
Appendix
A Additional Related Work

Train with global information, test with local one. Utilizing global information to reduce the
complexity of imperfect-information games has also been investigated in some works. For example,
AlphaStar [26], a grand-master level AI system for StarCraft II. In their implementation, the value
network of the agent can observe the full information about the game state, including those that are
hidden from the policy. They argue that such a training style improves training performance. In our
work, we formulate the idea as Perfect-Training-Imperfect-Execution (PTIE) or perfect information
distillation technique for imperfect-information games, and show the effectiveness on complicated
card games like DouDizhu. Moreover, in Suphx [15], a strong Mahjong AI system, they used a
similar method namely oracle guiding. Particularly, in the beginning of the training stage, all global
information is utilized; then, as the training goes, the additional information would be dropped out
slowly to none, and only the information that the agent is allowed to observe is reserved in the
subsequent training stage. However, there are obvious difference between Suphx and PerfectDou.
In Suphx, the perfect information is used by the actor and thus has to be dropped before the inference
stage; on the contrary, PerfectDou feeds the critic with additional observations and distill the global
information to the actor. Beyond games, Fang et al. [6] worked on trading for order execution and
proposed a different technique using global information other than PTIE, which trained a student
policy with imperfect (real) market information and policy distillation from a teacher policy trained
with perfect (oracle) market information.

Relation to sample-based CFR. CFR aims to minimize the total regret of policy by minimizing
the cumulative counterfactual regret in each infoset. The definition of regret highly relates to the
definition of advantage used in RL community, which has been shown in lots of previous works
[23, 7]. Vanilla CFR [35] and many variants [27, 2] apply model-based approach to calculated all
the weights of the game tree to update and obtain a good strategy (policy). However, when the
game has long episodes and is hard for searching across the game tree, it is necessary to compute
through trajectory samples, called sampled-based CFR methods [24, 8]. This resembles the learning
procedure of RL algorithms. Recently, Fu et al. [7] proposed a new form of sample-based CFR
algorithm, and shown that PPO is exactly a practical implementation of it (but not PTIE), revealing
close connections between CFR and RL.

B More About DouDizhu

B.1 Term of Categories

In the work of Zha et al. [31], they had shown a comprehensive introduction of DouDizhu game,
so we think it may be wordy to repeat the stereotyped rules. However, for better understanding
the cases shown in this paper, we introduce the typical term of categories in DouDizhu that are
commonly used as follows. Note that all cards can suppress the cards in the same category with a
higher rank, yet bomb can suppress any categories except the bomb with a higher rank. Rocket is
the highest-rank bomb. Kicker refer to the unrelated or useless cards that players can deal out when
playing some kind of categories of main cards (see below), which can be either a solo or a pair.

1. Solo : Any single card.
2. Pair : Two matching cards of equal rank.
3. Trio : Three individual cards of equal rank.
4. Trio with Solo : Three individual cards of equal rank with a Solo as the kicker.
5. Trio with Pair : Three individual cards of equal rank with a Pair as the kicker.
6. Chain of Solo : Five or more consecutive individual cards.
7. Chain of Pair : Three or more consecutive Pairs.
8. Chain of Trio (Plane) : Two or more consecutive Trios.
9. Plane with Solo: Two or more consecutive Trios with each has a distinct individual kicker

card and Plane as the main cards.

13

10. Quad with Solo : Four-of-a-kind with two Solos as the kicker and Four-of-a-kind as the
main cards.

11. Quad with Pair : Four-of-a-kind with a set of Pair as the kicker and Quad with Pair as the
main cards.

12. Quad with Pairs : Four-of-a-kind with two sets of Pair as the kicker and Quad with Pairs
as the main cards.

13. Bomb : Four-of-a-kind.

14. Rocket : Red and black jokers.

B.2 Scoring Rules

In Zha et al. [31], they pay more attention to the win/lose result of the game but care less about the
score. However, in real competitions, players must play for numbers of games and are ranked by
the scores they win. And that is why we think ADP is a better metric for evaluating DouDizhu AI
systems because a bad AI player can win a game with few scores but lose with much more scores.

Specifically, in each game, the Landlord and the Peasants have base scores of 2 and 1 respectively.
When there is a bomb shown in a game, the score of each player doubles. For example, a Peasant
player first shows a bomb of 4 and then the Landlord player suppresses it with a rocket, then the
base score of each Peasant becomes 4 and the Landlord becomes 8. A player will win all his scores
after winning the game, or loses all of them vice versa.

C Additional System Design Details

C.1 Card Representation Details

In the system of PerfectDou, we augment the basic card in hand matrix with explicitly encoded card
types as additional features, in order to allow the agent realizing the different properties of different
kind of cards. The size details are shown in Tab. 5.

Table 5: Card representation design.
CARD MATRIX FEATURE SIZE

CARD IN HAND 4× 15
SOLO 1× 15
PAIR 1× 15
TRIO 1× 15

BOMB 1× 15
ROCKET 1× 15

CHAIN OF SOLO 1× 15
CHAIN OF PAIR 1× 15
CHAIN OF TRIO 1× 15

C.2 Action Feature Details

Table 6: Action feature design.
FEATURE DESIGN SIZE

CARD MATRIX OF ACTION 12× 15
IF THIS ACTION IS BOMB 1

IF THIS ACTION IS THE LARGEST ONE 1
IF THIS ACTION EQUALS THE NUMBER OF LEFT PLAYER’S CARDS IN HAND 1

IF THIS ACTION EQUALS THE NUMBER OF RIGHT PLAYER’S CARDS IN HAND 1
THE MINIMUM STEPS TO PLAY-OUT ALL LEFT CARDS AFTER THIS ACTION PLAYED 1

The action features are a flatten matrix from 12× 15 action card matrix plus 1× 6 extra dimensions
describing the property of the cards as shown in Tab. 6. Since the number of actions in each game
state varies, which can lead to different lengths of action features, a fixed length matrix is flattened
to store all action features where the non-available ones are marked as zero.

14

C.3 Value Network Structure

The value network of PerfectDou is designed to evaluate the current situation of players, and we
expect that the value function can utilize the global information, in other words, know the exact
node the player is in. Therefore, we should feed additional information that the policy is not allowed
to see in our design. Specifically, as shown in Fig. 6, the imperfect feature for indistinguishable
nodes is encoded using the shared network as in the policy network; besides, we also encode the
perfect feature of distinguishable nodes that the policy cannot observe during its game playing. The
encoded vector are then concatenated to a simple MLP to get the scalar value output.

0 1 0 0 2

LSTM

M
LPs

ImPerfect Feature

Encode
Flatten &
Concat

History hands

Encode

Game State

Concat

0 1 0 0 2

Encode

Flatten &
Concat

Game State

Perfect Feature

Value

Figure 6: The value network structure of the proposed PerfectDou system. The network predicts values using
both the imperfect feature and the perfect feature and distill the knowledge into the policy in the training.

D Experiments

D.1 Setups, Hyperparameters and Training Details

In our implementation, a small distributed training cluster is built using 880 CPUs cores and 8 GPUs.
Horovod [20] is used to synchronize gradients between GPUs, the total batch size is 1024, 128 for
each GPU. The most important hyperparameters in our experiment are shown in Tab. 7. Specifically,
in our design, we simplify the discrete action space from 27472 (include all possible combinations)
into an abstract action space of 621 for learning the actor, followed by an decoding strategy to get
the final action (see Appendix E.2 for more details).

During self-play training, we find a better practical solution for DouDizhu is to keep three different
models for Landlord and two Peasants separately which is only updated by their own data against
the latest opponent model. In the main training stage, the total reward function will be a basic
reward (in this paper we use ADP all the time) augmented with the designed oracle reward as shown
in Section 4.4, which is found to be extremely useful for accelerating convergence. In the final stage,
the oracle reward is removed and only the ADP reward is used to fine-tune the model for reaching a
better performance measured by the ADP metric.

D.2 In-Depth Statistical Analysis

In our experiments, we find that DouZero is leaky and unreasonable in many battle scenarios, while
PerfectDou performs better therein. To quantitatively evaluate whether PerfectDou is stronger and
more reasonable, we conduct an in-depth analysis and collect the statistics among the games between
DouZero and PerfectDou. Particularly, we organize games between PerfectDou and Douzero to
play in different roles for 100,000 decks in each setting. Since the roles are assigned randomly
instead of opting by agents themselves in our experiments, and the Landlord has a higher base score
with three extra cards, we observe that playing as a Landlord is always harder to win and leads to
negative ADPs. From the statistics shown in Tab. 8, we learn many lessons about the rationality
of PerfectDou: (i) when playing as the Landlord, PerfectDou plays fewer bombs to avoid losing

15

Table 7: Hyperparameters. ∗ refers to the maximum version gap allowed between the models used for sampling
and training.

Learning rate 3e-4
Optimizer Adam
Discount factor γ 1.0
λ of GAE 0.95
Step of GAE 24 (8 for each player)
Batch size 1024
Entropy weight of PPO 0.1
Length of LSTM 15 (5 for each player)
Max model lag∗ 1
Intermediate reward scale 50
Policy MLP hidden sizes [256, 256, 256, 512]
Policy MLP output size (action space size) 621
Value MLP hidden sizes [256, 256, 256, 256]
Value MLP output size 1

Table 8: Average per game statistics of important behaviors over 100k decks: Game Len is the average number
of rounds in a game; % Bomb represents the average percentage of bombs (a type of card can suppress any
categories except the bomb with a higher rank, see Appendix B) played in the game; Left and Right are the
relative position to the Landlord; and Landlord Control Time measures the number of rounds that the
landlord plays an action suppressing all other players.

Landlord Agent WP ADP Game Len %Bomb of Left Peasant %Bomb of Landlord %Bomb of Right Peasant Landlord Control Time Peasant Agent

PerfectDou (2.5e9) 0.446 -0.407 33.347 68.05 28.46 74.90 12.993 DouZero (∼1e10)DouZero (∼1e10) 0.421 -0.461 33.911 66.24 28.73 75.29 9.005

PerfectDou (2.5e9) 0.387 -0.608 31.157 66.13 26.67 79.68 10.518 PerfectDou (2.5e9)DouZero (∼1e10) 0.360 -0.686 31.267 64.80 26.72 79.29 7.123

scores and tends to control the game even the Peasants play more bombs; (ii) when playing as the
Peasant, two PerfectDou agents cooperate better with more bombs to reduce the control time of the
Landlord and its chance to play bombs; (iii) when playing as the Peasant, the right-side Peasant
agent (play after the Landlord) of PerfectDou throws more bombs to suppress the Landlord than
DouZero, which is more like human strategy.

D.3 Case Study: Behavior of DouZero vs PerfectDou

In this section, we list some of the observations during the games for comparing the behavior of
DouZero and PerfectDou to qualitatively support our analysis.

DouZero is more aggressive but less thinking. The first observation is that DouZero is extremely
aggressive without considering the left hands. For instance, as shown in Fig. 7(a), in the beginning
DouZero chooses a chain of solo but leaves the pair of 3, which can be dangerous since the pair of
3 is the one of the minimum cards and cannot suppress any card; Fig. 7(b) illustrates another strong
case, where DouZero also chooses a chain of solo to suppress the opponent without considering
the consequence of leaving a hand of solos. On the contrary, PerfectDou is more conservative and
steady. We believe the proposed perfect information distillation mechanism helps PerfectDou to
infer global information in a more reasonable way.

PerfectDou is better at guessing and suppressing. We observe another fact that the usage of
perfect information distillation within the PTIE framework benefits PerfectDou a lot by suppressing
the opponents in advance. In Fig. 7(c) shows a case when the teammate puts a pair of T 5, DouZero
chooses to pass; on the contrary, PerfectDou chooses suppressing by a pair of Q – the minimal pair
of the Landlord.

PerfectDou is better at card combination. In the battle shown in Fig. 7(d), PerfectDou shows
the better ability on the strategy of card combination. Specifically, PerfectDou chooses to split the
plane (999, TTT since it considers there is a chain of solo (9TJQK) left. However, DouZero only

5We denote T (en) as the card 10 for simplicity.

16

Peasant Pe
as

an
t

Landlord

Last hand: NULL

PerfectDou DouZero

(a) Case study: DouZero is more aggressive
by choosing a chain of solo in the beginning
but leaves the pair of 3 in the hand.

Peasant L
an

dl
or

d

Peasant

Last hand: Landlord

PerfectDou DouZero

(b) Case study: DouZero is more aggressive
by suppressing the Landlord but less thinking
on the consequence of the left hands of solos.

Peasant

L
an

dl
or

d

Peasant

Last hand: Peasant

PerfectDou DouZero

(c) Case study: the teammate shows a pair of
T and DouZero chooses to pass; on the con-
trary, PerfectDou chooses suppressing by a
pair of Q – the minimal pair of the opponent.

Peasant Pe
as

an
t

Landlord

Last hand: NULL

PerfectDou DouZero

(d) Case study: PerfectDou chooses to split
the plane (999, TTT) since it considers there
is a chain of solo (9TJQK) left.

L
andlord Pe

as
an

t

Peasant

Last hand: Landlord

PerfectDou DouZero

(e) Case study: DouZero splits the rocket bomb while
PerfectDou chooses to keep it.

Figure 7: Case studies.

takes the trio, which will be easily suppressed by the opponent. This benefits from the proper design
of the card representation and the action feature of PerfectDou.

PerfectDou is more calm. Fig. 7(e) depicts a typical and interesting scenario where PerfectDou
shows its calm and careful consideration over the whole. In the game, the last hand is of the Landlord
with a solo 2, and it only has 8 cards left in the hand. DouZero seems afraid and splits the rocket

17

bomb; however, PerfectDou benefits from the advantage reward design and is calm considering there
is a greater chance on winning the game with a higher score by keeping the bomb.

D.4 Battle Results Against Skilled Human Players

We further invite some skilled human players to play against PerfectDou. Particularly, each human
player plays with two AI players. In other words, each game is involved with either two AI Peasants
against one human Landlord, or one AI Peasant cooperating with one human Peasant against one
AI Landlord. The results are shown in Tab. 9. One can easily observe that PerfectDou takes evident
advantage during the game.

Table 9: Battle results against skilled human players for 1260 episodes of game.

A
B Skilled human

WP ADP

PerfectDou (2.5e9) 0.625 0.590

D.5 Additional Training Results

0.0 0.5 1.0 1.5 2.0 2.5
1e9

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50

WP
ADP

Figure 8: Learning curves of WP and ADP against the final model of DouZero w.r.t. timesteps for PerfectDou.
Every evaluation contains 10,000 decks. PerfectDou is able to beat DouZero without considering the scores at
the beginning of the training, around 1.5e6 steps.

Fig. 8 shows the learning curves of WP and ADP against DouZero for PerfectDou with a single
run, and every evaluation contains 10,000 decks. As shown in the figure, PerfectDou can easily beat
DouZero (on WP) without considering the scores (ADP) at the beginning of the training; but after
1.5e9 steps of training, PerfectDou is able to fully beat DouZero (both WP and ADP).

D.6 Extended Competition against DouZero

Cycling Different Hands for the Landlord. In our main competition conducted in Section 6.2, all
games are randomly generated and played twice with the same assigned hand cards for the Landlord,
once each algorithm controlling the Landlord and once two Peasants. In this section, we test cycling
the 3 hand cards of every randomly generated game for the Landlord, and test PerfectDou against
DouZero by controlling the Landlord separately, which leads to 6 times of battle. In this situation,
we obtain the results as follows showing that PerfectDou has consistent advantage (Tab. 10).

Table 10: Results of cycling different hands for Landlord by playing 100k decks.

A
B PerfectDou DouZero

WP ADP

PerfectDou - - 0.544 0.150
DouZero 0.456 -0.150 - -

Peasants Paired with Different AIs. We also include an interesting battle by pairing the peas-
ants with different algorithms. Specifically, DouZero or PerfectDou plays the Landlord while one
Peasant is assigned with DouZero and the other Peasant is played by PerfectDou. The results are
concluded in Tab. 11, which reveal that when playing as the peasant, PerfectDou can better coop-
erate with its teammate than DouZero. And when playing as the landlord, PerfectDou outperforms
DouZero against all types of opponents.

18

Table 11: Results of battles that the Peasants are paired with different AIs by 100k decks and 6 times of battle
per deck. The results are evaluated from the Landlord side.

Landlord
Peasant PerfectDou + DouZero PerfectDou DouZero

WP ADP WP ADP WP ADP

PerfectDou 0.424 -0.448 0.389 -0.606 0.452 -0.375
DouZero 0.395 -0.534 0.363 -0.676 0.421 -0.465

D.7 Complete Tournament Results of ADP for Landlord and Peasants

We report the complete tournament results of ADP and WP for Landlord and Peasants in Tab. 12
and Tab. 13. PerfectDou tends to have more advantage of Peasants than that of Landlord, especially
when competes against stronger baselines. We believe that the proposed perfect information distil-
lation technique allows for better cooperation between two Peasants. In addition, since the roles are
assigned instead of opting according to hand in our competition, and the Landlord has extra three
cards and can lose a higher base score, the Peasants seems having more chance to win the game.
Therefore, almost all methods can play better results as a Peasant than that as a Landlord.

Table 12: ADP results of DouDizhu tournaments for existing AI programs by playing 10k decks. L: ADP of
A as Landlord; P: ADP of A as Peasants. Algorithm A outperforms B if the ADP of L or P is larger than 0
(highlighted in boldface). We note that DouZero is the current SoTA DouDizhu bot. Numerical results except
marked ∗ are directly borrowed from Zha et al. [31].

Rank
A

B PerfectDou DouZero DeltaDou RHCP-v2 CQN Random
P L P L P L P L P L P L

1 PerfectDou (Ours) 0.656∗ -0.656∗ 0.686∗ -0.407∗ 0.980∗ -0.145∗ 0.872∗ 0.138∗ 2.020∗ 2.160∗ 3.008∗ 3.283∗

2 DouZero (Public) 0.407∗ -0.686∗ 0.435∗ -0.435∗ 0.858∗ -0.342∗ 0.166∗ -0.046∗ 2.001∗ 1.368∗ 2.818∗ 3.254∗

3 DeltaDou 0.145∗ -0.980∗ 0.342∗ -0.858∗ 0.476 -0.476 1.878∗ 0.974∗ 1.849 1.218 2.930 3.268
4 RHCP-v2 -0.138∗ -0.872∗ 0.046∗ -0.166∗ -0.974∗ -1.878∗ 0.182∗ -0.182∗ 1.069∗ 1.758∗ 2.560∗ 2.780∗

5 CQN -2.160∗ -2.020∗ -1.368∗ -2.001∗ -1.218 -1.849 -1.758∗ -1.069∗ 0.056 -0.056 1.992 1.832
6 Random -3.283∗ -3.008∗ -3.254∗ -2.818∗ -3.268 -2.930 -2.780 -2.560∗ -1.832 -1.991 0.883 -0.883

Table 13: WP results of DouDizhu tournaments for existing AI programs by playing 10k decks. L: WP of
A as Landlord; P: WP of A as Peasants. Algorithm A outperforms B if the WP of L or P is larger than 0.5
(highlighted in boldface). Numerical results except marked ∗ are directly borrowed from Zha et al. [31].

Rank
A

B PerfectDou DouZero DeltaDou RHCP-v2 CQN Random
P L P L P L P L P L P L

1 PerfectDou (Ours) 0.622∗ 0.378∗ 0.640∗ 0.446∗ 0.693∗ 0.474∗ 0.609∗ 0.478∗ 0.894∗ 0.830∗ 0.998∗ 0.990∗

2 DouZero (Public) 0.554∗ 0.360∗ 0.584∗ 0.416∗ 0.684∗ 0.487∗ 0.427∗ 0.475∗ 0.851∗ 0.769∗ 0.992∗ 0.986∗

3 DeltaDou 0.526∗ 0.307∗ 0.513∗ 0.317∗ 0.588 0.412 0.768∗ 0.614∗ 0.835 0.733 0.996 0.987
4 RHCP-v2 0.522∗ 0.391∗ 0.525∗ 0.573∗ 0.386∗ 0.232∗ 0.536∗ 0.434∗ 0.687∗ 0.853∗ 0.994∗ 0.985∗

5 CQN 0.170∗ 0.106∗ 0.231∗ 0.149∗ 0.267 0.165 0.147∗ 0.313∗ 0.476 0.524 0.921 0.857
6 Random 0.010∗ 0.002∗ 0.014∗ 0.008∗ 0.013 0.004 0.015∗ 0.006∗ 0.143 0.080 0.654 0.346

19

E More Implementation Details

E.1 The Oracle for Minimum Steps to Play Out All cards

In our paper, as mentioned in Section 4.4, we utilize an oracle for evaluating the minimum steps to
play out all cards. Particularly, the oracle is implemented by a dynamic programming algorithm
combined with depth-first-search, which can be referred to https://www.cnblogs.com/
SYCstudio/p/7628971.html (which is also a competition problem of National Olympiad
in Informatics in Provinces (NOIP) 2015). For completeness, we summarize the pseudocode for
implementing such an algorithm in Algo. 1.

E.2 Detailed Action Space

In our paper, we utilize a simplified discrete action space of 621 for learning the actor, since we
observe that the original action space of 27472 (include all possible combinations) contains a large
number of actions that can be abstract. For instance, actions like Bomb with kickers and Trio with
kickers occupy the action space most due to the large number of combinations of kickers. To this
end, we abstract actions with the same main cards into one action, and significantly reduce the
action space. When the policy chooses an abstract action, we further deploy a simple decoding
function to obtain the most preferred action in the original action space, as illustrated in Algo. 2. We
note that this part is similar to an old implementation of RLCard [30]: https://github.com/
datamllab/rlcard/blob/d100952f144e4b0fd7186cc06e79ef277cda9722/
rlcard/envs/doudizhu.py#L67.

Below we list all the 621 discrete actions of PerfectDou in 15 categories, where the notation * in
category (9) (10) (11) and (12) denotes the kicker.

(1) Solo (15 actions): 3, 4, 5, 6, 7, 8, 9, T6, J, Q, K, A, 2, B, R

(2) Pair (13 actions): 33, 44, 55, 66, 77, 88, 99, TT, JJ, QQ, KK, AA, 22

(3) Trio (13 actions): 333, 444, 555, 666, 777, 888, 999, TTT, JJJ, QQQ, KKK, AAA, 222

(4) Trio with Solo (182 actions): 3334, 3335, 3336, 3337, 3338, 3339, 333T, 333J, 333Q, 333K,
333A, 3332, 333B, 333R, 3444, 4445, 4446, 4447, 4448, 4449, 444T, 444J, 444Q, 444K, 444A,
4442, 444B, 444R, 3555, 4555, 5556, 5557, 5558, 5559, 555T, 555J, 555Q, 555K, 555A, 5552,
555B, 555R, 3666, 4666, 5666, 6667, 6668, 6669, 666T, 666J, 666Q, 666K, 666A, 6662, 666B,
666R, 3777, 4777, 5777, 6777, 7778, 7779, 777T, 777J, 777Q, 777K, 777A, 7772, 777B, 777R,
3888, 4888, 5888, 6888, 7888, 8889, 888T, 888J, 888Q, 888K, 888A, 8882, 888B, 888R, 3999,
4999, 5999, 6999, 7999, 8999, 999T, 999J, 999Q, 999K, 999A, 9992, 999B, 999R, 3TTT, 4TTT,
5TTT, 6TTT, 7TTT, 8TTT, 9TTT, TTTJ, TTTQ, TTTK, TTTA, TTT2, TTTB, TTTR, 3JJJ, 4JJJ,
5JJJ, 6JJJ, 7JJJ, 8JJJ, 9JJJ, TJJJ, JJJQ, JJJK, JJJA, JJJ2, JJJB, JJJR, 3QQQ, 4QQQ, 5QQQ, 6QQQ,
7QQQ, 8QQQ, 9QQQ, TQQQ, JQQQ, QQQK, QQQA, QQQ2, QQQB, QQQR, 3KKK, 4KKK,
5KKK, 6KKK, 7KKK, 8KKK, 9KKK, TKKK, JKKK, QKKK, KKKA, KKK2, KKKB, KKKR,
3AAA, 4AAA, 5AAA, 6AAA, 7AAA, 8AAA, 9AAA, TAAA, JAAA, QAAA, KAAA, AAA2,
AAAB, AAAR, 3222, 4222, 5222, 6222, 7222, 8222, 9222, T222, J222, Q222, K222, A222, 222B,
222R

(5) Trio with Pair (156 actions): 33344, 33355, 33366, 33377, 33388, 33399, 333TT, 333JJ, 333QQ,
333KK, 333AA, 33322, 33444, 44455, 44466, 44477, 44488, 44499, 444TT, 444JJ, 444QQ,
444KK, 444AA, 44422, 33555, 44555, 55566, 55577, 55588, 55599, 555TT, 555JJ, 555QQ,
555KK, 555AA, 55522, 33666, 44666, 55666, 66677, 66688, 66699, 666TT, 666JJ, 666QQ,
666KK, 666AA, 66622, 33777, 44777, 55777, 66777, 77788, 77799, 777TT, 777JJ, 777QQ,
777KK, 777AA, 77722, 33888, 44888, 55888, 66888, 77888, 88899, 888TT, 888JJ, 888QQ,
888KK, 888AA, 88822, 33999, 44999, 55999, 66999, 77999, 88999, 999TT, 999JJ, 999QQ,
999KK, 999AA, 99922, 33TTT, 44TTT, 55TTT, 66TTT, 77TTT, 88TTT, 99TTT, TTTJJ, TTTQQ,
TTTKK, TTTAA, TTT22, 33JJJ, 44JJJ, 55JJJ, 66JJJ, 77JJJ, 88JJJ, 99JJJ, TTJJJ, JJJQQ, JJJKK,
JJJAA, JJJ22, 33QQQ, 44QQQ, 55QQQ, 66QQQ, 77QQQ, 88QQQ, 99QQQ, TTQQQ, JJQQQ,
QQQKK, QQQAA, QQQ22, 33KKK, 44KKK, 55KKK, 66KKK, 77KKK, 88KKK, 99KKK,
TTKKK, JJKKK, QQKKK, KKKAA, KKK22, 33AAA, 44AAA, 55AAA, 66AAA, 77AAA,

6T for Ten (10).

20

https://www.cnblogs.com/SYCstudio/p/7628971.html
https://www.cnblogs.com/SYCstudio/p/7628971.html
https://github.com/datamllab/rlcard/blob/d100952f144e4b0fd7186cc06e79ef277cda9722/rlcard/envs/doudizhu.py#L67
https://github.com/datamllab/rlcard/blob/d100952f144e4b0fd7186cc06e79ef277cda9722/rlcard/envs/doudizhu.py#L67
https://github.com/datamllab/rlcard/blob/d100952f144e4b0fd7186cc06e79ef277cda9722/rlcard/envs/doudizhu.py#L67

Algorithm 1 Calculate Minimum Step to Play Out All Cards

1: function MAIN
2: N1 ← all possible number of single card
3: N2 ← all possible number of pair card
4: N3 ← all possible number of trio card
5: N4 ← all possible number of bomb card
6: function INITMATRIX(F)
7: for action ∈ {Solo, Pair, Trio, Bomb, Chain-of-Trio, Trio-with-Pair, Quad-with-

Solos, Quad-with-Pair, Quad-with-Pairs} do
8: d1 ← the number of Solo card in action
9: d2 ← the number of Pair card in action

10: d3 ← the number of Trio card in action
11: d4 ← the number of Bomb card in action
12: F [N1, N2, N3, N4]← min(F [N1, N2, N3, N4], F [N1−d1, N2−d2, N3−d3, N4−

d4] + 1)
13: if action is Trio then
14: F [N1, N2, N3, N4]← min(F [N1, N2, N3, N4], F [N1+1, N2+2, N3−1, N4])
15: end if
16: if action is Bomb then
17: F [N1, N2, N3, N4]← min(F [N1, N2, N3, N4], F [N1+1, N2+2, N3−1, N4])
18: end if
19: end for
20: end function
21: function NOWSTEP(Cards)
22: if Rocket ∈ Cards then
23: left cards← left cards after playing out Rocket
24: return min(NowStep (left cards) + 1, NowStep (left cards) + 2)
25: end if
26: if only one Joker ∈ Cards then
27: left cards← left cards after playing out Joker
28: return NowStep (left cards) + 1
29: end if
30: if no Joker ∈ Cards then
31: calculate number of Solo N1, Pair N2, Trio N3 and Bomb N4 of Cards
32: return F [N1, N2, N3, N4]
33: end if
34: end function
35: function DFS(step, ans, Cards)
36: if step > ans then
37: return ans
38: end if
39: ans← min(step, NowStep(Cards))
40: for Chain-of-Solo ∈ Cards do
41: left cards← left cards after playing out Chain-of-Solo
42: DFS(step + 1, ans, left cards of Cards)
43: end for
44: for Chain-of-Pair in Cards do
45: left cards← left cards after playing out Chain-of-Pair
46: DFS(step + 1, ans, left cards of Cards)
47: end for
48: for Plane-with-Solo ∈ Cards do
49: left cards← left cards after playing out Plane-with-Solo
50: DFS(step + 1, ans, left cards of Cards)
51: end for
52: end function
53: Create a matrix F of size [N1, N2, N3, N4]
54: InitMatrix(F)
55: step← 0 ,ans← +∞, Cards← all Cards to be calculated
56: DFS(0, ans, Cards)
57: end function

21

Algorithm 2 Decode action

1: function DECODE(M)
2: A←get all available actions from current hand
3: K ←get all kickers using the main card M from A
4: for k in K do
5: calculate score s of each k
6: N ← number of actions contains k in A, rankk ← card rank of k
7: s← 1.0 ∗N + 0.1 ∗ rankk
8: end for
9: return k with minimum s

10: end function

88AAA, 99AAA, TTAAA, JJAAA, QQAAA, KKAAA, AAA22, 33222, 44222, 55222, 66222,
77222, 88222, 99222, TT222, JJ222, QQ222, KK222, AA222

(6) Chain of Solo (36 actions): 34567, 45678, 56789, 6789T, 789TJ, 89TJQ, 9TJQK, TJQKA,
345678, 456789, 56789T, 6789TJ, 789TJQ, 89TJQK, 9TJQKA, 3456789, 456789T, 56789TJ,
6789TJQ, 789TJQK, 89TJQKA, 3456789T, 456789TJ, 56789TJQ, 6789TJQK, 789TJQKA,
3456789TJ, 456789TJQ, 56789TJQK, 6789TJQKA, 3456789TJQ, 456789TJQK, 56789TJQKA,
3456789TJQK, 456789TJQKA, 3456789TJQKA

(7) Chain of Pair (52 actions): 334455, 445566, 556677, 667788, 778899, 8899TT, 99TTJJ,
TTJJQQ, JJQQKK, QQKKAA, 33445566, 44556677, 55667788, 66778899, 778899TT, 8899TTJJ,
99TTJJQQ, TTJJQQKK, JJQQKKAA, 3344556677, 4455667788, 5566778899, 66778899TT,
778899TTJJ, 8899TTJJQQ, 99TTJJQQKK, TTJJQQKKAA, 334455667788, 445566778899,
5566778899TT, 66778899TTJJ, 778899TTJJQQ, 8899TTJJQQKK, 99TTJJQQKKAA,
33445566778899, 445566778899TT, 5566778899TTJJ, 66778899TTJJQQ, 778899TTJJQQKK,
8899TTJJQQKKAA, 33445566778899TT, 445566778899TTJJ, 5566778899TTJJQQ,
66778899TTJJQQKK, 778899TTJJQQKKAA, 33445566778899TTJJ, 445566778899TTJJQQ,
5566778899TTJJQQKK, 66778899TTJJQQKKAA, 33445566778899TTJJQQ,
445566778899TTJJQQKK, 5566778899TTJJQQKKAA

(8) Chain of Trio (45 actions): 333444, 444555, 555666, 666777, 777888, 888999, 999TTT, TTTJJJ,
JJJQQQ, QQQKKK, KKKAAA, 333444555, 444555666, 555666777, 666777888, 777888999,
888999TTT, 999TTTJJJ, TTTJJJQQQ, JJJQQQKKK, QQQKKKAAA, 333444555666,
444555666777, 555666777888, 666777888999, 777888999TTT, 888999TTTJJJ, 999TT-
TJJJQQQ, TTTJJJQQQKKK, JJJQQQKKKAAA, 333444555666777, 444555666777888,
555666777888999, 666777888999TTT, 777888999TTTJJJ, 888999TTTJJJQQQ, 999TT-
TJJJQQQKKK, TTTJJJQQQKKKAAA, 333444555666777888, 444555666777888999,
555666777888999TTT, 666777888999TTTJJJ, 777888999TTTJJJQQQ, 888999TT-
TJJJQQQKKK, 999TTTJJJQQQKKKAAA

(9) Plane with Solo (38 actions): 333444**, 444555**, 555666**, 666777**, 777888**,
888999**, 999TTT**, TTTJJJ**, JJJQQQ**, QQQKKK**, KKKAAA**, 333444555***,
444555666***, 555666777***, 666777888***, 777888999***, 888999TTT***, 999TTTJJJ***,
TTTJJJQQQ***, JJJQQQKKK***, QQQKKKAAA***, 333444555666****, 444555666777****,
555666777888****, 666777888999****, 777888999TTT****, 888999TTTJJJ****, 999TT-
TJJJQQQ****, TTTJJJQQQKKK****, JJJQQQKKKAAA****, 333444555666777*****,
444555666777888*****, 555666777888999*****, 666777888999TTT*****, 777888999TT-
TJJJ*****, 888999TTTJJJQQQ*****, 999TTTJJJQQQKKK*****, TTTJJJQQQKKKAAA*****

(10) Plane with Pair (30 actions): 333444****, 444555****, 555666****, 666777****,
777888****, 888999****, 999TTT****, TTTJJJ****, JJJQQQ****, QQQKKK****,
KKKAAA****, 333444555******, 444555666******, 555666777******, 666777888******,
777888999******, 888999TTT******, 999TTTJJJ******, TTTJJJQQQ******,
JJJQQQKKK******, QQQKKKAAA******, 333444555666********, 444555666777********,
555666777888********, 666777888999********, 777888999TTT********,
888999TTTJJJ********, 999TTTJJJQQQ********, TTTJJJQQQKKK********,
JJJQQQKKKAAA********

22

(11) Quad with Solo (13 actions): 3333**, 4444**, 5555**, 6666**, 7777**, 8888**, 9999**,
TTTT**, JJJJ**, QQQQ**, KKKK**, AAAA**, 2222**

(12) Quad with Pair (13 actions): 3333****, 4444****, 5555****, 6666****, 7777****, 8888****,
9999****, TTTT****, JJJJ****, QQQQ****, KKKK****, AAAA****, 2222****

(13) Bomb (13 actions): 3333, 4444, 5555, 6666, 7777, 8888, 9999, TTTT, JJJJ, QQQQ, KKKK,
AAAA, 2222

(14) Rocket (1 action): BR

(15) Pass (1 action): PASS

23

	Additional Related Work
	More About DouDizhu
	Term of Categories
	Scoring Rules

	Additional System Design Details
	Card Representation Details
	Action Feature Details
	Value Network Structure

	Experiments
	Setups, Hyperparameters and Training Details
	In-Depth Statistical Analysis
	Case Study: Behavior of DouZero vs PerfectDou
	Battle Results Against Skilled Human Players
	Additional Training Results
	Extended Competition against DouZero
	Complete Tournament Results of ADP for Landlord and Peasants

	More Implementation Details
	The Oracle for Minimum Steps to Play Out All cards
	Detailed Action Space

