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A PROOF OF PROPOSITION 1

A.1 EXISTENCE OF OPTIMAL POLICY

Let J : U ! R be the objective function defined as J(u) = V (x(0, ·)), then it suffices to show that
J is a continuous function and the space of control policies U is compact. Then, by the general fact
in analysis that any continuous function defined on a compact space has a minimum (Rudin, 1976),
the optimal control policy exists.

Continuity of the objective functional. Pick a sequence {uk}k2N in U such that uk converges
pointwisely to u 2 U , then we need to show J(uk) ! J(u). Let xk(t,�) be the trajectory (solution)
of the ensemble system ensemble system in (1) driven by the control input uk(t), then xk(t,�)
satisfies the fixed point equation (Arnold, 1978),

xk(t,�) = x(0,�) +

Z t

0
F (t,�, xk(t,�), uk(t))dt. (5)

Similarly, let x(t,�) be the trajectory of the ensemble system driven by the liming control function
u(t), then x(t,�) satisfies the same equation as

x(t,�) = x(0,�) +

Z t

0
F (t,�, x(t,�), u(t))dt (6)

Taking the limit as k ! 1 for both sides of the equation in (5) yields

lim
k!1

xk(t,�) = x(0,�) + lim
k!1

Z t

0
F (t,�, xk(t,�), u(t))dt

= x(0,�) +

Z t

0
lim
k!1

F (t,�, xk(t,�), uk(t))dt

= x(0,�) +

Z t

0
F (t,�, lim

k!1
xk(t,�), lim

k!1
uk(t))dt

= x(0,�) +

Z t

0
F (t,�, lim

k!1
xk(t,�), u(t))dt

where the second and third equalitites follow from the dominant convergence theorem and continuity
of F , respectively (Folland, 2013). Because the solution of the ensmeble system in (1), equivalently,
the fixed point equation in (6), is unique for each � 2 ⌦ by Assumptions S2, we conclude that
x(t,�) = limk!1 xk(t,�) for all � 2 ⌦. Applying the dominant convergence theorem again to J

with the continuity of r and K, we also obtain

lim
k!1

J(uk) = lim
k!1

Z

⌦

h Z T

0
r(xk(t,�), uk(t))dt+K(xk(T,�))

⇤
d�

=

Z

⌦

h Z T

0
r( lim

k!1
xk(t,�), lim

k!1
uk(t))dt+K( lim

k!1
xk(T,�))

⇤
d�

=

Z

⌦

h Z T

0
r(x(t,�), u(t))dt+K(x(T,�))

⇤
d� = J(u),

indicating the continuity of F as desired.

Compactness of the space of control policies. By Assumption S1 that control inputs in U are
bounded by a constant A uniformly, U is the closed ball with the radius A centered at the 0 control
input in the space of all bounded functions from [0, T ] to Rm. Then, by the Alaoglu’s Theorem
(Folland, 2013), U is compact in the weak* topology, which coincides with the topology of pointwise
convergence as used in the proof of the continuity of J above, concluding the proof.

A.2 REGULARITY OF VALUE FUNCTION

In particular, we would like to show that the value function V of the infinite-time horizon ensemble
reinforcement learning problem is bounded. Moreover, if � > L, the Lipschitz constant of F̄ , then V
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is Lipschitz continuous; if 0 < �  L, then V is Hölder continuous for some exponent 0 < ↵ < 1.
In addition, owing to the one-to-one correspondence between ensemble states and the associated
moment sequences, the proof can be equivalently carried out by using the moment coordinates.

The boundedness of the value function V directly follows from that of the reward function and
integrability of the discount factor as

|J(u)| 
Z 1

0
e
��t|r(m(t), u(t))|dt  max

m2M,a2[�A,A]
|r(m, a)| ·

Z 1

0
e
��t

dt

=
1

�
max

m2M,a2[�A,A]
|r(m, a)| < 1.

To show the Hölder continuity of V , pick m0,m
0
0 2 M, by the definition of V , for any " > 0, there

is some u 2 U such that
V (m̄) + " �

Z 1

0
e
��t

r(m̄(t), u(t))dt

with m̄(t) satisfying the system d
dtm̄(t) = F̄ (m̄(t), u(t)) with m̄(0) = m̄0. Let m(t) be the

trajectory of the system driven by the same control input but with a different initial condition m(0) =
m0, then we have

V (m0)� V (m̄0) 
Z 1

0
e
��t

�
r(m(t), u(t))� r(m̄(t), u(t))

�
dt+ "


Z 1

0
e
��t

C|m(t)� m̄(t)|dt+ ",

where we use the Lipschitz continuity of r. Interchanging the role of m(t) and m̄(t) yields V (m̄0)�
V (m) 

R1
0 e

��t
C|m̄(t)�m(t)|dt+ ". Together that " is arbitrary, we obtain

|V (m)� V (m̄)|  C

Z 1

0
e
��t|m(t)� m̄(t)|dt. (7)

To estimate the term |m(t)� m̄(t)|, we notice
d

dt

�
m(t)� m̄(t)

�
= F̄ (m(t), u(t))� F̄ (m̄(t), u(t))  L|m(t)� m̄(t)|.

Similarly, interchanging the role of m(t) and m̄(t) yields
d

dt
|m(t)�m

0(t)|  L|m(t)� m̄(t)|,

which is well-defined for all t since m(t) � m̄(t) 6= 0, otherwise, it will violate the uniqueness of
solutions for the ordinary differential equation d

dtm(t) = F̄ (m(t), u(t)). Now, applying Gronwall’s
inequality gives

|m(t)� m̄(t)|  e
Lt|m0 � m̄0|.

Consequently, we have

|V (m)� V (m̄)|  C|m� m̄0|
Z 1

0
e
�(��L)t

dt.

Therefore, if � > L, then

|V (m0)� V (m̄0)| 
C

�� L
|m0 � m̄0|

holds so that V is Lipschitz continuous.

Next, if 0 < �  L, we pick 0 < ↵ < 1 such that � > ↵L. Note that because r(·, u) is Lipschitz
continuous by Assumption C2, it is also ↵-Hölder continous, i.e., |r(m(t), u(t))� r(m̄(t), u(t))| 
C|m(t)� m̄(t)|↵, which gives a variant of (7) as

|V (m0)� V (m̄0)|  C

Z 1

0
e
��t|m(t)� m̄(t)|↵dt.

Together with |m(t)� m̄(t)|↵  e
↵Lt|m� m̄|↵, we have

|V (m0)� V (m̄0)|  C|m0 � m̄0|↵
Z 1

0
e
�(��↵L)t

dt  C

�� ↵L
|m0 � m̄0|↵,

giving Hölder continuouity of V with Hölder exponent ↵.
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B MOMENT CONVERGENCE OF TRUNCATED REINFORCEMENT LEARNING
PROBLEMS

At first, as proved in Appendix A, the space of control polices U is compact, and hence the sequence
{u⇤

N}N2N has a convergent subsequence {u⇤
Ni

}i2N and we denote the limit by u
⇤. It then remains

to show that VNi ! V as i ! 1 and u
⇤ solves the Hamilton-Jacobi-Bellman equation along the

trajectory m
⇤(t) of the moment system steered by u

⇤(t) as

@V

@t
+DV (t,m⇤(t)) · F̄ (t,m⇤(t), u⇤(t)) + r̄(m⇤(t), u⇤(t)) = 0, V (T,m(T )) = K̄(m(T )).

(8)

To this end, let VNi denote the value function for the order N truncated ensemble reinforcement
learning problem, then for all 0  t  T , VNi(t, ·) is essentially the restriction of V (t, ·) to the
space consisting of the order Ni truncated moment sequences m̂Ni , which implies V (t, m̂N ) =
VNi(t, m̂Ni). The Lipschitz continuity of V then yields

|VNi(t, m̂Ni)� VNi(t
0
, m̂

0
Ni

)| = |V (t, m̂Ni)� V (t0, m̂0
Ni

)|  C
�
|t� t

0|+ |m̂Ni � m̂
0
Ni

|
�

for any time 0  t, t
0  T and order Ni truncated moment sequences m̂Ni and m̂

0
Ni

. This implies
the family of values functions {VNi}i2N are Lipschitz continuous with the same Lipschitz constant.
By the definition, it immediately follows that {VNi}i2N is uniformly equicontious (Rudin, 1976).
Together with the boundedness of V , and hence all VNi , we conclude that VNi , maybe by passing
to a subsequence, converges uniformly to a function V

0 on compact sets by Arzela-Ascoli Theorem
(Folland, 2013). As a consequence V

0 is also continuous, since each VNi is. At last, we need to
show the V

0 satisfies the Hamilton-Jacobi-Bellman equation in (8).

We first note that because u
⇤
Ni

is the optimal control policy, it necessarily satisfies

@VNi

@t
(t, m̂⇤

Ni
(t)) +DVNi(t, m̂

⇤
Ni

(t)) · F̂Ni(t, m̂
⇤
Ni

(t), u⇤
Ni

(t)) = 0,

VNi(T, m̂
⇤
Ni

(T )) = K̂Ni(m̂
⇤
Ni

(T )), (9)

where m̂⇤
Ni

(t) is the corresponding optimal trajectory and K̂Ni is the restriction of K to the space of
order Ni truncated moment sequences. In addition, as the solution of the truncated moment system
d
dtm̂

⇤
Ni

(t) = F̂N (t, m̂⇤
Ni

(t), û⇤
Ni

(t)), m̂⇤
Ni

(t) satisfies the fixed point equation m̂
⇤
Ni

(t) = m̂
⇤
Ni

(0) +R t
0 F̂N (s, m̂⇤

Ni
(s), û⇤

Ni
(s))ds. The continuity of F̂N and the dominant convergence theorem together

imply

lim
i!1

m̂
⇤
Ni

(t) = lim
i!1

m̂
⇤
Ni

(0) + lim
i!1

Z t

0
F̂N (s, m̂⇤

Ni
(s), û⇤

Ni
(s))ds

= m
⇤(0) +

Z t

0
F̂Ni(s, lim

i!1
m̂

⇤
Ni

(s), lim
i!1

û
⇤
Ni

(s))ds

= m
⇤(0) +

Z t

0
F (s, lim

i!1
m̂

⇤
Ni

(s), u⇤(s))ds,

which reveals the convergence of m̂
⇤
Ni

(t) to a trajectory m
⇤(t) solving the untruncated moment

system d
dtm

⇤(t) = F (t,m⇤(t), u⇤(t)). More importantly, the convergence of m̂⇤
Ni

(t) also implies
that all these trajectories lay in a compact space, and hence the convergence of VNi on compact sets
applies to the Hamilton-Jacobi-Bellman equation in (9) as

0 = lim
i!1

@VNi

@t
(t, m̂⇤

Ni
(t)) + lim

i!1
DVNi(t, m̂

⇤
Ni

(t)) · F̂Ni(t, m̂
⇤
Ni

(t), u⇤
Ni

(t))

=
@

@t
lim
i!1

VNi(t, m̂
⇤
Ni

(t)) +D
⇥
lim
i!1

(VNi(t, m̂
⇤
Ni

(t)))
⇤
· lim
i!1

F̂Ni(t, m̂
⇤
Ni

(t), u⇤
Ni

(t))

=
@

@t
V

0(t, m̂⇤
Ni

(t)) +DV
0(t, lim

i!1
m̂

⇤
Ni

(t)) · F̄ (t, lim
i!1

m
⇤
Ni

(t), lim
i!1

u
⇤
Ni

(t))

=
@

@t
V

0(t,m⇤(t)) +DV
0(t,m⇤(t)) · F̄ (t,m⇤(t), u⇤(t))
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together with the terminal condition

0 = lim
i!1

VNi(T, m̂
⇤
Ni

(T ))� lim
i!1

K̂Ni(m̂
⇤
Ni

(T )) = V
0(T, lim

i!1
m̂

⇤
Ni

(T ))� K̄( lim
i!1

m̂
⇤
Ni

(T ))

= V
0(m⇤(t))� K̄(m⇤(T )),

where the changes of limits and differentiations follo from the equicontinuity of the sequence of
functions {VNi} (Rudin, 1976). This shows that V 0 satisfies the Hamilton-Jacobi-Bellman equation,
and hence V = V

0 holds by the uniqueness of the (viscosity) solution of the Hamilton-Jacobi-
Bellman equation (Evans, 2010). As a consequence, u⇤(t) is the optimal control policy and m

⇤(t)
is the optimal moment trajectory.
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