E[X2
i ] = O(1/s) · I. So, using

Lemma 17 with σ2 = R = O(1), for any t ≥ Cdeff we have Pr{‖Ū‖2 ≥
√
t} ≤ exp(−c

√
t), with

c = Ω(1). Using the fact that ‖Ū‖2 ≤ tr(Ū>Ū) ≤ Cdeff almost surely, it follows that the event
E : ‖Ū‖2 ≤ min{

√
t, Cdeff} has probability 1− exp(−c(

√
t+ t/deff)). Now, it suffces to condition

on ξ and apply the Hanson-Wright inequality (Lemma 18), concluding that:

Pr
{
x>ŪŪ>x ≥ Cdeff + t | ξ, E

}
≤ 2 exp

(
− cmin

{ t2

‖ŪŪ‖2F
,

t

‖ŪŪ>‖

})
≤ 2 exp(−Ω(

√
t+ t/deff)),

which completes the proof. �

By appropriately integrating out the concentration inequality from Lemma 19, as in Lemma 30 of
[DLDM21] but replacing d with deff, we can show the following matrix moment bound.

Lemma 20. Under the assumptions of Lemma 19, for all p = 2, 3, ... we have:∥∥∥∥E[(U>ss>U−U>U
)p]∥∥∥∥ ≤ p!

2
· (Cdeff)

p−1.

Proof. First, we bound the expression in terms of the quadratic form s>UU>s, so that we can use
the concentration inequality from Lemma 19. To that end, we have:

E
[(

U>ss>U−U>U
)p]
� E

[∥∥∥U>ss>U−U>U
∥∥∥p−2(

U>ss>U−U>U
)2
]

(∗)
� E

[(
s>UU>s + deff

)p−2(
2(U>ss>U)2 + 2(U>U)2

)]
� 2E

[(
s>UU>s + deff

)p−1

U>ss>U

]
+ 2E

[(
s>UU>s + deff

)p−2
]
· I,

where in (∗) we used the fact that function f(x) = x2 is operator convex. Now, integrating out the
concentration inequality from Lemma 19 for each of the two terms (following the steps of [DLDM21,
Appendix D.2]), we obtain the desired bound. �
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We can now apply Lemma 17 with Xi = 1
mU>sis

>
i U − 1

mU>U, and σ2 = R = O(deff/m),
obtaining that:

Pr
{
‖γ−1U>S>SU−U>U‖ ≥ η

}
≤ deff · exp

(
− Ω(η2m/deff)

)
.

Setting m ≥ Cdeff log(deff/δ)/η
2, we obtain the desired bound. Note that we must account again for

the scaling γ = m
m−deff

, which gets absorbed into the error η.

Finally, observe that the conditions imposed on the sparsifier ξ in Lemma 19 encompass both LESS
and LESS-uniform embeddings. In the case of LESS, we can simply let s ≈1/2 deff, and then
the condition on sparsifying distribution is pi = Ω(li(A,C)/deff). On the other hand, for LESS-
uniform, as long as s = Ω(τdeff) where τ = n

deff
maxi li(A,C) is the coherence of A, it follows that

1
n = Ω(li(A,C)/s) for all i’s, so a uniformly sparsifying distribution suffices.

C.3 LESS embeddings: Condition 2

Here, we prove a result that is similar to the so-called Restricted Bai-Silverstein inequality from
[DLDM21, Lemma 28]. Our assumptions on the sparsifier are somewhat weaker, to account for
LESS-uniform embeddings and for the presence of regularization.

Lemma 21. Let U = AH−
1
2 for H = A>A+C. Let ξ be a (p, s)-sparsifier and x have indepedent

sub-Gaussian entries with mean zero and unit variance. If pi = Ω(li(A,C)/s) for all i, then for all
d× d psd matrices B, vector s = x ◦ ξ satisfies:

Var[s>UBU>s] ≤ O(1) · tr(UB2U>).

Proof. Let Ū = diag(ξ)U. We start with a decomposition of the variance:

Var[s>UBU>s] = E
[
(x>ŪBŪ>x− tr(ŪBŪ>) + tr(ŪBŪ>)− tr(B))2

]
= E

[
Var[x>ŪBŪ>x | Ū]

]
+ Var[tr(ŪBŪ>)].

Recall that Ū>Ū =
∑s
i=1

1
spti

utiu
>
ti , where u>i is the ith row of U and pi = Ω(‖ui‖2/s). Then

Var
[
tr(ŪBŪ>)

]
= sVar

[
u>t1But1
spt1

]
≤ E

[
‖ut1‖2

spt1

u>t1B
2ut1

pt1

]
= O(1) tr(UB2U>),

where we use that U>U � I. Next, we use the classical Bai-Silverstein inequality (Lemma 16):

E
[
Var[x>ŪBŪ>x | Ū]

]
≤ O(1) · E

[
tr
(
(ŪBŪ>)2

)]
= O(1) · E

[
tr
(( s∑

i=1

1

spti
Butiu

>
ti

)2)]
= O(1) tr(UB2U>) +O(1) tr

(
(UBU>)2

)
,

where the last step follows by breaking down the expanded square into the diagonal part and the
cross-terms. Since tr

(
(UBU>)2

)
≤ tr(UB2U>), this completes the proof. �

D Distributed Averaging for Newton-LESS

An important property of the Gaussian Newton Sketch is that it produces unbiased estimates of
the exact Newton step. This is useful in distributed settings, where we can construct multiple
independent estimates in parallel, and then produce an improved estimate by averaging them together.
Newton-LESS retains this unbiasedness property, up to a small error, which also makes it amenable to
distributed averaging. This near-unbiasedness of LESS embeddings follows from the characterization
of the first inverse moment of the sketched Hessian (see [DLDM21] and the first part of Theorem 6).

In this section, we show that the near-unbiasedness of LESS embeddings can be combined with our
new convergence analysis to provide improved convergence rates for Distributed Newton-LESS:

x̃t+1 = x̃t −
µt
q

q∑
i=1

(
Af0(x̃t)

>
S>t,iSt,iAf0(x̃t) +∇2g(x̃t)

)−1∇f(x̃t), (11)

where St,i are independently drawn LESS embedding matrices. To adapt our analysis for this
algorithm, we extend the characterization from Lemma 11.
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Lemma 22. Fix Ht = ∇2f(x̃t) and let x̃t+1 be as in (11) with St,i as in Lemma 7 (i.e., sub-
Gaussian, LESS or LESS-uniform). Also, suppose that the exact Newton step xt+1 = x̃t − µtH−1

t gt
is a descent direction, i.e., ‖∆t+1‖Ht

≤ ‖∆̃t‖Ht
where ∆t+1 = xt+1 − x∗ and ∆̃t = x̃t − x∗.

Then, letting ρ = deff(x̃t)

m−d̃eff(x̃t)
, we have:

Eqδ ‖∆̃t+1‖2Ht
= ‖∆t+1‖2Ht

+ ρ
q ‖xt+1 − x̃t‖2∇2f0(x̃t)

±O
(√

deff
m

)
‖∆̃t‖2Ht

.

Proof. The proof is analogous to the proof of Lemma 11, except we must replace Q̃ with

Q̄ =
1

q

q∑
i=1

Q̃i, for Q̃i = H
1
2
t (Af0(x̃t)

>
S>t,iSt,iAf0(x̃t) +∇2g(x̃t))

−1H
1
2
t .

Each Q̃i satisfies the first and second moment characterizations from Theorem 6. Let E =
∧q
i=1 Ei

denote the intersection of the corresponding 1− δ probability events. Then, ‖EE [Q̄]− I‖ ≤ O
(√

deff
m

)
and also:

EE [Q̄2]− I =
1

q2

q∑
i=1

EE [Q̃2
i ]−

∑
i 6=j

EE [Q̃i]EE [Q̃j ]− I

=
1

q

(
EE [Q̃2

1]− I) +
q(q − 1)

q2

(
EE [Q̃1]2 − I

)
,

so using that ‖EE [Q̃2
1]− (I + ρU>U)‖ ≤ O

(√
deff
m

)
, where U = Af0(x̃)H

− 1
2

t , we get:

‖EE [Q̄2]− (I + ρ
qU

>U)‖ ≤ O
(√

deff
m

)
.

The rest of the proof follows identically as in Lemma 11, using Q̄ in place of Q̃. Note that, using the
union bound, we can show that the probability of E is at least 1− qδ. �

From this lemma, repeating the local convergence analysis of Theorem 10, we obtain that in the
neighborhood of x∗, setting µt = q(m−d̃eff)

deff+q(m−d̃eff)
, Distributed Newton-LESS achieves:(

EqTδ
‖x̃T − x∗‖2H
‖x̃0 − x∗‖2H

)1/T

≤ deff

deff + q(m− d̃eff)
+O

(√deff

m

)
,

and for the unregularized case, where deff = d̃eff = d, we can obtain a matching lower bound on
the convergence rate. This shows that the convergence rate of Newton-LESS can be substantially
improved via distributed averaging.

E Additional Numerical Experiments and Implemention Details

Experiments are implemented in Python using the Pytorch module on Amazon Sagemaker instances
with CPUs with 256 gigabytes of memory and GPUs NVIDIA Tesla V100. The code is publicly
available at https://github.com/lessketching/newtonsketch.

E.1 Sketching matrices

Given a data matrix A ∈ Rn×d, we follow the procedure described in [DMIMW12b] (see Algorithm 1
therein) for fast approximation of the leverage scores. We use these approximate leverage scores to
compute the RSS-lev-score embedding.

For LESS embeddings, we report the performance of the computationally most efficient method
between using the approximate leverage scores, or, pre-processing the data matrix A by a Hadamard
matrix H and then using a uniformly sparsified sketching matrix. Preprocessing with a Hadamard
matrix uniformizes the leverage scores, so this second option is a valid implementation of a LESS
embedding (see [DLDM21] for a detailed discussion). We found this second option to be the fastest
method in practice.
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For a LESS-uniform embedding S ∈ Rm×n, we fix a number of non-zero entries per row to be s. For
each row s>i , we sample s indices {i1, . . . , is} in {1, . . . , n} uniformly at random with replacement.
Each entry Siij is then chosen uniformly at random in {±(n/ms)1/2}. We choose to sample with
replacement for maximal computational efficiency. In our experiments, the number of non-zero
entries s is small in comparison to the sample size n, so the probability of sampling twice the same
index remains very small.

E.2 Datasets

The high-coherence synthetic data matrix A is generated as follows. We construct a covariance
matrix Σ ∈ Rd×d with entries Σij = 2 · 0.5|i−j|. The rows ai of A are then sampled independently
as ai ∼ gi/

√
zi where gi ∼ N (0,Σ) and zi follows a Gamma distribution with shape 1/2 and scale

2. We use n = 16384 and d = 256.

We downloaded the Musk and CIFAR-10 datasets from https://www.openml.org/. The Musk
data matrix has size n = 4096 and d = 256. The sample size of the CIFAR-10 dataset is n = 50000.
We transform each image using a random features map that approximates the Gaussian kernel
exp(−γx2) with bandwith γ = 0.02, and we use d = 2000 random cosine components. We partition
the ten classes of CIFAR-10 into two groups with labels 0 and 1.

For the WESAD dataset [SRD+18], we used the data obtained from the E4 Empatica device and we
filtered the data over windows of one second.2 This results in a sample size n = 262144. Then we
applied a random features map that approximates the Gaussian kernel exp(−γx2) with γ = 0.01 and
we use d = 2000 components.

E.3 Least squares regression

We first consider least squares regression. On Figure 4, we report the relative error versus number of
iterations, as well as the relative error versus wall-clock time for the Newton Sketch. We compare
to Gaussian embeddings, the SRHT, uniformly random row sampling matrices (RRS) and random
row sampling based on approximate leverage scores (RRS-lev-scores). As predicted by our theory,
LESS embeddings have convergence rate scaling as d/m. This is similar to the convergence rate of
the Newton sketch with Gaussian embeddings [LP19]. We also observe similar convergence for the
SRHT, which is not explained by existing worst-case theory [Tro11], but it matches the predictions
based on high-dimensional asymptotic analysis of the SRHT [LLDP20]. Except for CIFAR-10, RSS
and RSS-lev-scores have weaker convergence rates. This suggests that the CIFAR-10 data matrix
has low coherence. Except for the high-coherence synthetic data matrix for which the convergence
rate is slightly worse than d/m, using LESS with a uniformly random sparsifier does not affect the
convergence rate. Here, we implement LESS-uniform with d non-zero entries per row subsampled
uniformly at random. Importantly, LESS-uniform offers significant speed-ups over other sketching
matrices.

Note that some curves stop earlier than others (e.g., RRS) on the wall-clock time versus error plots,
because we run the Newton sketch for each embedding for a fixed number of iterations.

E.4 Regularized least squares and effective dimension

In Figure 5, we report the error versus number of iterations of the Newton Sketch for regularized least
squares regression. These results illustrate in particular our theoretical predictions: the convergence
rate of Newton-LESS is upper bounded by deff/m. In fact, Newton-LESS has the same convergence
rate as the Newton Sketch with dense Gaussian embeddings.

E.5 Comparison with CountSketch

In Figure 6, we perform an empirical comparison of LESS-uniform with the Sparse Johnson Lin-
denstrauss Transform (SJLT) with one non-zero entry per column, also known as the CountSketch
[CW17]. Here, we consider the wall clock time convergence for the Newton Sketch solving a least
squares task on the high-coherence synthetic matrix. We present the results alongside Gaussian and
Random Row Sampling (RRS) sketches.

2We refer to the public repository for implementation details about subsampling the signal, https://
github.com/WJMatthew/WESAD/blob/master/data_wrangling.py.
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Figure 4: Newton sketch for least squares regression. We use the sketch size m = 4d for all
experiments. Results are averaged over 10 trials.
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Figure 5: Newton Sketch for regularized least squares regression. We use the sketch size m = 4deff
for all experiments. Results are averaged over 10 trials.

(a) n = 4096 and d = 512 (b) n = 8192 and d = 512

Figure 6: Relative error versus wall clock time: Newton Sketch for least squares regression on
the high-coherence synthetic data matrix. We use sketch size m = 1024. For LESS-uniform, we
use a number of non-zero entries s = 0.3 d per row. For SJLT, we use the standard CountSketch
implementation [CW17]. Results are averaged over 10 trials.
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