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A Proofs17

We start by deriving an auxiliary Lemma. That is, we derive an explicit expression for the Stage 218

oracle pseudo outcome regression E[Ŷ0 | X = x] of MRIV.19

Lemma 4.
E[Ŷ0 | X = x]

=
π(x)

δ̂A(x)π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x)(1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)

(1)

Proof.

E[Ŷ0 | X = x] (2)

=π(x)E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) π̂(X)

∣∣∣∣∣ X = x, Z = 1

]

+ (1− π(x))E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) (1− π̂(X))

∣∣∣∣∣ X = x, Z = 0

]
+ τ̂init(x)

(3)

=
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)

+
1− π(x)

δ̂A(x) (1− π̂(x))

(
µY
0 (x)− µA

0 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)
+ τ̂init(x) (4)

Rearranging the terms yields the desired result.20

A.1 Proof of Theorem 1 (multiple robustness property)21

We use Lemma 4 to show that under each of the three conditions it follows that E[Ŷ0 | X = x] = τ(x).22

1.
E[Ŷ0 | X = x] (5)

=
π(x)

δA(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ(x) + µA
0 (x) τ(x)− µY

0 (x)
)

+
(1− π(x))

δA(x) (1− π̂(x))

(
µA
0 (x) τ(x)− µY

0 (x)− µA
0 (x) τ(x) + µY

0 (x)
)
+ τ(x) (6)

=
π(x)

δA(x) π̂(x)
(δY (x)− δY (x)) + τ(x) = τ(x). (7)

2.

E[Ŷ0 | X = x] =

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)

δA(x)
+

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

δA(x)
+ τ̂init(x)

(8)

=
δY (x)− τ̂init(x) δA(x)

δA(x)
+ τ̂init(x) = τ(x). (9)

3.

E[Ŷ0 | X = x] =

(
µY
1 (x)− µA

1 (x) τ(x)
)

δ̂A(x)
+

(
µA
0 (x) τ(x)− µY

0 (x)
)

δ̂A(x)
+ τ(x) (10)

=
δY (x)

δ̂A(x)
− τ(x)

δA(x)

δ̂A(x)
+ τ(x) = τ(x) (11)
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A.2 Proof of Theorem 2 (Convergence rate of MRIV)23

To prove Theorem 2, we need an additional assumption on the second stage regression estimator Ên.24

We refer to Kennedy [8] (Theorem 1) for a detailed discussion on this assumption.25

Assumption 5 (From Theorem 1 of Kennedy [8]). The following two statements hold:26

1. Ên[W + c | X = x] = Ên[W | X = x] + c for any random W and constant c27

2. If E[W | X = x] = E[V | X = x] then28

E
[(

Ên[W | X = x]− E[W | X = x]
)2]

≍ E
[(

Ên[V | X = x]− E[V | X = x]
)2]

.

(12)

Proof of Theorem 2. Using Assumption 5, we can apply Theorem 1 of Kennedy [8] and obtain29

E
[
(τ̂init(x)− τ(x))

2
]
≲ R(x) + E

[
r̂(x)2

]
, (13)

where R(x) = E
[
(τ̃MR(x)− τ(x))

2
]

is the oracle risk of the second stage regression and r(x) =30

E[Ŷ0 | X = x]− τ(x). We can apply Lemma 4 to obtain31

r̂(x) =
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x) (1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)− τ(x) (14)

=

(
µY
1 (x)− µY

0 (x)

δ̂A(x)

)
π(x)

π̂(x)
+
µY
0 (x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ (τ̂init(x)− τ(x))

+

(
(µA

0 (x)− µA
1 (x)) τ̂init(x)

δ̂A(x)

)
π(x)

π̂(x)
+

(µ̂D
0 (x)− µD

0 (x)) τ̂init(x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
(15)

=
δY (x)π(x)

δ̂A(x) π̂(x)
+

(
µY
0 (x)− µ̂Y

0 (x)
)
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
+ (τ̂init(x)− τ(x))

− δA(x)π(x) τ̂init(x)

δ̂A(x) π̂(x)
+

(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x) (π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
(16)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ̂init(x)− τ(x)) +

π(x)δA(x)

π̂(x)δ̂A(x)
(τ(x)− τ̂init(x)) (17)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ(x)− τ̂init(x))

(
δA(x)− δ̂A(x)

)
π(x) + (τ(x)− τ̂init(x)) (π(x)− π̂(x)) δ̂A(x).

(18)

Applying the inequality (a+ b)2 ≤ 2(a2+ b2) together with Assumption 4 and the fact that π(x) ≤ 132

yields33

r̂(x)2 ≤ 4

ϵ4ρ2
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2
K2
]

+ 4 (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2
+ 4 (τ(x)− τ̂init(x))

2
(π(x)− π̂(x))

2
. (19)
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By setting K̃ = max{K, 1}, we obtain34

r̂(x)2 ≤ 4K̃2

ϵ4ρ2

(
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2

+ (τ̂init(x)− τ(x))
2
]

+ (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2)
. (20)

Applying expectations on both sides yields35

E
[
(τ̂init(x)− τ(x))

2
]

(21)

≲R(x) + E
[
(τ̂init(x)− τ(x))

2
](

E
[(
δ̂A(x)− δA(x)

)2]
+ E

[
(π̂(x)− π(x))

2
])

+ E
[
(π̂(x)− π(x))

2
] (

E
[(
µ̂Y
0 (x)− µY

0 (x)
)2]

+ E
[(
µ̂A
0 (x)− µA

0 (x)
)2])

, (22)

because (π̂(x), δ̂A(x)) ⊥⊥ (µ̂Y
0 (x), µ̂

A
0 (x), τ̂init(x)) due to sample splitting. The claim follows now36

by applying Assumption 3.37

A.3 Proof of Theorem 3 (Convergence rate of the Wald estimator)38

Proof. We define C̃ = max{C, 1} and obtain the upper bound39

(τ̂W (x)− τ(x))2 (23)

=

(
(µ̂Y

1 (x)− µY
1 (x)) δA(x) + (µY

0 (x)− µ̂Y
0 (x)) δA(x) + (δA(x)− δ̂A(x)) δY (x)

δA(x) δ̂A(x)

)2

(24)

≤ 4C̃2

ρ2ρ̃2

[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (δA(x)− δ̂A(x))

2
]

(25)

≤ 8C̃2

ρ2ρ̃2
[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (µ̂A

1 (x)− µA
1 (x))

2

+(µ̂A
0 (x)− µA

0 (x))
2
]
, (26)

where we used the inequality (a+ b)2 ≤ 2(a2 + b2) several times. Taking expectations and applying40

the smoothness assumptions yields the result.41
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B Theoretical analysis under sparsity assumptions42

In Sec. 4.2, we analyzed MRIV theoretically by imposing smoothness assumptions on the underlying43

data generating process. In particular, we derived a multiple robust convergence rate and showed44

that MRIV outperforms the Wald estimator if the oracle ITE is smoother than its components. In45

this section, we derive similar results by relying on a different set of assumptions. Instead of using46

smoothness, we make assumptions on the level of sparsity of the ITE components. This assumption47

is often imposed in high-dimensional settings (n < p) and is in line with previous literature on48

analyzing ITE estimators [4, 8].49

In the following, we say a function f(x) is k-sparse, if it is linear in x ∈ Rp and it only depends50

on k < min{n, p} predictors. [22] showed, that in this case the minimax rate of f(x) is given by51
k log(p)

n . The linearity assumption can be relaxed to an additive structural assumption, which we omit52

here for simplicity. In the following, we replace the smoothness conditions in Assumption 3 with53

sparsity conditions.54

Assumption 6 (Sparsity). We assume that (1) the nuisance components µY
i (·) are α-sparse, µA

i (·)55

and δA(·) are β-sparse, and π(·) is δ-sparse; (2) all nuisance components are estimated with their56

respective minimax rate of k log(p)
n , where k ∈ {α, β, δ}; and (3) the oracle ITE τ(·) is γ-sparse and57

the initial ITE estimator τ̂init converges with rate rτ (n).58

We restate now our result from Theorem 3 for MRIV using the sparsity assumption.59

Theorem 5 (MRIV upper bound under sparsity). We consider the same setting as in Theorem 260

under the sparsity assumption 6. If the second-stage estimator Ên yields the minimax rate γ log(p)
n61

and satisfies Assumption 5, the oracle risk is upper bounded by62

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+ rτ (n)

(β + δ) log(p)

n
+

(α+ β)δ log2(p)

n2
.

Proof. Follows immediately from the proof of Theorem 2, i.e., from Eq.(21) by applying Ass- 6.63

Again, we obtain a multiple robust convergence rate for MRIV in the sense that MRIV achieves a fast64

rate even if the initial estimator or several nuisance estimators converge slowly. More precisely, for a65

fast convergence rate of τ̂MRIV(x), it is sufficient if either: (1) rτ (n) decreases fast and δ is small;66

(2) rτ (n) decreases fast and α and β are small; or (3) all α, β, and δ are small.67

We derive now the corresponding rate for the Wald estimator.68

Theorem 6 (Wald oracle upper bound). Given estimators µ̂Y
i (x) and µ̂A

i (x). Let δ̂A(x) = µ̂A
1 (x)−69

µ̂A
0 (x) satisfy Assumption 4. Then, under Assumption 6 the oracle risk of the Wald estimator τ̂W (x)70

is bounded by71

E
[
(τ̂W(x)− τ(x))2

]
≲

(α+ β) log(p)

n
(27)

Proof. Follows immediately from the proof of Theorem 3, i.e., from Eq.(23) by applying Ass- 6.72

If α = β = δ, we obtain the rates73

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+
α2 log2(p)

n2
and E

[
(τ̂W(x)− τ(x))2

]
≲
α log(p)

n
,

(28)

which means that τ̂MRIV(x) outperforms τ̂W(x) for γ < α, i.e., if the oracle ITE is more sparse than74

its components.75
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C Simulated data76

In the following, we describe how we simulate synthetic data for the experiments in Sec. 5.1 from the77

main paper. As mentioned therein, we simulate the ITE components from Gaussian processes using78

the prior induced by the Matern kernel [12]79

Kℓ,ν(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

ℓ
∥xi − xj∥2

)ν

Kν

(√
2ν

ℓ
∥xi − xj∥2

)
, (29)

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of second kind. Here, ℓ80

is the length scale of the kernel and ν controls the smoothness of the sampled functions.81

We set ℓ = 1 and sample functions δY ∼ GP(0,Kℓ,γ), µY
0 ∼ GP(0,Kℓ,α), f1 ∼ GP(0,Kℓ,β),82

f0 ∼ GP(0,Kℓ,β) and g ∼ GP(0,Kℓ,β). Then, we define µY
1 = δY + µY

0 , µA
1 = 0.3 · σ ◦ f1 + 0.7,83

µA
0 = 0.3 · σ ◦ f0, δA = µA

1 − µA
0 , µY

0 = c0δA, and π = σ ◦ g. Finally, we set the oracle ITE to84

τ =
µY
1 − µY

0

µA
1 − µA

0

=
δY
δA
. (30)

Note that we can create a setup where the ITE τ is smoother than its components by using a small85

α/β ratio. An example is shown in Fig. 1.86

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

4

Y Z = 1
Y Z = 0

Y
1
Y
0

Figure 1: Gaussian process simulation for α = 1.5 and β = 50.

In the following, we describe how we generate data the (X,Z,A, Y ) using the ITE components87

µY
i (x), µ

A
i (x), and π(x). We begin by sampling n observed confounder X ∼ N (0, 1), unobserved88

confounders U ∼ N
(
0, 0.22

)
, and instruments Z ∼ Bernoulli(π(X)). Then, we obtain treatments89

via90

A = Z 1{U + ϵA > α1(X)}+ (1− Z)1{U + ϵA > α0(X)} (31)

with indicator function 1, noise ϵA ∼ N
(
0, 0.12

)
, and αi(X) = Φ−1

(
1− µA

i (X)
)√

0.12 + 0.22,91

where Φ−1 denotes the quantile function of the standard normal distribution. Finally, we generate the92

outcomes via93

Y = A

(
(µA

1 (X)− 1)µY
0 (X)− µA

0 (X)µY
1 (X) + µY

1 (X)

δA(X)

)
(32)

+ (1−A)

(
µA
1 (X)µY

0 (X)− µA
0 (X)µY

1 (X)

δA(X)

)
+ αUU + ϵY , (33)

where ϵY ∼ N
(
0, 0.32

)
is noise and αU > 0 is a parameter indicating the level of unobserved94

confounding. This choice of A and Y in Eq. (31) and Eq. (32), respectively, implies that τ(x) is95

indeed the ITE, i. e., it holds that τ(x) = E[Y (1)− Y (0) | X = x].96
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Lemma 7. Let (X,Z,A, Y ) be sampled from the the previously described procedure. Then, it holds97

that98

µA
i (x) = E[A | Z = i,X = x] and µY

i (x) = E[Y | Z = i,X = x]. (34)

Proof. The first claim follows from99

E[A | Z = i,X = x] = P (U + ϵA > αi(x)) = 1− Φ(Φ−1(1− µA
i (x))) = µA

i (x), (35)

because U + ϵA ∼ N (0,
√
0.12 + 0.22). The second claim follows from100

E[Y | Z = i,X = x] = µA
i (x)

(
(µA

1 (x)− 1)µY
0 (x)− µA

0 (x)µ
Y
1 (x) + µY

1 (x)

δA(x)

)
(36)

+ (1− µA
i (x))

(
µA
1 (x)µ

Y
0 (x)− µA

0 (x)µ
Y
1 (x)

δA(x)

)
(37)

=
µY
i (x)δA(x)

δA(x)
= µY

i (x). (38)

101
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D Oregon health insurance experiment102

The so-called Oregon health insurance experiment1 (OHIE) [6] was an important RCT with non-103

compliance. It was intentionally conducted as large-scale effort among public health to assess the104

effect of health insurance on several outcomes such as health or economic status. In 2008, a lottery105

draw offered low-income, uninsured adults in Oregon participation in a Medicaid program, providing106

health insurance. Individuals whose names were drawn could decide to sign up for the program.107

In our analysis, the lottery assignment is the instrument Z, the decision to sign up for the Medicaid108

program is the treatment A, and an overall health score is the outcome Y . The outcome was obtained109

after a period of 12 months during in-person interviews. We use the following covariates X: age,110

gender, language, the number of emergency visits before the experiment, and the number of people111

the individual signed up with. The latter is used to control for peer effects, and it is important to112

include this variable in our analysis as it is the only variable influencing the propensity score (see113

below). We extract ∼ 10,000 observations from the OHIE data and plot the histograms of all variables114

in Fig. 2. We can clearly observe the presence of non-compliance within the data, because the115

ratio of treated / untreated individuals is much lower than the corresponding ratio for the treatment116

assignment.117
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Figure 2: Histograms of each variable in our sample from OHIE.

The data collection in the OHIE was done follows: After excluding individuals below the age118

of 19, above the age of 64, and individuals with residence outside of Oregon, 74,922 individuals119

were considered for the lottery. Among those, 29,834 were selected randomly and were offered120

participation in the program. However, the probability of selection depended on the number of121

household members on the waiting list: for instance, an individual who signed up with another person122

was twice as likely to be selected. From the 74,922 individuals, 57,528 signed up alone, 17,236123

signed up with another person, and 158 signed up with two more people on the waiting list. Thus, the124

probability of being selected conditional on the number of household members on the waiting list125

follows the multivariate version of Wallenius’ noncentral hypergeometric distribution [2].126

Propensity score: We computed the propensity score as follows. To account for the Wallenius’127

noncentral hypergeometric distribution, we use the R package BiasedUrn to calculate the propensity128

score π(x) = P(Z = 1 | X = x). We obtained129

π(x) =


0.345, if individual x signed up alone,
0.571, if individual x signed up with one more person,
0.719, if individual x signed up with two more people.

(39)

During the training of both MRIV and DRIV, we use the calculated values from Eq. (39) for the130

propensity score.131

1Data available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-
experiment
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E Details for baseline methods132

In this section, we give a brief overview on the baselines which we used in our experiments. We133

implemented: (1) ITE methods for unconfoundedness [8, 13]; (2) general IV methods, i.e., IV134

methods developed for IV settings with multiple or continuous instruments and treatments [1, 7, 14,135

15, 20, 21]; and (3) two instantiations of the Wald estimator for the binary IV setting [16].136

E.1 ITE methods for unconfoundedness137

Many ITE methods assume unconfoundedness, i.e., that all confounders are observed in the data.138

Formally, the unconfoundedness assumption can be expressed in the potential outcomes framework139

as140

Y (1), Y (0) ⊥⊥ A | X. (40)
Under unconfoundedness, the ITE is identified as141

τ(x) = µ1(x)− µ0(x) with µi(x) = E[Y | A = i,X = x]. (41)
Methods that assume unconfoundedness proceed by estimating µi(x) = E[Y | A = i,X = x] from142

Eq. (41). However, if unobserved confounders U exist, it follows that143

τ(x) = E[Y | A = 1, X = x, U ]− E[Y | A = 0, X = x, U ] ̸= µ1(x)− µ0(x), (42)
which means that estimators that assume unconfoundedness are generally biased. Nevertheless, we144

include two baselines that assume unconfoundedness into our experiments: TARNet [13] and the145

DR-learner [8].146

TARNet [13]: TARNet [13] is a neural network that estimates the ITE components µi(x) from147

Eq. 41 by learning a shared representation Φ(x) and two potential outcome heads hi(Φ(x)). We train148

TARNet by minimizing the loss149

L(θ) =
n∑

i=1

L (hai(Φ(xi, θΦ), θhi), yi) , (43)

where θ = (θh1
, θh0

, θΦ) denotes the model parameters and L denotes squared loss if Y is continuous150

or binary cross entropy loss if Y is binary.151

Note regarding balanced representations: In [13], the authors propose to add an additional regular-152

ization term inspired from domain adaptation literature, which forces TARNet to learn a balanced153

representation Φ(x), i.e., that minimizes the distance the treatment and control group in the feature154

space. They showed that this approach leads to minimization of a generalization bound on the ITE155

estimation error if the representation is invertible.156

In our experiments, we refrained from learning balanced representations because minimizing the157

regularized loss from [13] does not necessarily result in an invertible representation and thus may158

even harm the estimation performance. For a detailed discussion, we refer to [4]. Furthermore,159

by leaving out the regularization, we ensure comparability between the different baselines. If160

balanced representations are desired, the balanced representation approach could also be extended to161

MRIV-Net, as we also build MRIV-Net on learning shared representations.162

DR-learner [8]: The DR-learner [8] is a meta learner that takes arbitrary estimators of the ITE163

componenets µi and the propensity score π(x) = P(A = 1 | X = x) as input and performs a pseudo164

outcome regression by using the pseudo outcome165

Ŷ0 =

(
A

π̂(X)
− 1−A

1− π̂(X)

)
Y +

(
1− A

π̂(X)

)
µ̂1(X)−

(
1− 1−A

1− π̂(X)

)
µ̂0(X). (44)

In our experiments, we use TARNet as base method to provide initial estimators µ̂i(X). We further166

learn propensity score estimates π̂(X) by adding a seperate representation to TARNet as done in167

[13].168

E.2 General IV methods169

2SLS [20]: 2SLS [20] is a linear two-stage approach. First, the treatments A are regressed on the170

instruments Z and fitted values Â are obtained. In the second stage, the outcome Y is regressed on Â.171

We implement 2SLS using the scikit-learn package.172
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KIV [14]: Kernel IV [14] generalizes 2SLS to nonlinear settings. KIV assumes that the data is173

generated by174

Y = f(A) + U, (45)
where U is an additive unobserved confounder and f is some unknown (potentially nonlinear)175

structural function. KIV then models the structural function via176

f(a) = µtψ(a) and E[ψ(A) | Z = z] = V ϕ(z), (46)
where ψ andϕ are feature maps. Here, kernel ridge regressions instead of linear regressions are used177

in both stages to estimate µ and V .178

Following [14] we use the exponential kernel [12] and set the length scale to the median inter-point179

distance. KIV does not provide a direct way to incorporate the observed confounders X . Hence, we180

augment both the instrument and the treatment with X , which is consistent with previous work [1,181

21]. We also use two different samples for each stage as recommended in [14].182

DFIV [21]: DFIV [21] is a similar approach KIV in generalizing 2SLS to nonlinear setting by183

assuming Eq. (45) and Eq. (46). However, instead of using kernel methods, DFIV models the features184

maps ψθA and ϕθZ as neural networks with parameters θA and θZ , respectively. DFIV is trained by185

iteratively updating the parameters θA and θZ . The authors also provide a training algorithm that186

incorporates observed confounders X , which we implemented for our experiments. During training,187

we used two different datasets for each of the two stages as described in in the paper.188

DeepIV [7]: DeepIV [7] also assumes additive unobserved confounding as in Eq. (45), but leverages189

the identification result [10]190

E[Y | X = x, Z = z] =

∫
h(a, x) dF (a | x, z), (47)

where h(a, x) = f(a, x) + E[U | X = x] is the target counterfactual prediction function. DeepIV191

estimates F (a | x, z), i.e., the conditional distribution function of the treatment A given observed192

covariates X and instruments Z, by using neural networks. Because we consider only binary193

treatments, we simply implement a (tunable) feed-forward neural network with sigmoid activation194

function. Then, DeepIV proceeds by learning a second stage neural network to solve the inverse195

problem defined by Eq. (47).196

DeepGMM [1]: DeepGMM [1] adopts neural networks for IV estimation inspired by the (optimally197

weighted) Generalized Method of Moments. The DeepGMM estimator is defined as the solution of198

the following minimax game:199

θ̂ ∈ argmin
θ∈Θ

sup
τ∈T

1

n

n∑
i=1

f(zi, τ)(yi − g(ai, θ))−
1

4n

n∑
i=1

f2(zi, τ)(yi − g(ai, θ̃))
2, (48)

where f(zi, ·) and g(ai, ·) are parameterized by neural networks. As recommended in [1], we solve200

this optimization via adversarial training with the Optimistic Adam optimizer [5], where we set the201

parameter θ̃ to the previous value of θ.202

DMLIV [15]: DMLIV [15] assumes that the data is generated via203

Y = τ(X)A+ f(X) + U, (49)
where τ is the ITE f some function of the observed covariates. First, DMLIV estimates the functions204

q(X) = E[Y | X], h(Z,X) = E[A | Z,X], and p(X) = E[A | X]. Then, the ITE is learned by205

minimizing the loss206

L(θ) =
∑
i=1

(yi − q̂(xi)− τ̂(xi, θ)(ĥ(zi, xi)− p̂(xi))
2, (50)

where τ̂(X, ·) is some model for τ(X). In our experiments, we use (tunable) feed-forward neural207

networks for all estimators.208

DRIV [15]: DRIV [15] is a meta learner, originally proposed in combination with DMLIV. It requires209

initial estimators for q(X), p(X), π(X) = E[Z | X = x], and f(X) = E[A · Z | X = x] as well210

as an initial ITE estimatior τ̂init(X) (e.g., from DMLIV). The ITE is then estimated by a pseudo211

regression on the following doubly robust pseudo outcome:212

ŶDR = τ̂init(X) +
(Y − q̂(X)− τ̂init(X)(A− p̂(X))Z − π̂(X))

f̂(X)− p̂(X)r̂(X)
. (51)
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We implement all regressions using (tunable) feed-forward neural networks.213

Comparison between DRIV vs. MRIV: There are two key differences between our paper and [15]:214

(i) Our MRIV is multiply robust, while DRIV is only doubly robust. (ii) We derive a multiple robust215

convergence rate, while the rate in [15] is not robust with respect to the nuisance rates.216

Ad (i): Both MRIV and DRIV perform a pseudo-outcome regression on the efficient influence217

function (EIF) of the ATE. The key difference: DRIV uses the doubly robust parametrization of the218

EIF from [11], whereas we use the multiply robust parametrization of the EIF from [17] 2. Hence,219

our MRIV frameworks extends DRIV in a non-trivial way to achieve multiple robustness (rather220

than doubly robustness). Thus, our estimator is consistent in the union of three different model221

specifications rather than two.3222

Ad (ii): Here, we compare the convergence rates from DRIV and our MRIV and, thereby, show the223

strengths of our MRIV. To this end, let us assume that the pseudo regression function is γ-smooth and224

that we use the same second-stage estimator Ên with minimax rate n−
2γ

2γ+p for both DRIV and MRIV.225

If the nuisance parameters q(X), p(X), f(X), and π(X) are α-smooth and further are estimated226

with minimax rate n
−2α
2α+p , Corollary 4 from [15] states that DRIV converges with rate227

E
[
(τ̂DRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + n

−4α
2α+p .

In contrast, MRIV assumes estimation of the nuisance parameters µY
0 (x) with rate n

−2α
2α+p , µA

0 (x)228

and δA(x) with rate n
−2β
2β+p , and π(x) with rate n

−2δ
2δ+p . If the initial estimator τ̂init(x) converges with229

rate rτ (n), our Theorem 2 yields the rate230

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + rτ (n)

(
n

−2β
2β+p + n

−2δ
2δ+p

)
+ n−2( α

2α+p+
δ

2δ+p ) + n−2( β
2β+p+

δ
2δ+p ).

If all nuisance parameters converge with the same minimax rate of n
−2α
2α+p , the rates of DRIV and231

our MRIV coincide. However, different to DRIV, our rate is additionally multiple robust in spirit of232

Theorem 1. This presents a crucial strength of our MRIV over DRIV: For example, if δ is small (slow233

convergence of π̂(x)), our MRIV still with fast rate as long as α and β are large (i.e., if the other234

nuisance parameters are sufficiently smooth).235

E.3 Wald estimator236

Finally, we consider the Wald estimator [16] for the binary IV setting. More precisely, we estimate237

the ITE components µY
i (x) and µA

i (x) seperately and plug them into238

τ(x) =
µ̂Y
1 (x)− µ̂Y

0 (x)

µ̂A
1 (x)− µ̂A

0 (x)
. (52)

We consider two versions of the Wald estimator:239

Linear: We use linear regressions to estimate the µY
i (x) and logistic regressions to estimate the240

µA
i (x).241

BART: We use Bayesian additive regression trees [3] trees to estimate the µY
i (x) and random forest242

classifier to estimate the µA
i (x).243

2For a detailed discussion on multiple robustness and the importance of the EIF parametrization, we refer to
[18], Section 4.5.

3On a related note, a similar, important contribution of developing multiply robust method was recently made
for the average treatment effect. Here, the estimator of [11] was extended by the estimator of [17] to allow for
multi robustness. Yet, this different from our work in that it focuses on the average treatment effect, while we
study the individual treatment effect in our paper.
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F Visualization of predicted ITEs244

We plot the predicted ITEs for the different baselines and MRIV-Net in Fig. 3 (for n = 3000). As245

expected, the linear methods (2SLS and linear Wald) are not flexible enough to provide accurate246

ITE estimates. We also observe that the curve of MRIV-Net without MRIV is quite wiggly, i.e., the247

estimator has a relatively large variance. This variance is reduced when the full MRIV-Net is applied.248

As a result, curve is much smoother. This is reasonable because MRIV does not estimate the ITE249

components individually, but estimates the ITE directly via the Stage 2 pseudo outcome regression.250

Overall, this confirms the superiority of our proposed framework.251
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Figure 3: Predicted ITEs (blue) and oracle ITE (red) for different baselines.
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G Implementation details and hyperparameter tuning252

Implementation details for deep learning models: To make the performance of the deep learning253

models comparable, we implemented all feed-forward neural networks (including MRIV-Net) as254

follows: We use two hidden layers with RELU activation functions. We also incorporated a dropout255

layer for each hidden layer. We trained all models with the Adam optimizer [9] using 100 epochs.256

Exceptions are only DFIV and DeepGMM, where we used 200 epochs for training, accounting for257

slower convergence of the respective (adversarial) training algorithms. For DeepGMM, we further258

used Optimistic Adam [5] as in the original paper.259

Training times: We report the approximate times needed to train the deep learning models on260

our simulated data with n = 5000 in Table 1. For training, we used an AMD Ryzen Pro 7 CPU.261

Compared to DMLIV and DRIV, the training of MRIV-Net is faster because only a single neural262

network is trained.263

Table 1: Training times for deep learning models (in seconds).

TARNet TARNet + DR DFIV DeepIV DeepGMM DMLIV DMLIV + DRIV MRIV-Net

∼10.62 ∼28.57 ∼164.98 ∼30.21 ∼17.31 ∼74.98 ∼91.12 ∼32.20

Hyperparameter tuning: We performed hyperparameter tuning for all deep learning models264

(including MRIV-Net), KIV, and the BART Wald estimator on all datasets. For all methods except265

KIV and DFIV, we split the data into a training set (80%) and a validation set (20%). We then266

performed 40 random grid search iterations and chose the set of parameters that minimized the267

respective training loss on the validation set. In particular, the tuning procedure was the same for268

all baselines, which ensures that the performance gain of MRIV-Net is due to the method itself269

and not due to larger flexibility. Exceptions are only KIV and DFIV, for which we implemented270

the customized hyperparameter tuning algorithms proposed in [14] and [21] to ensure consistency271

with prior literature. For the meta learners (DR-learner, DRIV, and MRIV), we first performed272

hyperparameter tuning for the base methods and nuisance models, before tuning the pseudo outcome273

regression neural network by using the input from the tuned models. The tuning ranges for the274

hyperparameter are shown in Table 2. These include both the hyperparameter rangers shared across275

all neural networks and the model-specific hyperparameters. For reproducibility purposes, we publish276

the selected hyperparameters in our GitHub project as .yaml files.4277

Table 2: Hyperparameter tuning ranges.

MODEL HYPERPARAMETER TUNING RANGE

Feed-forward neural networks Hidden layer size(es) p, 5p, 10p, 20p, 30p (simulated data)
(Shared parameter ranges p, 3p, 5p, 8p, 10p (OHIE)
for all deep learning baselines) Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01

Batch size 64, 128, 256
Dropout probability 0, 0.1, 0.2, 0.3

KIV λ (Ridge penalty first stage) 5, 6, 7, 8, 9, 10, 12
ξ (Ridge penalty second stage) 5, 6, 7, 8, 9, 10, 12

DFIV λ1 (Ridge penalty first stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

λ2 (Ridge penalty second stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

DeepGMM λf (learning rate multiplier) 0.5, 1, 1.5, 2, 5
Wald (BART) Number of trees (BART) 20, 30, 40, 50

Number of trees (Random forest classifier) 20, 30, 40, 50
p = network input size

Hyperparameter robustness checks: We also investigate the robustness of MRIV-Net with respect278

to hyperparameter choice. To to this, we fix the optimal hyperparameter constellation for our simulated279

data for n = 3000 and perturb the hidden layer sizes, learning rate, dropout probability, and batch size.280

4Codes are in the supplementary materials. Codes are also available at
https://anonymous.4open.science/r/MRIV-Net-0AC4 (Upon acceptance, we replace the link and point
to a public GitHub repository).
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The results are shown in Fig. 4. We observe that the RMSE only changes marginally when perturbing281

the different hyperparameters, indicating that our method is to a certain degree robust against282

hyperparameter misspecification. Furthermore, our results indicate that the performance improvement283

of MRIV-Net over the baselines observed in our experiments is not due to hyperparameter tuning,284

but to our method itself.285
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Figure 4: Robustness checks for different hyperparameters of MRIV-Net.
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H Results for semi-synthetic data286

In the main paper, we evaluated MRIV-Net both on synthetic and real-world data. Here, we provide287

additional results by constructing a semi-synthetic dataset on the basis of OHIE. It is common practice288

in causal inference literature to use semi-synthetic data for evaluation, because it combines advantages289

of both synthetic and real-world data. On the one hand, the real-world data part ensures that the290

data distribution is realistic and matches those in practice. On the other hand, the counterfactual291

ground-truth is still available, which makes it possible to measure the performance of ITE methods.292

We construct our semi-synthetic data as follows: First, we extract the covariates X ∈ R5 and instru-293

ments Z ∈ {0, 1} of our OHIE dataset from Sec. D. Then, we construct the treatment components294

µA
i (x) via295

µA
1 (X) = 0.3 · σ(X1) + 0.7 and µA

0 (X) = 0.3 · σ(X1), (53)
where X1 is the (standardized) age and σ(·) is the sigmoid function. The outcome components are296

constructed via297

µY
1 (X) = 0.5X2

1 +

5∑
i=2

X2
i and µY

0 (X) = −0.5X2
1 +

5∑
i=2

X2
i . (54)

We then sample treatments A and outcomes Y as in Eq. (31) and Eq. (32). Lemma 7 ensures that298

µY
i (X) = E[Y | Z = i,X] and µA

i (X) = E[A | Z = i,X].299

Given the above, the oracle ITE becomes300

τ(X) =
X2

1

0.7
. (55)

Note that τ(X) is sparse in the sense that it only depends on age, while the outcome components301

depend on all five covariates. Following our theoretical analysis in Sec. B, MRIV-Net should thus302

outperform methods that aim at estimating the components directly. This is confirmed in Table 3,303

where we show the results for all baselines and MRIV-Net on the semi-synthetic data. Indeed, we304

observe that MRIV-Net outperforms all other baselines, confirming both the superiority of our method305

as well as our theoretical results under sparsity assumptions from Sec. B.306

Table 3: Results for semi-synthetic data.

Method n = 3000 n = 5000 n = 8000

(1) STANDARD ITE
TARNet [13] 1.66± 0.11 1.58± 0.07 1.57± 0.11
TARNet + DR [13, 8] 1.31± 0.28 1.22± 0.37 1.12± 0.15

(2) GENERAL IV
2SLS [19] 1.34± 0.06 1.31± 0.03 1.32± 0.02
KIV [14] 1.97± 0.10 1.92± 0.05 1.93± 0.05
DFIV [21] 1.67± 0.44 1.63± 0.47 1.45± 0.17
DeepIV [7] 1.24± 0.26 0.99± 0.22 0.84± 0.19
DeepGMM [1] 1.39± 0.03 1.37± 0.16 1.18± 0.16
DMLIV [15] 2.12± 0.10 2.09± 0.09 2.02± 0.11
DMLIV + DRIV [15] 1.22± 0.10 1.18± 0.19 1.00± 0.08

(3) WALD ESTIMATOR [16]
Linear 1.42± 0.24 1.28± 0.07 1.32± 0.07
BART 1.48± 0.24 1.29± 0.04 1.06± 0.13

MRIV-Net (network only) 1.11± 0.15 0.84± 0.14 0.95± 0.21
MRIV-Net (ours) 0.71 ± 0.24 0.75 ± 0.18 0.78 ± 0.26

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)
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I Results for cross-fitting307

Here, we repeat our experiments from the main paper but now make use of cross-fitting. Recall that,308

in Theorem 2, we assume that the nuisance parameter estimation and the pseudo-outcome regression309

are performed on three independent samples. We now address this through cross-fitting. To this end,310

our aim is to show that our proposed MRIV framework is again superior.311

For MRIV, we proceeded as follows: We split the sample D into three equally sized samples D1, D2,312

and D3. We then trained τ̂init(x), µ̂Y
0 (x), and µ̂A

0 (x) on D1, δ̂A(x) and π̂(x) on D2, and performed313

the pseudo-outcome regression on D3. Then, we repeated the same training procedure two times, but314

performed the pseudo-outcome regression on D2 and D1. Finally, we averaged the resulting three315

ITE estimators. For DRIV, we implemented the cross-fitting procedure described in [15]. For the316

DR-learner, we followed [8].317

The results are in Table H. Importantly, the results confirm the effectiveness of our proposed MRIV.318

Overall, we find that our proposed MRIV outperforms DRIV for the vast majority of base methods319

when performing cross-fitting. Furthermore, MRIV-Net is highly competitive even when comparing320

it with the cross-fitted estimators. This shows that our heuristic to learn separate representations321

instead of performing sample splits works in practice. In sum, the results confirm empirically that our322

MRIV is superior.323

Table 4: Results for base methods with different meta-learners (i.e., DRIV, and our MRIV) using
cross-fitting and results for MRIV-Net without cross-fitting.

n = 3000 n = 5000 n = 8000
hhhhhhhhhhhhhhBase methods

Meta-learners
DRIV MRIV (ours) DRIV MRIV (ours) DRIV MRIV (ours)

(1) STANDARD ITE
TARNet [13] 0.30 ± 0.02 0.36± 0.16 0.18± 0.06 0.16 ± 0.03 0.21± 0.08 0.13 ± 0.04
TARNet + DR-learner [13, 8] 0.85± 0.11 0.66± 0.08 0.67± 0.12

(2) GENERAL IV
2SLS [19] 0.42± 0.11 0.33 ± 0.09 0.20 ± 0.07 0.23± 0.11 0.24± 0.10 0.14 ± 0.02
KIV [14] 0.47± 0.18 0.45 ± 0.15 0.20± 0.06 0.19 ± 0.08 0.22± 0.04 0.15 ± 0.03
DFIV [21] 0.35± 0.05 0.28 ± 0.09 0.22± 0.10 0.18 ± 0.08 0.24± 0.12 0.16 ± 0.04
DeepIV [7] 0.38 ± 0.09 0.44± 0.16 0.20± 0.07 0.19 ± 0.07 0.20± 0.08 0.12 ± 0.02
DeepGMM [1] 0.42 ± 0.09 0.42 ± 0.16 0.19 ± 0.04 0.19 ± 0.07 0.22± 0.06 0.13 ± 0.02
DMLIV [15] 0.44 ± 0.09 0.46± 0.16 0.21± 0.04 0.19 ± 0.07 0.21± 0.05 0.14 ± 0.02

(3) WALD ESTIMATOR [16]
Linear 0.47± 0.23 0.36 ± 0.12 0.24± 0.05 0.20 ± 0.08 0.22± 0.05 0.15 ± 0.02
BART 0.43± 0.12 0.39 ± 0.12 0.14± 0.05 0.13 ± 0.05 0.23± 0.08 0.15 ± 0.02

MRIV-Net\w network only (ours) 0.35± 0.12 0.26 ± 0.11 0.19± 0.13 0.15 ± 0.03 0.18± 0.08 0.13 ± 0.03

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)
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