
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Open-Vocabulary Video Scene Graph Generation via
Union-aware Semantic Alignment

Anonymous Authors
ABSTRACT
Video Scene Graph Generation (VidSGG) plays a crucial role in var-
ious visual-language tasks by providing accessible structured vi-
sual relation knowledge. However, the requirement of annotating
all categories of prevailing VidSGG methods limits their applica-
tion in real-world scenarios. Despite the popular VLMs facilitating
preliminary exploration of open-vocabulary VidSGG tasks, the c-
orrespondence between visual union regions and relation predi-
cates is usually ignored.Therefore, we propose anOpen-vocabulary
VidSGG framework named Union-Aware Semantic Alignment Net-
work (UASAN) to explore the alignment between visual union re-
gions and relation predicate concepts in the same semantic space.
Specifically, a visual refiner is designed to acquire open-vocabulary
knowledge and the ability to bridge differentmodalities. To achieve
better alignment, we first design a semantic-aware context encoder
to achieve a comprehensive semantic interaction between object
trajectories, visual union regions, and trajectory motion informa-
tion to obtain semantic-aware union region representations. Then,
a union-relation alignment decoder is utilized to generate the dis-
criminative relation token for each union region for final relation
prediction. Extensive experimental results on two benchmark datasets
show that our UASAN achieves significant performance over exist-
ing methods, which also verifies the necessity of modeling union
region-predicate alignment in the VidSGG pipeline. Code is avail-
able in Supplementary Material.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Open-vocabulary Learning, Video Scene Graph Generation, Scene
Understanding

1 INTRODUCTION
Video Scene Graph Generation (VidSGG) task aims to detect and
localize the visual relationships between different entity trajecto-
ries in a given video, constructing the relationships as relation
triplets in the form of <subject-predicate-object>. It serves a crucial
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Figure 1: Open-vocabulary setting. Conventional closed-set
VidSGG frameworks only recognize the objects and relation
predicates been seen during model training, while open-
vocabulary VidSGG approaches can be generalized to un-
seen object and predicate categories.

role in various visual comprehensive tasks, such as visual ques-
tion answering [3, 15, 16], video retrieval [6, 7], and video caption-
ing [25, 48], by furnishing structured knowledge to enhance video
understanding.

Despite achieving impressive performance, existing VidSGG fra-
meworks [8, 24, 26, 32–34, 49] remain constrained to recognizing
objects and predicting visual relations within closed-set scenarios,
which entails that the categories of objects and relation predicates
are pre-defined andmanually annotated. However, such the closed-
set model training process prevent current VidSGG frameworks
from being employed in real-world scenarios, due to their inclu-
sion of various visual object or relation concepts that do not appear
or are unseen in the model training set. When encountering these
novel categories, current VidSGG methods are likely to fail to rec-
ognize or classify them into known categories as shown in Figure 1.
Meanwhile, the movement of objects in real world scenarios over
time makes the relationship between visual objects blurred and
complicated, which also makes annotating more difficult. More-
over, due to the expensive and time-consuming labor costs for an-
notating, collect all categories from a real-world scenario is also
not accessible. Therefore, it is crucial to address how to imbue a
VidSGG model with the generalization ability to recognize novel
categories when only being trained on limited categories.

To reduce the need for annotating novel categories and improve
the generalization of the models, open-vocabulary learning has
been explored in the object detection field, named open-vocabulary
object detection (OVD) [10, 11, 39, 44]. Specifically, the aim of
open-vocabulary learning is to train a model with annotations on a
part of classes (i.e., base classes), and generalize it to unseen classes
(i.e., novel classes) during inference. Inspired by this, there have

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(b) Our proposed Union-aware Semantic Alignment Network

Figure 2: Overview of the conventional VidSGG pipeline vs.
our proposed OV-VidSGG method. Conventional VidSGG
methods are trained within a closed-set and don’t have the
ability to recognize unseen object and predicate categories.
They typically rely on the aligned visual and textual ob-
ject features from pre-trained VLMs for relation prediction,
while the alignment between subject-object pairs and predi-
cate concepts is insufficient and unreliable. Contrarily, our
proposed UASAN framework explores the alignment be-
tween the visual union regions and relation predicate con-
cepts for better relation prediction performance.

also been some preliminary studies on the open-vocabulary scene
graph generation task (Ov-SGG) [9, 12, 47] in recent years.

Benefiting from the encyclopedic knowledge of popular vision-
language models (VLMs) [20, 22, 28], such as CLIP [28], existing
Ov-SGGmethods [9, 12, 47] can easily recognize novel objects and
explore novel relationships through the object-level alignment be-
tween visual objects and textual category labels. However, these
Ov-SGG methods excessively rely on the aligned visual and tex-
tual object features provided by pre-trained VLMs for model learn-
ing, while ignoring the alignment between visual relation regions
and relation predicate concepts. The visual relation region is repre-
sented as the union region of two objects, and is usually regarded
as a type of assistant complement for relation prediction. In fact,
most existing methods simply fuse such union region representa-
tions with object features, such as concatenating them with ob-
ject features [47], for relation classification, which is shown in Fig-
ure 2(a). It is obvious that only using subject-object pair features
(e.g., woman and house in Figure 1) to be aligned with textual pred-
icate embeddings (e.g., near by in Figure 1) is insufficient for rela-
tion prediction. Though some recent closed-set scene graph gener-
ation works [50] have perceived the correspondence between vi-
sual union region information and visual relation concepts, they
do not yet explicitly model the correspondence between them and
relation concepts and still directly conduct alignment in the se-
mantic space, which results in a lack of comprehensive interaction
and correspondence between visual semantic information. As indi-
cated in previous research [13, 43], VLMs (e.g., CLIP [28]) still en-
counter challenges in performing compositional scene understand-
ing, such as inter-object relation, which results in incomplete and
unreliable alignment between subject-object pair representations
and relation predicate representations and leads to an ambiguous
relation prediction.

Therefore, we propose a novel Ov-VidSGG framework named
Union-Aware Semantic Alignment Network (UASAN) to ex-
plicitly model the alignment between visual union regions and re-
lation predicates in the same semantic space for joint feature fu-
sion, and the framework is shown Figure 2(b). Specifically, we de-
sign a visual refiner guided by a bridge encoder to transfer the
open-vocabulary knowledge and the ability to bridge the modality
gap into our framework. It facilitates our model paying more at-
tention to visual-relevant semantic information, which results in a
sequence consisting of visual-aware subject, object, union region,
and motion information representations. After that, we design a
semantic-aware context encoder to achieve comprehensive inter-
action within the constructed sequence for obtaining the semantic-
aware representations. Then we propose a union-relation align-
ment decoder to generate union-aware tokens based on the en-
coded sequence for final relation predicate prediction.

In summary, our contributions in this paper are as follows:
(1) We propose an open-vocabulary video scene graph gener-

ation method named Union-Aware Semantic Alignment Network
(UASAN), which explicitly explores the alignment between the ob-
ject trajectory union regions and the relation predicates for a more
comprehensive relation prediction.

(2) Our proposed UASAN consists of three cooperative compo-
nents: (1) A visual refiner is designed to transfer the knowledge and
ability into our framework for obtaining visual-aware representa-
tions; (2) a semantic-aware context encoder is utilized to achieve
comprehensive semantic-aware interaction based on the represen-
tations from our visual refiner; and (3) a union-relation alignment
decoder is proposed to integrate semantic-aware representations
for generating discriminative relation tokens for final prediction. 

(3) Extensive experiments on two benchmark datasets, i.e., Vid-
VRD and VidOR datasets, demonstrate the effectiveness of our pro-
posed framework.

2 RELATEDWORK
Open Vocabulary setting in SGG task. Scene Graph Generation
(SGG) task [8, 17, 33, 34, 40, 41] aims to generate visual relation
triplets in a given image or video, and provide the structure vi-
sual relation information for benefiting various downstreammulti-
modal tasks. While existing SGG methods have achieved impres-
sive performance on prominent public datasets, they are limited
to predicting visual objects and their relations within a closed-set
environment. The aforementioned constraint significantly hinders
the practicality of SGG methods in real-world scenarios, due to
they rely on training with known classes of objects and relations.

Recently, the closed-set SGGhas been extended to unseen classes
through efforts made in the zero-shot setting [23, 42], where the
triplets for inference are not seen in the training set. Moreover,
He et al. [12] proposes a more challenging open-vocabulary set-
ting for image-based SGG task (Ov-SGG). To be specific, in Ov-
SGG, the model is trained only utilizing the objects from a pre-
defined set of seen object categories (or base categories), subse-
quently predicting relationships among unseen object categories
(or novel categories). Both seen and unseen sets are subsets of the
open-vocabulary object class set. It means that not only the object
combinations but also the object categories themselves may not
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be seen during model training. Therefore, [12] utilize among of
region-caption pairs for pre-training a visual-relation model, and
finetune the relation model with prompt learning strategy. Besides,
[12] also define amore challenging setting named general Ov-SGG,
in which the predicate categories set are divided into novel set and
base set. The former contains novel predicates during model infer-
ence that are not seen in training. Given the advantages conferred
by pre-trained visual-language models (i.e., CLIP and GLIP), there
is an inclination towards tapping into the ability of these VLMs
for better visual or semantic relevant works. Inspired by the trend,
Zhang et al. [47] explore the pre-trained visual semantic space
(VSS) and propose a novel SGG model named 𝑉𝑆3 to transfer the
language-image knowledge for benefiting Ov-SGG. Besides, due to
VLMs (e.g., CLIP) struggle to distinguish between different relation
types, Li et al. [21] integrate LLMs (e.g., GPT [1]) into their model
to generate detailed composition descriptions based on a chain-of-
thought strategy for a better relation prediction.

Different form the aforementioned SGG frameworks that are
based on image, Gao et al. [9] is the first to explore the Open-
vocabulary Video Scene Graph Generation setting, and propose a
novel framework named Relation Prompt Learning framework (Re-
Pro), where compositional prompt is utilized to capturing complex
spatial-temporal information for predicate representation learning.
Although RePro have make preliminary attempts, the potential
benefit from the correspondence between visual union regions and
relations is still not considered. Moreover, some recent scene graph
generation works [50] have token the visual union region informa-
tion into consideration, they do not yet explicitly model the align-
ment between them and relation concepts, and are not appropriate
to open-vocabulary setting. Different from them, we explore such
alignment in open-vocabulary setting for achieving a robust open-
vocabulary VidSGG framework.
Video Scene Graph Generation. Video Scene Graph Generation
(VidSGG) task[2, 4, 8, 24, 26, 27, 33–37], aiming to detect and lo-
calize the visual relationships between different entity trajectories
in a given video, has been widely used in various visual compre-
hensive task. Shang et al. [34] is the first to propose the VidSGG
task with releasing a dataset named ImageNet-VidVRD, and pro-
pose a novel VidSGG framework named VidVRD. Inspired by Vid-
VRD, Qian et al. [27] and Tsai et al. [37] focus on exploring the
spatio-temporal information with a graph structure for relation
prediction. Moreover, [36] design a Target Adaptive Context Ag-
gregationNetwork to capture context information for each subject-
object pair. Different from them, Su et al. [35] propose a novel
Multiple Hypothesis Association framework, which pays more at-
tention to maintains the constructed multiple relations for select-
ing accurate ones. Moreover, Gao et al. [8] decompose the VidSGG
pipeline, and propose a classification-then-grounding framework
assisted by a video temporal grounding module for triplet localiza-
tion. Although existing VidSGG approaches have achieved great
performance, they are still limited to a closed-set training process,
which prevents them from being applied in real-world scenarios.
Therefore, in this paper, we propose an open-vocabulary VidSGG
framework to improve the generalization of our model for recog-
nizing unseen categories.

3 THE PROPOSED APPROACH
Figure 3 illustrates our proposed framework, aiming to achieve
open-vocabulary video scene graph generation by modeling the
alignment between visual union regions and relation predicate con-
cepts. We first design a heuristic structure, which we called bridge
encoder, to access the open-vocabulary knowledge and the ability
bridgingmodality gap for achieving object trajectory classification.
Then we explore the alignment between union region and relation
predicate concept. Specifically, we design a visual refiner to trans-
fer such knowledge and ability from the bridge encoder into our
framework by distillation. Relying on the ability bridging differ-
ent modalities distilled from bridge encoder, the object trajectory
features extracted by visual refiner also contains textual seman-
tic characteristic. Therefore, we concatenate the representations of
objects, union region, and motion information into a sequence to
simulate textual relation triples, and a context semantic-aware en-
coder is designed to achieve comprehensive semantic understand-
ing among these triplets. Then we propose a union-region align-
ment decoder to generate union-aware relation tokens. Finally, we
incorporate the relation tokens with the union and motion infor-
mation for relation predicate prediction.

3.1 Preliminary
Problem Definition. Given a video𝑉 , video scene graph genera-
tion (VidSGG) aims to detect the visual entities and their relation-
ships in the form of relation triplet < 𝑠, 𝑝, 𝑜 >, where 𝑠 and 𝑜 are
the class labels of subject and object, and 𝑝 is the class label of pred-
icate. To conduct open-vocabulary VidSGG setting, following [9]
we divide the categories of the objects and the predicates collected
from all the annotations into base split and novel split. Specifically,
we denote the base and novel object categories as: O𝑏𝑎𝑠𝑒 with the
number of 𝑁𝑂

𝑏𝑎𝑠𝑒
and O𝑛𝑣𝑜𝑒𝑙 with the number of 𝑁𝑂

𝑛𝑜𝑣𝑒𝑙
, respec-

tively, as well as P𝑏𝑎𝑠𝑒 and P𝑛𝑜𝑣𝑒𝑙 denoted as the base and novel
predicate categories. We train our method with the triplet samples
only containing base object and predicate categories, while evalu-
ating it on both novel and all categories.
Object Trajectory Generation and Feature Extraction. We
utilize the same features as it in [9]. Specifically, a pre-trained
object trajectory detector is employed to generate sets of class-
agnostic trajectories from a given video. The detected object tra-
jectories are denoted as T = {𝑇𝑖 }𝑁𝑖=1. For each trajectory𝑇𝑖 , it con-
sists of a bounding box sequence 𝑇𝑖 = {b𝑗 }𝑀𝑗=1, where b𝑗 is the
bounding box, and b𝑗 ∈ R4. For each trajectory 𝑇𝑖 , we use a pre-
trained ViT [5] for feature extraction, and denote it as f𝑖 ∈ R𝑑 .
Note that a video is typically cut into short video segments at
first for computational simplicity during model training. To ex-
plore the alignment between visual union regions and predicate
concepts, we extract union regions for the subject-object pairs in
each video segment, where we construct 𝑁𝑃 pairs totally, where
𝑁𝑃 = 𝑁 ∗ (𝑁 − 1). The union region is the union of the bound-
ing boxes of subject and the ones of object for each pair, and we
also use pre-trained ViT to extract union region features, which
is denoted as U ∈ R𝑁𝑃 ×𝑑 . Moreover, we also collect motion in-
formation for each subject-object trajectory pair < 𝑇𝑠 ,𝑇𝑜 > as
the same in [30, 33] to make our model notice the relative posi-
tion and the motion trend between objects in relation prediction,
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Figure 3: Illustration of our proposed Union-Aware Semantic Alignment Network. We initially use a pre-trained ViT to ex-
tract visual representations of detected object trajectories and union regions, and obtain the word embeddings of the relation
predicate concepts. For exploring the alignment between union regions and relation predicate concepts, a distillation strategy
is firstly adopted to transfer the knowledge and ability from the pre-trained bridge encoder to our designed visual refiner.
Then, we concatenate the subject, object, visual union regions, and motion information as a sequence to simulate a textual
relation triplet, and construct a context semantic-aware encoder to achieve comprehensive semantic interaction. After that,
a union-relation alignment decoder is designed to generate the union-aware relation tokens for further relation prediction.
Finally, we aggregate the union-aware relation tokens, multiple union region features, and motion information together for
a comprehensive relation prediction.

which is denoted as f𝑚𝑜𝑡
𝑠,𝑜 . We utilize a mapping function, denoted

as𝜙𝑚𝑜𝑡 , to obtain the features ofmotion information for all subject-
object pairs as: F𝑚𝑜𝑡 = 𝜙𝑚𝑜𝑡 ({f𝑚𝑜𝑡

𝑠,𝑜 , 𝑠, 𝑜 ∈ [1, 𝑁 ], 𝑠 ≠ 𝑜}), and
F𝑚𝑜𝑡 ∈ R𝑁𝑃 ×𝐿𝑚𝑜𝑡 ×𝑑 .
Fine-tuningObject TrajectoryClassificationwithin theOpen-
vocabulary Setting. Thanks to the popular VLMs, achieving im-
pressive object classification is now more accessible. Inspired by
the pre-trained BLIP-2, we achieve open-vocabulary trajectory clas-
sification by leveraging a Q-Former heuristic structure, referred to
as bridge encoder, to access encyclopedic knowledge and alleviate
the modality gap.

Specifically, following [9] we first allocate the category labels to
the detected trajectories according to the Intersection over Union
(IoU) with the ground-truth trajectories, considering only base ob-
ject categories. Then, we bridge the visual and textual modalities
as follows:

f′𝑖 = BridgeEnc(f𝑖 ), (1)
O𝑏𝑎𝑠𝑒 = BridgeEnc(WordEmb(𝑂𝑏𝑎𝑠𝑒 )), (2)

where WordEmb(·) means a word embedding project. Moreover,
the probability of classifying trajectory 𝑇𝑖 to class 𝑐 ∈ 𝑂𝑏𝑎𝑠𝑒 is as:

𝑝
𝑡𝑟𝑎 𝑗
𝑖 (𝑐) =

exp(cos(f′𝑖 , o𝑐 )/𝜏)∑
𝑐′∈𝑂𝑏𝑎𝑠𝑒

exp(cos(f′𝑖 , o𝑐′ )/𝜏)
(3)

where o𝑐 is the text embedding of the object category 𝑐 .
According to [9], we define the trajectories with allocated labels

as positive samples, while others are negative samples, and calcu-
late the classification loss L𝑡𝑟𝑎 𝑗 .

3.2 Union-aware Semantic Alignment Learning
In consideration of the previous Ov-SGG methods excessively re-
lying on the object-level alignment provided by pre-trained VLMs,
we then explore the semantic correspondence between the visual
union region and the relation predicate concept in this section.
Knowledge Distillation Learning. At first, we design a visual
refiner to transfer the open-vocabulary knowledge from our pre-
trained bridge encoder into our framework through a distillation
strategy, which can facilitate our model paying more attention to
visual-relevant semantic information. Specifically, we design a se-
quence of learnable visual concept tokens to obtain visual-aware
concept features, and the tokens are denoted asQ = {q1, q2, ..., q𝐿},
where 𝐿 is the length of the sequence. To avoid the interference of
noise contained in the detected object trajectories and reduce the
costs during distillation, we utilize a small amount of manually an-
notated object trajectories, and also use pre-trained ViT to extract
features, denoted as F𝑀 = {f𝑚}𝑀𝑚=1.

To obtain visual-aware representations for each object trajec-
tory, Q is extended to Q′ ∈ R𝑀×𝐿×𝑑 , and a attention module [38],
denoted as 𝐴𝑡𝑡𝑛(·, ·, ·), is utilized for modeling the dependencies
of the visual concept tokens, denoted as V𝑀 = Attn(Q′,Q′,Q′).
Then, a cross-attention-based module is used for comprehensive
interaction between object trajectories and visual concept tokens,
denoted as F𝑣 = Attn(V𝑀 , F𝑀 , F𝑀 ). After that, we use knowledge
distillation strategy to transfer the knowledge into our framework.
The distillation loss is as follows:

L𝑑𝑖𝑠 = ∥F𝑣 − F′𝑀 ∥, (4)
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where F′𝑀 = BridgeEnc(F𝑀 ).
Semantic-Aware Context Encoder. As similar as generating F𝑣 ,
we also obtain the visual-aware trajectory features F̂ and union
region features Û, where F̂ ∈ R𝑁×𝐿×𝑑 and Û ∈ R𝑁𝑃 ×𝐿×𝑑 . Re-
lying on the ability bridging different modalities of our designed
visual refiner, the object trajectory features and union region fea-
tures also contain textual semantic characteristic. Therefore, we
utilize a semantic-aware context encoder (SACEncoder) to con-
duct comprehensive semantic interaction within the triplet to ob-
tain semantic-aware representations. Specially, according to the
constructed 𝑁𝑃 subject-object pairs before, we can obtain the fea-
tures of the subject and object trajectories, denoted as F𝑆 and F𝑂 ,
where F𝑆 , F𝑂 ∈ R𝑁𝑃 ×𝐿×𝑑 . Then, we concatenate the subject tra-
jectories, object trajectories, the union region representation, and
two types of motion features for simulating relation triplets, which
also consist of subject, object, and predicate.Then, to reduce the in-
fluence of the order of the components in our sentence, we utilize
a attention-based module to conduct interaction among each of
them with a learnable token denoted as f𝑟 , and obtain the encoded
“triplet” representations as follows:

F𝑠𝑒𝑛𝑡 = [F𝑆 ; F𝑂 ; Û; F𝑚𝑜𝑡 ], (5)
F𝑒𝑛𝑐 = Norm(𝜙𝑒𝑛𝑐 (Attn(F𝑠𝑒𝑛𝑡 + f𝑟 , F𝑠𝑒𝑛𝑡 + f𝑟 , F𝑠𝑒𝑛𝑡 ))), (6)

where 𝜙𝑒𝑛𝑐 means a MLP, and Norm means normalization project.
F𝑚𝑜𝑡 ∈ R𝑁𝑃 ×𝐿𝑚𝑜𝑡 ×𝑑 is the extracted object motion features for all
subject-object pairs.
Union-relationAlignment Decoder. After aggregating the con-
text semantic from objects and motion information, we then need
to generate the union-aware relation tokens for final relation pre-
diction. Therefore, we design a union-relation alignment decoder
(URADecoder), which is a multi-head attention module [38]:

t𝑟 = MHAttn(f𝑟 , F𝑒𝑛𝑐 , F𝑒𝑛𝑐 ), (7)
F𝑑𝑒𝑐 = Norm(t𝑟 + 𝜙𝑑𝑒𝑐 (t𝑟 )), (8)

where MHAttn is a multi-head attention module, and 𝜙𝑑𝑒𝑐 means
a MLP. With the assistance of the decoder, we can generate the
union-aware relation tokens F𝑑𝑒𝑐 for further relation prediction.
Prompt-basedUnion-relationEmbeddings andRelationPre-
dictor. Different from traditional classification tasks, the num-
ber of categories to be predicted is uncertain during training and
inference. Open-vocabulary model predicting relying on the pre-
extracted predicate category embeddings. Therefore, we introduce
the prompt learning strategy into our framework for accessing
predicate category embeddings. Specifically, we utilize a sequence
of learnable word embedding tokens as the prompt tokens for each
predicate category, and extract predicate category embeddings by
our pre-trained bridge encoder as follows:

W𝑟𝑒𝑙 (c) = [w1,w2, ...,w𝐿𝑟𝑒𝑙 , c], (9)

r𝑟𝑒𝑙𝑐 = BridgeEnc(W𝑟𝑒𝑙 (c)), (10)

where w𝑙 (𝑙 ∈ 1, 2, ..., 𝐿𝑟𝑒𝑙 ) is a learnable word embedding. c is the
predicate word embedding for class 𝑐 ∈ P𝑏𝑎𝑠𝑒 and r𝑟𝑒𝑙𝑐 is the cate-
gory embedding.

After obtaining the union-aware tokens F𝑑𝑒𝑐 , we can indeed use
them for relation prediction. Additionally, to comprehensively con-
sider the initial and semantic-aware union region information, we

aggregate the multiple union region features, motion information,
and union-aware tokens into a relation predictor for for a more
robust predicate classification:

R = Norm(𝜙𝑝𝑟𝑒 (F𝑑𝑒𝑐 + F[𝑈 ]
𝑒𝑛𝑐 + Û + F𝑚𝑜𝑡 )), (11)

where F[𝑈 ]
𝑒𝑛𝑐 is the encoded union region representation obtained

from F𝑒𝑛𝑐 and 𝜙𝑝𝑟𝑒 means a MLP. For the each < 𝑇𝑠 ,𝑇𝑜 > pair,
the relation feature of them is denoted as r𝑠,𝑜 ∈ R. We compute
the probability of relation predicate 𝑐 similar to Eq.(3), where we
replace f′𝑖 with r𝑠,𝑜 and replace the object category embeddings
with the relation predicate embeddings r𝑟𝑒𝑙𝑐 , where 𝑐 ∈ 𝑃𝑏𝑎𝑠𝑒 . The
probability is denoted as 𝑝𝑟𝑒𝑙𝑠,𝑜 (𝑐), and the relation prediction loss is
similar to the classification loss in [9], denoted as L𝑢𝑛𝑖𝑜𝑛 .

3.3 Learning and Inference
Model Training. To complement union-level relation prediction
process, we also take fine-grained subject-object pairs into relation
prediction by a conventional strategy [9]. Specifically, we concate-
nate the subject and object trajectory features as the relation fea-
tures, and leverage prompt learning strategy for generating predi-
cate embeddings as similar to Eq.(9), denoted as c𝑠𝑜𝑐 , 𝑐 ∈ P𝑏𝑎𝑠𝑒 , for
final relation prediction. The loss is denoted as L𝑓 𝑔 .

Therefore, the final loss L for optimizing our framework is as
follows:

L = L𝑡𝑟𝑎 𝑗 + L𝑑𝑖𝑠 + L𝑢𝑛𝑖𝑜𝑛 + L𝑓 𝑔 . (12)

Model Inference. During model inference, we only utilize the
detected class-agnostic object trajectories for trajectory classifica-
tion and relation prediction. Note that during relation prediction,
all object categories are utilized, while either novel or all predicate
categories are used for prediction.

4 EXPERIMENTS
In this section, we conduct extensive experiments on public datasets
and demonstrate the effectiveness of our proposed UASAN frame-
work. Please refer to SupplementaryMaterial for the code, trained
model, detailed parameter settings and more experimental results.

4.1 Experimental Settings
Datasets. We evaluate our proposed method on the VidVRD [34]
and VidOR [32] benchmarks: (1) The VidVRD dataset, comprising
1000 videos sourced from ILSVRC2016 VID [31], marks the pioneer-
ing effort in the realm of VidSGG task. It covers 35 object categories
and 132 predicate categories. We follow the standard official splits:
800 videos for training and 200 videos for testing. The visual rela-
tions in each video are labeled by the relation triplets depicted as
<subject-predicate-object>. (2) VidOR, a larger scale user-generated
video dataset, consists of 10000 videos with a total length of 98.6
hours. VidOR dataset is dense annotated on 80 categories of objects
and 50 categories of predicates with the same annotation format
as VidVRD dataset. The whole dataset is divided into three splits:
7000 videos for training, 835 videos for validation, and 2165 videos
for testing. Due to the fact that the validation set of VidOR is not
publicly available, we evaluate our approach on the validation set.
Evaluation Settings and Metrics. Following [9], we evaluate
our model on open-vocabulary object trajectory classification task
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with Recall@K (R@K, K=5,10)metric, as the same evaluation proto-
cols as in open-vocabulary object classification. For relation detec-
tion evaluation, we evaluate ourmethod on two traditional VidSGG
tasks, i.e., RelationDetection (RelDet) and Relation Tagging (RelTag),
with open-vocabulary setting. Specifically, the categories in dataset
annotations are split into base categories and novel categories,
where the former consists of the common categories while the
latter consists of the rare ones. To comprehensively evaluate the
performance of our model, two settings are adopted [9] for infer-
ence: (1) Novel-split: the triplet samples with all object categories
and novel predicate categories are utilized for model evaluation,
and (2) All-split: the triplet samples with all object and predicate
categories are used during inference. For RelDet task, Mean av-
erage precision (mAP) and Recall@K (R@K, K=50,100) are used as
evaluation metrics, while Precision@K (P@K, K=1,5,10) is used for
RelTag task.

Moreover, three standard SGG evaluation tasks [45] are employed
on VidSGG setting for further performance comparison: (1) Scene
Graph Detection (SGDet), (2) Scene Graph Classification (SGCls),
and (3) predicate classification (PredCls). We also use the mAP and
R@K as the evaluation metrics for aforementioned tasks.
Implementation Details. The detected object trajectory data
utilized in our work is the same as [9], where a Fast-RCNN [29]-
based VinVLmodel [46] is used to detect object with bounding box
for each video frame, and Seq-NMS is employed for class-agnostic
object trajectory generation. We use a pre-trained ViT model [5]
for trajectory feature extraction, and our bridge encoder is estab-
lished based on a pre-trained Q-Former backbone [20]. To better
adopt our model to the specific situation (i.e., VidVRD and VidOR),
we use LoRA [14] for fine-tuning our bridge encoder to achieve
open-vocabulary object trajectory classification. We also follow
[27, 33, 34], generating visual relation triplets in short video seg-
ments, and merge the same relations with greedy relation associa-
tion algorithm proposed by [34]. For VidVRD dataset, the base split
have 25 object categories and 71 predicate categories, while the
novel split have 10 object categories and 61 predicate categories.
For VidOR dataset, the base split consists of 50 object categories
and 30 predicate categories, while the novel split contains 30 object
categories and 20 predicate categories.The detailed splits please re-
fer to [9].The hidden size𝑑 in ourmodel is set to 512 and the length
𝐿 of the extracted features is set to 32. 𝐿𝑚𝑜𝑡 is set to 2 and 𝐿𝑟𝑒𝑙 is
set to 10. We use the Adam optimizer [18] to train our model. The
learning rate is set to 10−4 for VidVRD and 5×10−5 for VidOR.The
batch size is set to 8 for VidVRD and 4 for VidOR, and our model
is trained 50 epochs on both VidVRD dataset and VidOR dataset.
Considering the costs of model inference, we don’t predict the vi-
sual relations in the subject-object trajectory pairs where as least
one of them predicated as background label. Due to space limita-
tions, we place the experimental results on VidOR dataset in the
Supplementary Material.

4.2 Evaluation on Open-Vocabulary Object
Trajectory Classification

We compare our model with three baseline models on object tra-
jectory classification task: ALPro [19], RePro [9], and BLIP-2 [20].

Table 1: Performance comparison of open-vocabulary object
trajectory classification on VidVRD dataset.

Models VidVRD-novel VidVRD-base VidVRD-all
R@5 R@10 R@5 R@10 R@5 R@10

ALPro 41.38 53.81 40.21 61.97 38.07 55.14
RePro 46.34 50.42 79.34 81.81 63.31 65.62
BLIP-2 59.90 72.97 46.84 58.38 50.41 62.51
Ours 68.70 70.79 78.68 82.32 73.51 76.39

Note that we only use the pre-traind ViT and Q-Former in BLIP-
2 for object trajectory feature extraction and classification. And
we report the results of our proposed model and other relevant
methods for open-vocabulary object trajectory classification on
the VidVRD dataset, which is shown in Table 1. We directly in-
put the detected object trajectories and the textual classes into the
encoders of two pre-trained VLMs, i.e., ALPro and BLIP-2, and cal-
culate the similarity for classification. Different from them, RePro
chooses to distill knowledge from ALPro with a MLP module, and
achieves better classification performance than ALPro on all splits.
We only finetune our bridge encoder, and achieve the SOTA per-
formance. Specifically, our model outperforms BLIP by gains of
8.80% in terms of R@5 on novel split on VidVRD dataset, while
it also achieves (23.10%, 13.88%) improvements on all split. When
compared with RePro, though RepPro surpass our model by gains
of 0.66% on R@5 on base split, we still outperform it on novel and
all splits with averages of 15.93%. Note that RePro and our method
are both trained only with base categories, our finetuned bridge
encoder achieves better performance on novel split while main-
tains the performance on base split. It demonstrate that the fine-
tune strategy promotes ourmodel better adopt to specific situation,
thereby improving the classification performance of our model for
both novel and base object categories.

4.3 Evaluation on Open-Vocabulary Scene
Graph Generation

For generating a video sense graph in open-vocabulary setting, we
separate the training processes of object trajectory classification
and visual relation prediction. Therefore, the trajectory classifica-
tion results are fixed during relation prediction.
Comparison with SOTA Methods on Conventional VidSGG
Setting.We compared our proposed method with following meth-
ods: MHA [35], VRD-SGTC [26], IVRD [24], BIG-C [8], and Re-
Pro [9]. And the comparison results are shown in Table 2. From
the results in Table 2, we have the observe that our proposedmodel
achieves better performance on most of metrics, though only base-
split data is used for model training. When compared with those
trained conventionally methods (i.e., all object and predicate cate-
gories are seen both in training and inference stages), we outper-
forms BIG-C by gains of (5.90%, 6.27%, 7.94%) in terms of mAP,
R@50 and R@100 on RelDet task, and we also achieve an improve-
ment with an average of 6.37% on RelTag task. Moreover, we also
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Table 2: Comparison with state-of-the-arts on VidVRD datasets.

Methods Training Data Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

VRD-SGTC base+novel 18.38% 11.21% 13.69% 60.00% 43.10% 32.24%
MHA base+novel 19.03% 9.53% 10.38% 57.50% 41.40% 29.45%
IVRD base+novel 22.97% 12.40% 14.46% 68.83% 49.87% 35.57%
BIG-C base+novel 17.67% 9.63% 11.29% 56.00% 43.80% 32.85%
RePro base 21.33% 12.92% 15.94% 59.00% 41.09% 28.87%
RePro* base 19.66% 12.60% 16.11% 60.50% 43.90% 32.08%
UASAN base 23.57% 15.90% 19.23% 65.50% 49.50% 36.77%

surpass IVRD with an average of 2.96% on SGDet task. When com-
pared with MHA and VRD-SGTC, our proposed method signifi-
cantly improves over them by (6.37%, 4.69%) and (8.85%,5.54%) un-
der R@50 and R@100 on RelDet, respectively. Such large improve-
ments demonstrate that our proposed union-relation alignment
framework have the ability to recognize predicate categories bet-
ter though trained with only apart of categories. When compared
with the conventional VidSGG approaches, we also achieve signif-
icant improvements.

Our proposedUASAN consistently achieves the best performance
on all metrics compared to RePro [9]. Specifically, we outperform
RePro by gains of (2.24%,2.98%,3.29%) on mAP, R@50 and R@100
metrics on RelDet task. In addition, when evaluated on RelTag
task, UASAN also surpasses RePro with an average of 7.60%. More-
over, to facilitate a fair comparison the relation prediction perfor-
mance of our model with RePro, we design a RePro variant (de-
noted as RePro* in Table 2) in which the object classifier is replaced
by the classifier pre-trained in our framework, aiming to mitigate
the influence of the performance of open-vocabulary object tra-
jectory classification. We can observe that the variant achieves
comparable performance with RePro. Specifically, RePro outper-
forms RePro* by gains of (1.67%, 0.32%) on mAP and R@50 met-
rics on RelDet task, while the variant achieves improvements of
(1.50%,2.81%,3.27%) on P@1, P@5 and P@10 metrics. The compari-
son results investigate that the relation prediction performance of
our framework is more relevant to our designed alignment strat-
egy between union regions and predicate concepts, and our pro-
posedmodules (i.e., visual refiner, semantic-aware context encoder
and union-relation alignment encoder) also facilitate our model to-
wards a comprehensive and robust relation prediction.
Comparison with SOTAs on Open-vocabulary VidSGG Set-
ting. Comparison in the open-vocabulary setting, we train our
model with base-split, and evaluate it with novel and all-split. The
results on VidVRD dataset are summarized in Table 3. FromTable 3
we can observe that our proposedmethod already achieves the best
results on almost all metrics. Specifically, when evaluated on novel-
split, we outperformVidVRD-II by gains of (7.48%, 4.79%, 5.96%) on
SGDet task. We also surpass it with an average of 10.32% on mAP,
R@50 and R@100 metrics on SGCls task. When compared with Re-
Pro, our proposed method surpasses it with (4.95%, 0.50%, 1.83%)
in terms of mAP, R@50 and R@100 on SGDet task on novel-split.
Moreover, when evaluated on SGCls and PredCls tasks, our pro-
posed framework outperforms ReProwith improvements of (4.18%,

3.97%, 5.30%) and (4.88%, 3.81%, 2.65%) for novel-split, respectively.
For all-split, UASAN also achieves clear margin gains on SGDet
(e.g., 23.57% vs. 21.33% on mAP and 15.90% vs. 12.92% on R@50).
The superior performance of ourmodel demonstrates the necessity
of exploring the alignment between visual union regions and rela-
tion predicate concepts, which facilitates the generalization ability
on unseen categories while maintaining the recognition ability for
seen categories during model training.

4.4 Ablation Studies
To investigate the effectiveness of each component of our model,
we conduct ablation studies on VidVRD dataset. We implement
three variants of our model as follows: (1) A conventional pipeline
is implemented, where we concatenate subject and object features
as the relation tokens and directly conduct predicate classification.
This variant is denoted as ModelA make it our baseline. (2) We in-
troduce the union regions and the object motion information of
the trajectories into our framework to generate relation tokens
for predicate classification, denoted as Model B. (3) We add the
designed context semantic-aware encoder to Model B to achieve
comprehensive context semantic understanding, and the encoded
representations are utilized for relation prediction. This variant is
denoted as Model C. And the model using all designed modules is
denoted as full-model. Table 4 presents the performance of each
model variant.
Exploring Facilitation of Pre-trained Models. To explore the
influence brought by the employed pre-trained models (ALPro uti-
lized in RePro and Bridge Encoder utilized in our framework), we
implement the Model A, which only considers the alignment be-
tween predicate concept embeddings and the subject-object pair
features, which are the concatenated subject and object features as
in RePro. In other words, we replace the ALPro in RePro with pre-
traind Bridge Encoder. According to the results in Table 4 we can
find that Model A achieves comparable performance with RePro.
Specifically, when evaluated on novel-split, RePro outperformsModel
A by gains of (2.31%, 1.31%) on mAP, R@50 and R@100 on SGDet
task, while Model A achieves improvements of (0.63%, 1.00%) on
R@50 and R@100 metric under all-split. 
Effectiveness of Exploring Union Region Modeling. We de-
velop the Model B to verify the necessity of modeling the align-
ment between union regions and relation predicate concepts. In
Model B, we simply design a sequence of learnable word tokens,
and generate union-level predicate embeddings. Then, the union
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Table 3: Comparison of existing Open-vocabulary VidSGG methods on VidVRD dataset.

Split Methods SGDet SGCls PredCls
mAP R@50 R@100 mAP R@50 R@100 mAP R@50 R@100

Novel

ALPro 1.05% 3.14% 4.62% 3.69% 7.27% 8.92% 4.09% 9.42% 10.41%
VidVRD-II 3.57% 8.59% 12.39% 5.70% 13.22% 18.34% 7.35% 18.84% 26.44%

RePro 6.10% 13.38% 16.52% 10.32% 19.17% 25.28% 12.74% 25.12% 33.88%
UASAN 11.05% 13.88% 18.35% 14.50% 23.14% 30.58% 17.62% 28.93% 36.53%

All

ALPro 3.20% 2.62% 3.18% 3.92% 3.88% 4.75% 4.97% 4.50% 5.79%
VidVRD-II 12.74% 9.90% 12.59% 17.26% 14.93% 19.68% 19.73% 18.17% 24.90&

RePro 21.33% 12.92% 15.94% 30.15% 19.75% 25.00% 34.90% 25.50% 32.49%
UASAN 23.57% 15.90% 19.23% 32.24% 25.03% 31.07% 38.43% 30.01% 37.13%

Table 4: Ablation studies of different components of UASAN on VidVRD dataset.

Split Methods Pair Union SACEnc URADec SGDet SGCls PredCls
mAP R@50 R@100 mAP R@50 R@100 mAP R@50 R@100

Novel

A √ × × × 6.76% 11.07% 15.21% 10.42% 18.02% 26.12% 13.16% 21.82% 30.41%
B √ √ × × 7.69% 12.56% 16.53% 11.12% 22.98% 27.93% 13.40% 27.60% 34.05%
C √ √ √ × 10.09% 12.56% 16.03% 12.81% 21.32% 26.61% 14.44% 26.28% 32.89%

full-model
√ √ √ √

11.05% 13.88% 18.35% 14.50% 23.14% 30.58% 17.62% 28.93% 36.53%

All

A √ × × × 19.73% 13.55% 16.94% 29.41% 21.55% 27.53% 35.23% 25.85% 33.44%
B √ √ × × 21.13% 15.35% 18.43% 31.06% 24.20% 29.97% 37.07% 28.93% 35.59%
C √ √ √ × 22.49% 16.19% 19.15% 31.30% 24.67% 30.22% 35.98% 27.03% 34.60%

full-model
√ √ √ √

23.57% 15.90% 19.23% 32.24% 25.03% 31.07% 38.43% 30.01% 37.13%

region and the positional information are directly integrated into
a predictor for relation prediction. It is obvious that modeling the
correspondence of union regions and relations achieves improve-
ments on almost all metrics. On novel-split, Model B outperforms
Model A by gains of (0.93%, 1.49%, 1.32%) on mAP, R@50 and
R@100 on SGDet task. Moreover, it also surpasses Mode B by an
average of (2.48%, 3.22%) on SGCls and PredCls tasks on all-split.
We can draw the conclusion that introducing the alignment be-
tween union regions and predicate concepts has a significant facil-
itating effect on improving model performance.
Effectiveness of Perceiving Context Semantic. Then we ex-
plore the effectiveness of our proposed semantic-aware context en-
coder. In ModeB, we directly use the encoded semantic-aware rep-
resentations for predicate classification. Comparing the results in
ModelB andModel Cwith novel-split, we can observe that though
Model B outperforms Model C by gains of (1.66%, 1.32%, 1.32%,
1.16%) on R@50 and R@100 on SGCls and PredCls tasks, Model
C achieves higher performance on the mAP metric on three tasks.
Moreover, Model C surpasses ModelB on most metrics when eval-
uated with all-split. Specifically, Model C outperforms Model B
with improvements on mAP (22.49% vs. 21.13%,), R@50 (16.19% vs.
15.35%) and R@100 (19.15% vs. 18.43%) metrics on SGDet task. We
speculate that it is because the designed semantic-aware context
encoder promotes our model to pay more attention to the context
semantic within subject-object pairs, and achieve better relation
prediction performance.
Effectiveness of Union-relation Alignment Decoder. We fi-
nally investigate the benefits of our proposed union-relation align-
ment decoder. The results of our full-model are significantly bet-
ter than Model C. Specifically, full-model outperforms Model C

by gains of (0.96%, 1.32%, 2.32%) on SGDet task under novel-split,
which demonstrates the designed decoder brings ourmodel stronger
generalization to novel categories compared with only utilizing
semantic-aware representations. In addition, full-model also achieves
great improvements by gains of 1.08% on mAP metric when eval-
uated with the all-split. Additionally, clear improvements are also
achieved on all metrics of SGCls and PredCls tasks. The results in-
dicate the effectiveness of our designed decoder structure, which
has the capability to integrate multiple representations and gen-
erate discriminative union-aware relation tokens for final robust
relation prediction.

5 CONCLUSION
In this paper, we propose an open-vocabulary video scene graph
generation framework named Union-Aware Semantic Alignment
Network (UASAN), which explores the alignment between visual
union regions and relation predicate concepts formore comprehen-
sive and robust relation prediction. Specifically, we design a visual
refiner to generate visual-aware representations for detected ob-
ject trajectories and their union regions.Thenwe design a semantic-
aware context encoder to obtain semantic-aware representations.
After that we utilize a union-relation alignment decoder to gen-
erate discriminative union-aware relation tokens for final relation
prediction. Extensive experimental results on VidVRD and VidOR
benchmarks demonstrate our proposed UASAN outperforms al-
most all SOTA methods on Ov-VidSGG task. In the future, we aim
to explore a lighter framework while maintaining comparable per-
formance and application in various downstream tasks, such as
VQA and video caption.
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