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Abstract

Recent works in adversarial robustness have
proposed defenses to improve the robustness of
a single model against the union of multiple
perturbation types. However, these methods still
suffer significant trade-offs compared to the
ones specifically trained to be robust against
a single perturbation type. In this work, we
introduce the problem of categorizing adversarial
examples based on their perturbation types. We
first theoretically show on a toy task that
adversarial examples of different perturbation
types constitute different distributions—making
it possible to distinguish them. We support
these arguments with experimental validation on
multiple ℓp attacks and common corruptions.
Instead of training a single classifier, we propose
PROTECTOR, a two-stage pipeline that first
categorizes the perturbation type of the input,
and then makes the final prediction using the
classifier specifically trained against the predicted
perturbation type. We theoretically show that at
test time the adversary faces a natural trade-
off between fooling the perturbation classifier
and the succeeding classifier optimized with
perturbation-specific adversarial training. This
makes it challenging for an adversary to
plant strong attacks against the whole pipeline.
Experiments on MNIST and CIFAR-10 show
that PROTECTOR outperforms prior adversarial
training-based defenses by over 5% when
tested against the union of ℓ1, ℓ2, ℓ∞ attacks.
Additionally, our method extends to a more
diverse attack suite, also showing large robustness
gains against multiple ℓp, spatial and recolor
attacks.

1 INTRODUCTION

Machine learning models have been shown to be vulnerable
to different types of adversarial examples—inputs with
a small magnitude of perturbation added to mislead the
classifier’s prediction [Szegedy et al., 2013]. Consequently,
many defenses have been proposed to improve their
robustness, a majority of which focus on achieving
robustness against a specific perturbation type [Goodfellow
et al., 2015, Madry et al., 2018, Kurakin et al., 2017,
Tramèr et al., 2018, Dong et al., 2018, Zhang et al.,
2019, Carmon et al., 2019]. However, as ML models get
adopted in real-world applications, it becomes important
for the defenses to be robust against different types of
perturbations given the flexibility of practical attackers. In
addition, prior work showed that when models are trained
to be robust against one perturbation type, the robustness
is typically not preserved against attacks of a different
type [Schott et al., 2018, Kang et al., 2019].

Motivated by the need for robustness against diverse
perturbation types, recent works have attempted to train
models that are robust against multiple perturbation
types [Tramèr and Boneh, 2019, Maini et al., 2020,
Laidlaw et al., 2021]. These works consider perturbations
restricted by their ℓp norms (p ∈ {1, 2,∞}) or spatial
and color transformations. The proposed methods improve
the overall robustness against multiple perturbation types.
However, when evaluating the robustness against each
individual perturbation type, the robustness of models
trained by these methods is still considerably worse
than those trained on a single perturbation type. Given
these empirical observations, in this work we aim to
answer: Are different types of perturbations separable?
Can we categorize them to improve robustness to multiple
adversarial perturbations?

To address these questions and explore the properties of
different perturbation types, we introduce the problem
of categorizing adversarial examples based on their
perturbation types. We present theoretical analysis on
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a toy task to show that when we add different types
of perturbations to benign samples of a given ground-
truth class, their new distributions are distinct and
separable. We experimentally validate our theoretical
results on both (mathematically) well-defined perturbation
regions such as ℓp balls, as well as various common
corruptions [Hendrycks and Dietterich, 2019]. We find that
deep networks are able to categorize different perturbation
types with high accuracy (> 95%). Further, our
perturbation classifier shows high generalization accuracy
(∼ 90%) to unseen common corruptions, i.e., correctly
predicting their categories (weather, noise, blur, or digital)
without training on them. While in this work we focus on
improving worst-case adversarial robustness, applications
of categorizing perturbation types extend beyond it—such
as detecting systematic distribution shifts (e.g. presence
of snow for self-driving cars [Michaelis et al., 2020]).
Further, using a perturbation classifier as the discriminator
may improve the effectiveness and variety of adversarial
examples produced by generative models [Wong and
Kolter, 2021, Xiao et al., 2018a, Song et al., 2018].

Based on our theoretical analysis, we propose PROTECTOR,
a two-stage pipeline that performs Perturbation Type
Categorization to Improve Robustness against multiple
perturbations. First, the top-level perturbation classifier
predicts the perturbation type of the input. Then, among
the second-level predictors, PROTECTOR selects the one
that is the most robust to the predicted perturbation type to
make the final prediction. We theoretically show that there
exists a natural tension between attacking the perturbation
classifier and the second-level predictors. Specifically,
strong attacks against the second-level predictors make
it easier for the perturbation classifier to predict the
adversarial perturbation type; on the other hand, fooling
the perturbation classifier requires planting weaker (or less
representative) attacks against the second-level predictors.
As a result, even an imperfect perturbation classifier
significantly improves the model’s overall robustness to
multiple perturbation types. We also supplement our
theoretical statements on the toy task with experimental
validation in the exact same setting.

Empirically1, we first show that the perturbation classifier
generalizes well on classifying a wide range of adversarial
perturbations. Then we compare PROTECTOR with recent
defenses against multiple attack types on MNIST and
CIFAR-10. Even though we do not utilize adversarial
training [Goodfellow et al., 2015] to train the perturbation
classifier, an ensemble of diverse perturbation classifiers
along with adding small noise to inputs help make
PROTECTOR robust against adaptive attacks. Specifically,
we combine predictions of perturbation classifiers that
classify adversarial examples in their image and Fourier

1Code for reproducing our experiments can be found at
https://github.com/sunblaze-ucb/adversarial-protector.

domains [Yin et al., 2019a]. This further increases the
tension between attacking top-level and second-level
components by reducing the space of successful adversarial
attacks. PROTECTOR outperforms prior approaches by
over 5% against the union of ℓ1, ℓ2 and ℓ∞ attacks.
From the suite of 15 different attacks tested, the average
improvement over all the attacks w.r.t. the state-of-art
baseline defense is ∼ 15% on both MNIST and CIFAR-
10. Training a model to be robust against multiple attacks
typically imposes a significant tradeoff against the accuracy
on benign samples, but PROTECTOR attains ∼ 7% greater
benign test accuracy on CIFAR-10 as compared to recent
works [Laidlaw et al., 2021, Maini et al., 2020]. We further
demonstrate how our defense naturally extends beyond
ℓp perturbation types, where we assess the robustness of
our model against the union of ℓ∞, ℓ2, spatial [Wong
et al., 2019, Xiao et al., 2018b] and recolor [Bhattad et al.,
2020, Laidlaw and Feizi, 2019] attacks on CIFAR-10. Our
defense exceeds the robustness of recent work [Laidlaw
et al., 2021] by over 13% against all attacks. In addition,
PROTECTOR provides the flexibility to plug in and integrate
new defenses against individual perturbation types into
the existing framework as second-level predictors, thus the
defense performance of PROTECTOR can be continuously
improved with the development of more advanced defenses
against single perturbation types.

2 RELATED WORK

Adversarial examples. Among the different types of
adversarial attacks studied in prior work [Szegedy et al.,
2013, Goodfellow et al., 2015, Madry et al., 2018,
Hendrycks et al., 2019, Bhattad et al., 2020], the majority
constrain the perturbation within a small ℓp region around
the original input. To improve model robustness in the
presence of such adversaries, most existing defenses
utilize adversarial training [Goodfellow et al., 2015],
which augments the training dataset with adversarial
examples. Till date, different variants of adversarial
training algorithms remain the most successful defenses
against adversarial attacks [Carmon et al., 2019, Zhang
et al., 2019, Wong et al., 2020, Rice et al., 2020, Wang
et al., 2020]. Other types of defenses include input
transformation [Guo et al., 2018, Buckman et al., 2018]
and network distillation [Papernot et al., 2016], but were
rendered ineffective under stronger adversaries [He et al.,
2017, Carlini and Wagner, 2017, Athalye et al., 2018,
Tramer et al., 2020].

Defenses against multiple perturbation types. Some
recent works have focused on defending against a union of
norm bounded ℓp attacks. Schott et al. [2018], Kang et al.
[2019] showed that models that were trained for a given
ℓp-norm bounded attack are not robust against attacks in a
different ℓq region. Schott et al. [2018] proposed the use of
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multiple variational autoencoders to achieve robustness to
multiple ℓp attacks on MNIST. Tramèr and Boneh [2019]
used simple aggregations of multiple adversaries to achieve
non-trivial robust accuracy against ℓ1, ℓ2, ℓ∞ attacks. Maini
et al. [2020] proposed MSD that takes gradient steps
in the union of multiple ℓp regions to improve multiple
perturbation robustness. Most recently, Laidlaw et al.
[2021] proposed a defense against unseen perturbations
using perceptual adversarial training. They evaluate their
work against ℓ∞, ℓ2, spatial, recolor adversaries.

Detection of adversarial examples. Multiple prior works
have focused on detecting adversarial examples [Feinman
et al., 2017, Lee et al., 2018, Ma et al., 2018, Cennamo
et al., 2020, Fidel et al., 2019, Yin et al., 2019b]. However,
most of these methods were rendered ineffective in the
presence of adaptive adversaries [Carlini and Wagner,
2017, Tramer et al., 2020]. In comparison, our work
focuses on a more challenging problem of categorizing
perturbation types. To this end, Yin et al. [2019a] proposed
the examination of Fourier transforms of adversarial
examples to determine the adversarial attack and corruption
types.

3 SEPARABILITY OF PERTURBATION
TYPES

In this section, we formally illustrate the setup of
perturbation categorization. In Theorem 1, we show the
existence of a classifier that can separate adversarial
examples belonging to different perturbation types. We
focus on ℓp attacks (that can be fully specified
mathematically) on a simplified binary classification task
for the convenience of theoretical analysis. However,
PROTECTOR can also improve the empirical robustness
of models trained on common image classification
benchmarks against both ℓp and non-ℓp attacks. We will
discuss the empirical examination in Section 6.

3.1 PROBLEM SETTING

Data distribution. We consider a distribution D of inputs
sampled from the union of two multi-variate Gaussian
distributions such that the input-label pairs (x, y) can be
described as:

y
u.a.r∼ {−1,+1},

x0∼N (yα, σ2), x1, . . . , xd
i.i.d∼ N (yη, σ2),

(1)

where x = [x0, x1, . . . , xd] ∈ Rd+1 and η = α√
d

. This
setting demonstrates the distinction between a feature x0

that is strongly correlated with the label, and d weakly
correlated features that are (independently) normally
distributed with the mean yη and the variance σ2. In our
work, we assume that α

σ > 10 (x0 is strongly correlated)

and d > 100 (remaining d features are weakly correlated,
but together represent a strongly correlated feature). This
setting was adapted from Ilyas et al. [2019], and more
discussion can be found in Appendix A.

Perturbation types. We focus our theoretical discussion
on adversaries constrained within a fixed ℓp region of radius
ϵp around the original input, for ℓp ∈ S = {ℓ1, ℓ∞}.
Such adversaries are frequently studied in existing work
for finding the optimal first-order perturbation for different
attack types. Let ℓ(·, ·) be the cross-entropy loss, and ∆S =∪

ℓp∈S ∆ℓp,ϵ for the ℓp threat model, ∆ℓp,ϵp , of radius ϵp.
Then, for a model fθ, the optimal perturbation δ∗ is given
by:

δ∗ = arg max
δ∈∆S

ℓ(fθ(x+ δ), y). (2)

3.2 SEPARABILITY OF ℓp PERTURBATIONS

Consider a classifier M trained with the objective of
correctly classifying inputs x ∈ D. The goal of the
adversary is to fool M by finding the optimal perturbation
δA ∀A ∈ S. The theorem below shows that the
distributions of adversarial inputs within different ℓp
regions can be separated with a high accuracy.

Theorem 1 (Separability of perturbation types). Given a
binary Gaussian classifier M trained on D, consider Dy

p to
be the distribution of optimal adversarial inputs (for a class
y) against M , within ℓp regions of radius ϵp, where ϵ1 =

α, ϵ∞ = α/
√
d. Distributions Dy

p (p ∈ {1,∞}) can be
accurately separated by a binary Gaussian classifier Cadv

with a misclassification probability Pe ≤ 10−24.

The proof sketch is as follows. We first calculate the
optimal weights of a binary Gaussian classifier M trained
on D. Accordingly, for any input x ∈ D, we find the
optimal adversarial perturbation δA ∀A ∈ {ℓ1, ℓ∞} against
M . We discuss how these perturbed inputs x + δA also
follow a normal distribution, with shifted means. Finally,
for data points of a given label, we show that Cadv is able to
predict the correct perturbation type with a very low error.
We present the formal proof in Appendix B.

4 PROTECTOR: PERTURBATION TYPE
CATEGORIZATION FOR
ROBUSTNESS

We illustrate the PROTECTOR pipeline in Figure 1.
PROTECTOR performs the classification task as a two-
stage process. Given an input, PROTECTOR first utilizes
a perturbation classifier Cadv to predict its perturbation
type. Then, based on the predicted type, PROTECTOR uses
the corresponding second-level predictor MA to provide
the final prediction, where MA is specially trained to be
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Figure 1: An overview of PROTECTOR. (a) The perturbation classifier Cadv categorizes representative attacks of different
types. (b) An illustration of the trade-off in Theorem 2. An adversarial example fooling Cadv (the ℓ∞ sample marked in
red) becomes weaker to attack the second-level MA models. Stronger or more representative attacks (marked green) are
correctly categorized.

robust against the attack A ∈ S . Formally, let fθ be the
PROTECTOR model, then:

fθ(x) = MA(x); s.t. A = argmaxCadv(x). (3)

4.1 ADVERSARIAL TRADE-OFF

In Section 3.2, we showed that the optimal perturbations of
different attack types belong to different data distributions,
and can be separated by a simple classifier. However,
in the white-box setting, the adversary has knowledge
of both the perturbation classifier (Cadv) and specialized
robust models (MA). This allows it to adapt the attack
to fool the entire pipeline instead of individual models
alone. To validate the robustness of PROTECTOR, we
provide a theoretical justification in Theorem 2, showing
that PROTECTOR naturally offers a trade-off between
fooling Cadv and the individual models MA. This makes it
difficult for adversaries to stage successful attacks against
PROTECTOR.

Note that there are some overlapping regions among
different perturbation constraints. For example, every
adversary could set δp = 0 as a valid perturbation, in which
case Cadv can not correctly classify all attacks. However,
such perturbations are not useful to the adversary, because
any MA can correctly classify unperturbed inputs with a
high probability. In the following theorem, we examine the
robustness of PROTECTOR in the presence of such strong
dynamic adversaries.

Theorem 2 (Adversarial trade-off). Given a data
distribution D, adversarially trained models Mℓp,ϵp , and
an attack classifier Cadv that distinguishes perturbations
of different ℓp attack types for p ∈ {1,∞}; the probability
of a successful attack by the strongest adversary over the

PROTECTOR pipeline is Pe < 0.01 for ϵ1 = α + 2σ and
ϵ∞ = α+2σ√

d
.

Here, the worst-case adversary refers to an adaptive
adversary that has full knowledge of the defense strategy.
In Appendix C.2, we discuss how ϵ1, ϵ∞ are set so that the
ℓ1 and ℓ∞ adversaries can fool Mℓ∞,ϵ∞ and Mℓ1,ϵ1 models
respectively with a high success rate. To prove Theorem 2,
we first show that when trained on D, an adversarially
robust model MA can achieve robust accuracy > 99%
against the attack type it was trained for, and < 2%
against an alternate attack. By “alternate” we mean that
for an ℓq attack, the prediction is made by the Mℓp,ϵp

model. Then, we analyze the modified distributions of the
inputs perturbed by different ℓp attacks. Based on this,
we construct a simple decision rule for the perturbation
classifier Cadv . Finally, we compute the perturbation
induced by the worst-case adversary. We show that there
exists a trade-off between fooling the Cadv (to allow the
alternate Mℓp,ϵp model to make the final prediction for an
ℓq attack ∀p, q ∈ {1,∞}; p ̸= q), and fooling the alternate
Mℓp,ϵp model itself. We provide an illustration of the trade-
off in Figure 1b, and a formal proof and experimental
validation on the toy task in Appendix C.

5 TRAINING AND INFERENCE

We now extend PROTECTOR to deep neural networks
trained on common image classification benchmarks.
Following prior work on defending against multiple
perturbation types, we evaluate on MNIST [LeCun et al.,
2010] and CIFAR-10 [Krizhevsky, 2012] datasets. Here,
we present the training details, the formulation of an
ensemble of perturbation classifiers, and adaptive white-
box attacks against PROTECTOR.
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Figure 2: (a) PCA for different adversarial perturbations
on MNIST. (b) Illustration of the effect of random
noise on generating adversarial examples. The notion
of small, large perturbations is only used to illustrate
the scenario in Figure 2b, and neither perturbation
region subsumes the other.

5.1 DATASET CREATION

To train our perturbation classifier Cadv , we create a dataset
that includes adversarial examples of different perturbation
types. We perform adversarial attacks against each of the
individual MA models used in PROTECTOR to curate the
training and test sets. In the case of ℓp examples, we use the
PGD attack [Madry et al., 2018], and for spatial [Xiao et al.,
2018b] and recolor [Laidlaw and Feizi, 2019] attacks, we
use their original attack formulation. The time for creating
the dataset against each MA is the same as running a single
epoch of adversarial training. Since most recent works
typically train their models for ∼200 epochs, the dataset
creation time is insignificant when compared with the cost
of training an MA model.

Combining perturbation types. When training
PROTECTOR to be robust against a set S of multiple
(k) attacks, we combine certain perturbation types under
the same label to improve the overall robustness. This is
beneficial when: (a) a specialized model MA also shows

a high degree of robustness to a different attack B ∈ S ,
s.t. A ̸= B; (b) two different attack types A,B ∈ S
have similar characteristics. For instance, in case of
ℓp attacks, we perform binary classification between
A = {{ℓ1, ℓ2}, ℓ∞}. We hypothesize that compared to ℓ∞
adversarial examples, ℓ1 and ℓ2 adversarial examples show
similar characteristics. To provide an intuitive illustration,
we randomly sample 10K adversarial examples generated
with PGD attacks on MNIST, and present their Principal
Component Analysis (PCA) in Figure 2a. We observe that
the first two principal components for ℓ1 and ℓ2 adversarial
examples are largely overlapping, while those for ℓ∞
are clearly from a different distribution.2 For the MNIST
dataset, we use the Mℓ2 ,Mℓ∞ models in PROTECTOR,
and we use Mℓ1 ,Mℓ∞ models for CIFAR-10. The choice
is made based on the robustness of {Mℓ2 ,Mℓ1} models
against {ℓ1, ℓ2} attacks respectively, as will be depicted in
Table 2. Similarly, when defending against the union of ℓp
and non-ℓp perturbation types on CIFAR-10, we classify
A = {{ℓ∞, ℓ2,ReColor}, StAdv} attacks based on the
robustness of each MA against every attack B ∈ S . We
report the robustness of PROTECTOR with varying number
of second-level predictors in Appendix J.3.

5.2 TRAINING

Past works [Maini et al., 2020, Tramèr and Boneh, 2019]
on robustness to multiple attack types require intensive
hyperparameter tuning to balance different attack types
when one attack is stronger than others. We find that a
similar phenomenon plagues the adversarial training (AT)
of Cadv . Therefore, we train Cadv over a static dataset,
which is fast and stable. Specifically, using a single GTX
1080Ti GPU, Cadv can be trained within 5 and 30 minutes
on MNIST and CIFAR-10 respectively (given that we
already have access to perturbation-specific robust models).
On the other hand, training state-of-the-art models robust
to a single perturbation type requires up to 2 days to train
on the same amount of GPU power, and existing defenses
against multiple (k) perturbation types take k times as
long as the training time for robustness against a single
perturbation type. Instead, even when the individual MA
are unavailable, we can train the k models in parallel to
improve training speed.

A key advantage of PROTECTOR’s design is that it can build
upon existing defenses against individual perturbation
types. Specifically, we leverage the adversarially trained
models developed in prior work [Zhang et al., 2019,
Carmon et al., 2019] as MA models in our pipeline. The
architecture of Cadv is also similar to a single MA model.
See Appendix D for more details.

2The visualization only serves as motivation. It does not
suggest that ℓ1, ℓ2 examples are not separable.



5.3 INFERENCE PROCEDURE

Ensemble of diverse perturbation classifiers. While
Cadv learns the ability to distinguish between different
attack types, it is not immune to the presence of
adaptive adversaries that try to fool Cadv and the MA
models together. To improve model robustness against
such adversaries, we attempt to increase the trade-off in
PROTECTOR that was described in Section 4.1. We use an
ensemble (average of prediction logits) of two perturbation
classifiers that classify adversarial examples in different
domains – via the Fourier and image domains.3 Owing
to this diversity, the classification landscape of each Cadv

is different. Intuitively, the trade-off between fooling the
two stages of PROTECTOR confines the adversary in a very
small region for generating successful adversarial attacks
when using an ensemble of perturbation classifiers. In
Appendix G, we show how the adversarial examples can be
visually separated in the Fourier domain [Yin et al., 2019a]
and discuss further implementation details of the ensemble.

Constraining the adversary using random noise. While
past work has [Hu et al., 2019] suggested that adding
random noise does not help defend against adversarial
inputs, it is the unique exhibition of the trade-off described
in Theorem 2 that adversarial attacks against PROTECTOR,
on the contrary, are likely to fail when added with random
noise. Intuitively, the trade-off between fooling the two
stages of PROTECTOR confines the adversary in a very
small region for crafting successful attacks.

Consider the illustrative example in Figure 2b. The input
(x, y = 0) is subjected to an ℓ∞ attack. Assume that
the Mℓ∞,ϵ∞ model is a perfect classifier for adversarial
examples within a fixed ϵ∞ region. The dotted line
shows the decision boundary for Cadv , which correctly
classifies inputs subjected to ℓ∞ perturbations δ′′ as ℓ∞
attacks (green), but misclassifies samples with smaller
perturbations. When the adversary adds a large perturbation
δ′′, the prediction of Mℓ1 for the resulted input x′′ becomes
wrong, but the perturbation classifier also categorizes it as
an Mℓ∞ attack, thus the final prediction of PROTECTOR
is still correct since it will be produced by M∞,ϵ∞ model
instead. On the other hand, when the adversary adds a small
perturbation δ′ to fool the perturbation classifier, adding
a small amount of random noise can recover the correct
prediction with a high probability. Note that every point on
the boundary of the noise region (yellow circle) is correctly
classified by the pipeline. In this way, adding random
noise exploits an adversarial trade-off for PROTECTOR to
achieve a high accuracy against adversarial examples, in
the absence of adversarial training. In our implementation,
we sample random noise z ∼ N (0, I), and add ẑ = ϵ2 ·
z/|z|2 to the model input.

3Adversaries can still back-propagate through the Fourier
transformation steps.

5.4 ADAPTIVE ATTACKS AGAINST
PROTECTOR

Gradient propagation. Since the final prediction in
Equation 3 only depends on a single MA model, the
pipeline does not allow gradient flow across the two levels.
This can make it difficult for gradient-based adversaries to
attack PROTECTOR. Therefore, we utilize a combination of
predictions from each individual MA model by modifying
fθ(x) in Equation 3 as follows:

c = softmax(Cadv(x));

fθ(x) =
∑
A∈S

cA ·MA(x),
(4)

where cA denotes the probability of the input x
being classified as the perturbation type A by Cadv .
Equation 4 is only used for the purpose of generating
adversarial examples and performing gradient-based attack
optimization. For consistency, we still use Equation 3 to
compute the model prediction at inference (final forward-
propagation). We do not see any significant performance
advantages of either choice during inference, and briefly
report a comparison in Appendix I.1.

Separately attacking Cadv and MA. We also experiment
with other strategies of aggregating the predictions of
different components, e.g., tuning the loss to balance direct
attacks on Cadv and each MA model. We find that this
attack formulation performs worse than attacking the entire
pipeline with Equation 4. We provide a discussion on this
attack in Appendix I.

6 EXPERIMENTS

In this section, we present our results on MNIST and
CIFAR-10 datasets, both for the perturbation classifier
Cadv alone, and for the entire PROTECTOR pipeline.

6.1 PERTURBATION CATEGORIZATION BY Cadv

Categorizing ℓp perturbations. First, we justify our
choice of ϵp radii by empirically quantifying the
overlapping regions of different types of adversarial attacks.
We observe that the empirical overlap is exactly 0% in
all cases on both MNIST and CIFAR-10, and we present
the full analysis in Appendix H.1. We then evaluate
the categorization performance of Cadv on a dataset of
adversarial examples which are generated against the six
models we use as the baseline defenses in our experiments.
Note that Cadv is only trained on adversarial examples
against the two MA models that are part of PROTECTOR.

Next, we evaluate the test set generalization across
the various datasets created. We observe that Cadv

transfers well across the board. First, Cadv generalizes to



Table 1: Generalization results when Cadv is trained on
different Noise, Blur, Weather and Digital corruptions
(Severity=5). Test is performed on Speckle Noise +
Gaussian Blur + Spatter + Saturate.

Trained On Accuracy
Impulse + Defocus Blur + Snow + Brightness 70.4%
+ Gaussian + Glass Blur + Fog + Contrast 80.1%
+ Shot + Motion Blur + Frost + Elastic Trans 85.6%
+ Zoom Blur + JPEG Compression + Pixelate 93.5%
+ Speckle + Gaussian Blur + Spatter + Saturate 99.8%

adversarial examples against new models, i.e., it preserves
a high accuracy, even if the adversarial examples are
generated against models that are unseen during training.
Further, Cadv also generalizes to new attack algorithms.
As discussed in Section 5.1, we only include PGD
adversarial examples in our training set for Cadv . However,
on adversarial examples generated by the AutoAttack
library, the classification accuracy of Cadv still holds
up. In particular, the accuracy is > 95% across all the
individual test sets created. These results suggest two
important findings that validate our results in Theorem 1
— independent of (a) the model to be attacked; and
(b) the algorithm for generating the optimal adversarial
perturbation, the optimal adversarial images for a given
ℓp region follow similar distributions. We present the full
results in Appendix H.2.

Categorizing common corruptions. CIFAR-10-C is a
benchmark consisting of 19 different types of common
corruptions [Hendrycks and Dietterich, 2019]. For each
image in the original CIFAR-10 test set, CIFAR-10-C
includes images with different corruptions. To train the
corruption classifier, we split CIFAR-10-C, so that each
corruption type has 9K training samples, and 1K for testing.
For corruptions of the highest severity, we observe that
our corruption classifier achieves greater than 99% test
accuracy on the test split. Details about the architecture
are deferred to Appendix D. This demonstrates that our
perturbation classifier is applicable to both ℓp adversarial
perturbations and semantic common corruptions. We
discuss detailed results of corruption classification at
various severity levels in Appendix H.3.

Generalization to unseen corruptions. We further
evaluate the generalization of the perturbation classifier
to unseen corruption types. Specifically, different from
the above setting of classifying corruption types, now
our classifier categorizes all corruption types into 4
categories — noise, blur, digital, and weather (as defined
in the CIFAR-10-C benchmark). We evaluate the model
performance on 4 held-out corruption types, 1 for each
category, and select these corruption types following the
model validation setting in Hendrycks and Dietterich
[2019]. From the remaining 15 corruption types, we vary

the number of corruptions included for training, and
present the results in Table 1. We observe that even if
we do not train the perturbation classifier on the same
corruption types for testing, the classifier still obtains
a high generalization accuracy (> 90%). These results
demonstrate that perturbation classification is effective
even for unseen perturbations.

6.2 ROBUSTNESS TO ℓp ATTACKS

Baselines. We compare PROTECTOR with the state-of-
art defenses against the union of ℓ1, ℓ2, ℓ∞ adversaries.
For Tramèr and Boneh [2019], we compare two variants
of adversarial training: (1) the MAX approach, where
for each image, among different perturbation types, the
adversarial sample that leads to the maximum increase
of the model loss is augmented into the training set;
(2) the AVG approach, where adversarial examples
for all perturbation types are included for training.
We also compare with MSD [Maini et al., 2020],
which modifies the standard PGD attack to incorporate
the union of multiple perturbation types within the
steepest decent. In addition, we evaluate Mℓ1 ,Mℓ2 ,Mℓ∞

models trained with ℓ1, ℓ2, ℓ∞ perturbations separately, as
described in Appendix D.

Attack evaluation. We evaluate against the strongest
attacks in the adversarial examples literature, and with
adaptive attacks specifically designed for PROTECTOR
(Section 5.4). We perform standard PGD attacks along
with attacks from the AutoAttack library [Croce and
Hein, 2020], which achieves the state-of-art adversarial
error rates against multiple recently published models.
The radius of the {ℓ1, ℓ2, ℓ∞} perturbation regions is
{10, 2, 0.3} for the MNIST dataset and {10, 0.5, 0.03}
for the CIFAR-10 dataset. We present the full details of
attack algorithms in Appendix F.

Following prior work, we evaluate models on adversarial
examples generated from the first 1000 images of the test
set for MNIST and CIFAR-10. Our main evaluation metric
is the accuracy on all attacks – a given input is a failure
case if any of the attack algorithm in our suite successfully
fools the model.

Results. In Table 2, we summarize the worst-case
performance against all attacks of a given perturbation type
for MNIST and CIFAR-10 datasets. In particular, “Ours”
denotes the robustness of PROTECTOR against the adaptive
attacks described in Section 5.4, and “Ours*” denotes the
robustness of PROTECTOR against standard attacks based
on Equation 3. The adaptive strategy effectively reduces the
overall accuracy of PROTECTOR by 2 − 5%, showing that
incorporating the gradient and prediction information of all
second-level predictors results in a stronger attack.

PROTECTOR outperforms all baselines by 6.4% on MNIST,



Table 2: Worst-case accuracies against different ℓp attacks: (a) MNIST; (b) CIFAR-10. Ours represents PROTECTOR against
the adaptive attack strategy (Eq 4), and Ours* is the standard setting.

MNIST Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Clean accuracy 99.2% 98.7% 98.8% 98.6% 99.1% 98.3% 98.9% 98.9%
ℓ∞ attacks (ϵ = 0.3) 90.2% 2.6% 0.0% 39.0% 57.8% 63.5% 78.1% 79.0%
ℓ2 attacks (ϵ = 2.0) 9.5% 72.3% 47.8% 58.5% 58.6% 65.7% 66.6% 72.3%
ℓ1 attacks (ϵ = 10) 18.8% 70.6% 77.5% 41.8% 46.1% 64.3% 68.1% 72.5%
All attacks 7.3% 2.6% 0.0% 29.1% 37.1% 57.2% 63.6% 67.2%

(a)

CIFAR-10 Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Clean accuracy 89.5% 93.9% 89.0% 81.0% 84.6% 81.7% 89.0% 89.0%
ℓ∞ attacks (ϵ = 0.03) 59.3% 34.8% 35.0% 34.9% 39.7% 43.7% 56.1% 58.4%
ℓ2 attacks (ϵ = 0.5) 64.6% 77.2% 71.5% 61.8% 65.5% 64.5% 69.3% 69.4%
ℓ1 attacks (ϵ = 10) 27.6% 45.3% 60.9% 43.7% 60.0% 56.1% 57.9% 59.5%
All attacks 27.6% 32.9% 35.0% 31.5% 39.3% 43.5% 53.5% 54.9%

(b)

Table 3: Worst-case accuracies against ℓ∞ (ϵ = 0.003), ℓ2 (ϵ = 0.5), spatial and recolor attacks. Ours represents
PROTECTOR against the adaptive attack strategy (Eq 4), and Ours* is the standard setting. PAT [Laidlaw et al., 2021] is
trained using perceptual adversarial training.

CIFAR-10 Mℓ∞ Mℓ2 MStAdv MReColor MAX AVG PAT Ours Ours*
Clean acc. 89.5% 93.9% 86.2% 93.4% 84.0% 86.8% 71.6% 89.5% 89.5%
ℓ∞ attacks 59.3% 34.8% 0.1% 8.5% 25.8% 42.1% 29.8% 58.2% 59.1%
ℓ2 attacks 64.6% 77.2% 10.0% 34.8% 44.2% 64.8% 54.1% 57.0% 57.2%
StAdv 5.7% 0.2% 68.9% 0.0% 46.2% 27.8% 58.4% 50.4% 55.7%
ReColor 85.5% 84.0% 52.1% 86.8% 77.4% 80.5% 70.9% 85.2% 85.3%
All attacks 5.4% 0.2% 0.1% 0.0% 24.0% 21.5% 27.8% 40.9% 41.9%

and 10% on CIFAR-10 in terms of the all attacks metric,
even when evaluated against a strong adaptive adversary.
Compared to the previous state-of-art defense against
multiple perturbation types (MSD), the accuracy gain
on ℓ∞ attacks is especially notable, i.e., around 15%.
In particular, if we compare the performance on each
individual attack algorithm, as shown in Appendix J.1
and J.2 for MNIST and CIFAR-10 respectively, the average
accuracy gain is ∼ 15% for both datasets. These results
demonstrate that PROTECTOR considerably mitigates the
trade-off in the accuracy for individual attacks. Further,
PROTECTOR retains a 7% higher CIFAR-10 accuracy on
clean images, as opposed to past defenses that sacrifice
benign accuracy for robustness to multiple perturbation
types.

6.3 ROBUSTNESS TO NON-ℓp ATTACKS

We demonstrate how PROTECTOR can be extended
to perturbation types beyond those restricted to ℓp
types. Laidlaw et al. [2021] evaluate the robustness
of various adversarial defenses against attacks A ∈
S = {ℓ2, ℓ∞, StAdv,ReColor} on CIFAR-10. We directly

compare PROTECTOR with the pre-trained models for
each individual defense provided in their work. This
includes their defense based on perceptual adversarial
training (PAT) and the MAX, AVG models, along with
perturbation-specific robust models MA. Specifically, as
discussed in Section 5.1, we train a perturbation classifier
that classifies adversarial examples as belonging to one of
the two classes: {{ℓ∞, ℓ2,ReColor}, StAdv}. We use two
individual robust predictors: {Mℓ∞ ,MStAdv}. The choice
is once again made based on the robust accuracy of
Mℓ∞ models against {ℓ∞, ℓ2,ReColor} attacks as also
presented in Table 3. This ability to combine attacks also
represents positively on the scalability of PROTECTOR.
PROTECTOR improves by 13.1% against the union of
all attacks. Importantly, PROTECTOR preserves a high
accuracy against benign samples, whereas PAT classifies
only 71.6% of unperturbed samples correctly, which makes
it difficult to adopt it in real-world settings.

7 CONCLUSION

In this work, we introduce the problem of categorizing
perturbation types. We theoretically demonstrate that



adversarial inputs of different attack types are separable,
and empirically validate our claims on different ℓp and
non-ℓp attacks. In addition to categorizing them with high
accuracy, the perturbation categorizer also generalizes to
unseen corruptions of the same category.

PROTECTOR performs perturbation type categorization
to achieve robustness against the union of multiple
perturbation types. We theoretically examine the existence
of a natural tension for any adversary trying to
fool our model—between fooling the attack classifier
and the specialized robust predictors. Our empirical
results on MNIST and CIFAR-10 datasets complement
our theoretical analysis, showing that PROTECTOR
outperforms existing defenses against multiple ℓp and non-
ℓp attacks by over 5%, while showing gains of over ∼ 15%
on average and clean accuracy metrics.

Our work serves as a stepping stone towards the goal
of universal adversarial robustness, by dissecting multiple
adversarial objectives into individually solvable pieces and
combining them via PROTECTOR. In its present form,
PROTECTOR requires the knowledge of each individual
attack type that we want to be robust against—to train
the perturbation classifier. This limitation opens up various
avenues for future work, including the new problem
of perturbation categorization by defining sub-classes of
adversarial attack types, and training generative models
to synthesize diverse perturbations.
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