
Effectiveness of Prompt Optimization in NL2SQL Systems
Sairam Gurajada∗
sairam@megagon.ai

Megagon Labs
Mountain View, California, USA

Eser Kandogan
eser@megagon.ai
Megagon Labs

Mountain View, California, USA

Sajjadur Rahman∗
sajjadurr@adobe.com

Adobe
San Jose, California, USA

Abstract
NL2SQL approaches have greatly benefited from the impressive
capabilities of large language models (LLMs). In particular, boot-
strapping an NL2SQL system for a specific domain can be as simple
as instructing an LLM with sufficient contextual information, such
as schema details and translation demonstrations. However, build-
ing an accurate system still requires the rigorous task of selecting
the right context for each query—including identifying relevant
schema elements, cell values, and suitable exemplars that help the
LLM understand domain-specific nuances. Retrieval-based meth-
ods have become the go-to approach for identifying such context.
While effective, these methods introduce additional inference-time
costs due to the retrieval process.

In this paper, we argue that production scenarios demand high-
precision, high-performance NL2SQL systems, rather than simply
high-quality SQL generation, which is the focus of most current
NL2SQL approaches. In such scenarios, the careful selection of a
static set of exemplars—capturing the intricacies of the query log,
target database, SQL constructs, and execution latencies—plays a
more crucial role than exemplar selection based solely on similarity.
The key challenge, however, lies in identifying a representative set
of exemplars for a given production setting. To this end, we propose
a prompt optimization framework that not only addresses the high-
precision requirement but also optimizes the performance of the
generated SQL through multi-objective optimization. Preliminary
empirical analysis demonstrates the effectiveness of the proposed
framework.
ACM Reference Format:
Sairam Gurajada, Eser Kandogan, and Sajjadur Rahman. 2025. Effectiveness
of Prompt Optimization in NL2SQL Systems. In Novel Optimizations for
Visionary AI Systems (NOVAS ’25), June 22–27, 2025, Berlin, Germany. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3735079.3735325

1 Introduction
The rapid progress in LLM capabilities—specifically their ability to
follow instructions and maintain large contexts—has made them
a natural choice in many applications. Natural Language to SQL
(NL2SQL) is a long-standing and important task in many business-
critical scenarios, requiring a deep understanding of user queries
∗Work done while at Megagon Labs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NOVAS ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1917-2/2025/06
https://doi.org/10.1145/3735079.3735325

and the underlying databases for effective translation. Recent years
have witnessed significant progress in NL2SQL, fueled by advance-
ments in LLMs [3, 4, 8, 15]. However, building an effective NL2SQL
system goes beyond simply leveraging LLMs—it requires the care-
ful selection of instructions, exemplars, and schema, making it a
challenging task despite recent breakthroughs [6].

Recent works [4, 21] emphasize that exemplar selection is crucial
for building effective NL2SQL systems. Retrieval-based exemplar
selection—i.e., identifying exemplars similar to the user query—has
become the de facto method. However, studies [4, 19] highlight
inefficiencies and overfitting issues with similarity-based retrieval
methods, and argue that synthetic exemplars can yield better per-
formance. While each approach has its advantages—retrieval-based
methods are cheaper due to index-based lookups without LLM
calls, and synthetic exemplars may be more accurate—they both
require exemplar selection at inference time, which can become a
bottleneck in business-critical applications [23].

PromptOptimization.To address the limitations of current NL2SQL
systems, we argue that for effective SQL generation, all an LLM
needs is a static set of exemplars that capture the intricacies of
the domain—offering performance comparable to retrieval-based
approaches, while eliminating the need for inference-time retrieval.
The key challenge lies in identifying this representative set of exem-
plars. To tackle this, we leverage prompt optimization techniques
for exemplar selection in NL2SQL and demonstrate their effective-
ness.

Multi-ObjectiveOptimization.Most existingNL2SQL approaches
focus solely on accuracy. However, accuracy is only one dimension
in deploying practical NL2SQL systems. In real-world settings, sys-
tems must also understand query efficiency and the characteristics
of target SQL engines, generating queries that are efficient to exe-
cute (i.e., with lower latency). In this work, we propose a way to
extend prompt optimization to multi-objective settings. To support
this, we introduce an augmented benchmark based on BIRD that
includes query latency measurements.

To summarize, our contributions are as follows:

• To the best of our knowledge, this is the first work to study
the effectiveness of prompt optimization in NL2SQL systems.
• We propose an iterative prompt optimization (IPO) frame-
work that jointly optimizes instructions and exemplar selec-
tion through two agents Proposer and SQL Generator. Addi-
tionally, the framework implicitly performs schema pruning,
reducing prompt size and thereby lowering inference costs.
• We introduce the aspect of generating efficient SQL trans-
lations in NL2SQL systems, and introduce an augmented
benchmark BIRD-MULTI (based on BIRD dataset) that incor-
porates query latency information.

https://doi.org/10.1145/3735079.3735325
https://doi.org/10.1145/3735079.3735325

NOVAS ’25, June 22–27, 2025, Berlin, Germany Trovato et al.

2 Related Work
Exemplar Selection. With the advent of powerful API-based
LLMs such as ChatGPT [25] and Gemini [24], in-context learn-
ing (ICL)–based approaches [4, 5, 7, 16, 19–21] have become the
dominant strategy for building high-performing NL2SQL systems.
Specifically, retrieval-based exemplar selection [21], where exam-
ples are selected from a training set based on text or structural
similarity, has proven sufficient to improve NL2SQL performance
without expensive fine-tuning. However, such systems introduce
inference-time costs and may overfit to specific queries due to the
retrieval of overly similar examples [4].

To address this, recent approaches [4, 19] employ (online) syn-
thetic exemplar generation rather than relying on training data
selection. While this mitigates overfitting, it requires learning ex-
emplar generators, which incurs additional costs and presents chal-
lenges in domain transfer. In this work, we explore optimization-
basedmethods for exemplar selection that avoid both the expense of
retrieval indexes and the complexity of online synthetic generation.

Prompt Optimization. Optimizing LLM prompts has been a focus
for several years [22, 26], showing effectiveness across a multitude
of applications. More recently, DSPy [9] introduced a declarative
framework for expressing and optimizing prompts for NLP tasks.
Foundational work by [27] demonstrated the inherent capability
of LLMs to act as optimizers, particularly for instruction tuning
across various tasks. Building on this,[18] proposed MIPRO, a non-
iterative technique for joint optimization of instructions and exem-
plar selection in multi-stage pipelines. Furthermore,[13] introduced
a declarative framework focused on BI workloads, combining hy-
brid database systems with AutoML-style optimization for pipeline
tuning. While these works introduced key optimization techniques,
their applicability and effectiveness in the NL2SQL setting remain
unexplored—a gap that our work seeks to address.

3 Prompt Optimization for NL2SQL
To demonstrate the effectiveness of optimization in NL2SQL, we
adopt a simple in-context learning (ICL)[2] pipeline, as illustrated
in Figure1, which uses a single LLM to generate the SQL query. The
prompt provided to the LLM consists of: a) #Instruction – a guiding
instruction for the task, b) #Exemplars – examples selected from
the training data via an Exemplar Selection component, c) #Query
– the user query to be translated, d) #Schema – the relevant schema
retrieved using a Schema Retrieval module, and e)#SQL – a prefix
to trigger SQL generation by the LLM.

To apply to production use-case, we use exact proprietary schema,
and focus our efforts on optimizing exemplar selection.

3.1 Exemplar Selection and Optimization
As previously mentioned, exemplar selection is a crucial step in
NL2SQL generation, particularlywhen using ICL-based approaches [8].
This involves identifying an appropriate set of exemplars—each
consisting of a natural language (NL) query, database schema, cor-
responding SQL query, and optionally hints or cell values—that
help the LLM understand the domain, the target SQL engine, and
data-specific nuances. Below, we discuss various exemplar selection
strategies and how optimization can enhance the selection process.

Instruction
Your are an expert…

Exemplars
{exemplars}

Query
{query}

Schema
{schema}

SQL:

NL2SQL prompt

Schema
Retrieval

DB

Exemplar
SelectionNL Query:

What is the highest
eligible free rate for K-12
students in the schools
in Alameda County?

Training
Data

SELECT `Free Meal Count
(K-12)` / `Enrollment (K-12)`
FROM frpm …

SQL Query:

Figure 1: NL2SQL Pipeline

Algorithm 1: Optimization of Random Exemplar Selection
Input: D, 𝑛𝑢𝑚𝑇𝑟𝑖𝑎𝑙𝑠 , P𝑏𝑎𝑠𝑒 , LLM
Output: P𝑜𝑝𝑡

1 D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑 ← Split(D)

2 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 0
3 𝑃𝑜𝑝𝑡 ← P𝑏𝑎𝑠𝑒
4 while 𝑖 ≤ 𝑛𝑢𝑚𝑇𝑟𝑖𝑎𝑙𝑠 do
5 𝑘 ← 𝑡𝑟𝑖𝑎𝑙 .suggest_int(′k′, 0, K) /* choose 𝑘 */

6 𝐸𝑖 ← Random(D𝑡𝑟𝑎𝑖𝑛, 𝑘) /* 𝑘 exemplars */

7 P𝑖 ← P𝑏𝑎𝑠𝑒 + 𝐸𝑥𝑖
8 𝑠𝑐𝑜𝑟𝑒 ← Evaluate(LLM, P𝑖 , D𝑣𝑎𝑙𝑖𝑑)

9 if 𝑠𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then
10 𝑃𝑜𝑝𝑡 ← P𝑖
11 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

Random. A straightforward approach to exemplar selection is
random sampling. For a predefined value of 𝑘 (the number of ex-
emplars), this strategy randomly samples 𝑘 exemplars from the
training data to include in the prompt. More sophisticated sam-
pling techniques, such as stratified sampling, can also be used to
account for the distribution of query types. For example, queries
in the BIRD [11] dataset are categorized into three groups: simple,
moderate, and challenging.

Optimizing Random Exemplar Selection. A key challenge with
random selection is choosing an appropriate value for 𝑘 . A small 𝑘
may fail to capture the diversity of the NL and SQL constructs, while
a large 𝑘 can lead to lost-in-the-middle issues with LLMs [14] and
increase generation costs due to the larger prompt size. A simple yet
effective approach is to treat 𝑘 as a hyperparameter and optimize
it using AutoML-style techniques, as illustrated in Algorithm 1.
Inspired by DSPy’s BootStrap with FewShot Example Selection [9],
this method optimizes the number of demonstrations by randomly
sampling exemplars (with replacement), rather than bootstrapping,
using a performance metric 𝜇.

In addition to optimizing exemplar selection, joint optimiza-
tion of instruction and exemplar selection can lead to improved
performance. MIPRO [18] leverages an LLM to generate 𝑁 instruc-
tion–exemplar pairs (𝐼1, 𝐸1), (𝐼2, 𝐸2), . . . , (𝐼𝑁 , 𝐸𝑁), where 𝐼𝑖 is an
instruction generated from a set of randomly bootstrapped exem-
plars 𝐸𝑖 . A hyperparameter optimization algorithm such as TPE [1]

Effectiveness of Prompt Optimization in NL2SQL Systems NOVAS ’25, June 22–27, 2025, Berlin, Germany

Instruction
Your are an expert prompt generator for
another LLM…

Best Prompt
Prompt: {best_prompt}
Accuracy: {best_accuracy}

Current Prompt
Prompt: {current_prompt}
Accuracy: {current_accuracy}
Wrong Examples: {wrong_exemplars}
Correct Examples: {wrong_exemplars}

Proposer prompt

Proposer

SQL Generator

Instruction
Your are an expert NL2SQL generator…

Exemplars
{exemplars}

NL2SQL prompt

Query
{query}

Schema
{schema}

SQL

Training
Data

Validation
Data

Schema
Retrieval

DB

sample

SQL
Executor

Figure 2: Iterative Prompt Optimization

is then used to identify the optimal pair (𝐼𝑖 , 𝐸𝑖) based on an objective
function, such as validation accuracy.

3.2 Iterative Prompt Optimization
One of the key limitations of the exemplar selection strategies dis-
cussed earlier is their ad hoc nature—exemplars are either randomly
sampled or bootstrapped using heuristics (as in [18]), which may
lead to suboptimal performance. Long-context LLMs (LCMs) aim
to overcome this by fitting a larger number of exemplars (100–200)
into their context window. However, recent work [4] has shown
that relying on LCMs to implicitly perform exemplar selection does
not improve performance and can, in fact, be detrimental, as LCMs
often struggle with effective in-context learning [12].

To address this, we extend the work of [27], which uses an LLM
as an optimizer to find an optimal prompt instruction, by enabling
it to perform both instruction generation and exemplar selection
through two cooperating agents: the Proposer and the SQL Gener-
ator. Specifically, we introduce an Iterative Prompt Optimization
(IPO) approach (illustrated in Figure 2) in which the two agents
work together to discover optimal NL2SQL prompts for a given
training corpus.

The Proposer agent takes a Proposer prompt as input and gen-
erates an NL2SQL prompt comprising an instruction and a set of
exemplars. The SQL Generator agent then evaluates the generated
prompt on a validation set (sampled iteratively from the training
data) and collects performance metrics including accuracy, as well
as the correct and incorrect examples. This feedback is used to
update the Proposer prompt. In subsequent iterations, the Proposer
is guided to refine the NL2SQL prompt based on past performance,
aiming to produce more informative exemplars and a better-suited
instruction for improved SQL generation.

In contrast toMIPRO, which bootstraps exemplars randomly, IPO
uses an LLM as an optimizer to jointly refine both the instruction
and exemplar selection. Additionally, we observed that IPO often
generates more concise NL2SQL prompts by pruning irrelevant
schema information from the exemplars. For example, Figure 3
shows an exemplar whose schema includes only the table film
and the columns film_id, title, and rating from the database
movie_3. Although schema pruning was not an explicit design goal
of IPO, this behavior highlights the strength of LLMs as optimizers
in complex tasks such as NL2SQL.

NLQ: List all the films that are rated as PG-13.
Schema:
Database Name: movie_3
Tables: ['film']
#Columns:
film: [film_id:integer, title:text, rating:text]
Evidence: film refers to title; rated as PG-13 refers to
rating = `PG-13`.
SQL: SELECT title FROM film WHERE rating = 'PG-13';

Figure 3: IPO generated exemplar with automatic schema
pruning
4 Extending to Multi-Objective
Motivation. Thus far, NL2SQL systems have focused mainly on
improving execution accuracy while ignoring a critical dimension:
generating efficient SQL queries. Consider the example of SQL
translations: ground truth (GT) and generated SQL (Gen) for the
query NLQ. Executing the GT SQL query on a SQLite3 database took
around 10.2 seconds (due to the sub-query), while the Gen query
(which uses an inner join) took only 0.03 seconds. This example
demonstrates that the generated query (in this case, ground truth)
may not always be the most efficient SQL translation.

NLQ: Show the avatar of the user who gave the rating at
2019/10/17 1:36:36.
GT: SELECT user_avatar_image_url FROM lists_users

WHERE user_id = (SELECT user_id FROM ratings
WHERE rating_timestamp_utc LIKE '2019-10-17 01:36:36')

Gen:SELECT T2.user_avatar_image_url
FROM ratings AS T1 INNER JOIN lists_users AS T2
ON T1.user_id = T2.user_id
WHERE T1.rating_timestamp_utc LIKE '2019-10-17 01:36:36'

Benchmark Creation. To build NL2SQL systems capable of gener-
ating efficient SQL queries, it is essential to have information about
the efficiency of a SQL query—such as its wall-clock execution
time—alongside the SQL translation itself. This efficiency infor-
mation enables SQL generators (LLMs) to better understand the
nuances and computational complexity of various SQL constructs,
ultimately guiding them toward generating more optimized queries.
However, existing benchmarks such as BIRD[11] and SPIDER[10]
lack this critical execution-time data. To address this gap, we de-
veloped a new augmented benchmark built on top of BIRD, which
includes each natural language query (NLQ) paired with two dif-
ferent SQL variants (generated using reasoning models OpenAI
O3 [17]) along with their measured execution times.

NLQ: Give the full name of the actor with the highest rental rate.
SQL1: SELECT a.first_name, a.last_name FROM actor AS a JOIN
film_actor AS fa ON a.actor_id = fa.actor_id JOIN film AS f ON
fa.film_id = f.film_id ORDER BY f.rental_rate DESC LIMIT 1;
Time1: 0.0012 seconds
SQL2: SELECT a.first_name, a.last_name FROM actor a JOIN
film_actor fa ON a.actor_id = fa.actor_id JOIN film f ON
fa.film_id = f.film_id WHERE f.rental_rate =
(SELECT MAX(rental_rate) FROM film) LIMIT 1;
Time2: 0.0009 seconds

NOVAS ’25, June 22–27, 2025, Berlin, Germany Trovato et al.

Generating Efficient SQL Queries. With the augmented bench-
mark containing SQL variants and their corresponding execution
times, it becomes feasible to design LLM prompts specifically aimed
at generating efficient SQL queries. Furthermore, by leveraging
the optimization techniques described in Section 3, it is possible to
jointly optimize for both SQL efficiency and generation accuracy,
leading to more practical and performant NL2SQL systems.

5 Preliminary Results
Here, we present preliminary results demonstrating the effective-
ness of prompt optimization in NL2SQL systems. As described
earlier, we consider a simple NL2SQL pipeline consisting of a single
LLM (illustrated in Figure 1) and evaluate the following prompt
optimization strategies discussed in Section 3. For all experiments,
we use GPT-4o as the LLM.
• RES. Random Exemplar Selection (RES) is the baseline ap-
proach, where 𝑘 = 10 exemplars are randomly sampled from
the training data. We run RES over 10 random samples and
report the best accuracy.
• ORES. Optimized Random Exemplar Selection (ORES) uses
Bayesian Optimization to tune the hyperparameter 𝑘 in the
RES method. We limit the number of trials to 20 and note
that increasing trials does not necessarily correlate with
improved performance.
• MIPROv2. Multiprompt Instruction PRoposal Optimizer
(MIPROv2) is the DSPy [9] recommended optimizer that
jointly optimizes instruction and exemplar selection. Similar
to ORES, we set the number of trials to 20, and the maximum
number of labeled demonstrations to 10.
• IPO. Iterative Prompt Optimization (IPO) is a bi-agent, LLM-
as-optimizer approach that iteratively refines the NL2SQL
prompt using feedback on SQL generation quality. For IPO,
we set the number of iterations to 5 and instruct the LLM to
generate at least 5 diverse exemplars per iteration.

5.1 Effectiveness of Optimization
Performance. Table 1 highlights the effectiveness of different op-
timization strategies on the BIRD dataset. The naive RES approach
underperforms due to its inability to select informative exemplars
for SQL generation. The ORES approach, which applies a simple
AutoML-based optimization, performs better than RES but falls
short compared to more advanced strategies like MIPROv2 and IPO.
IPO achieves the best performance, benefiting from iterative refine-
ment using feedback from the SQL Generator agent, which leads
to more relevant exemplar selection. The absence of this feedback
loop in MIPROv2 makes it less effective than IPO. However, we
emphasize that these observations are specific to the NL2SQL task.

Quantitative Analysis. Table 2 presents a quantitative analysis of
the different optimization techniques, measured across two dimen-
sions: prompt length and optimization time. RES (with 10 exemplars)
results in a prompt length of approximately 23k tokens, while ORES
(with 75 exemplars) leads to a significantly larger prompt of around
84k tokens. MIPROv2 (with 10 exemplars) produces a prompt length
of about 26k tokens, similar to RES. IPO yields the shortest prompt
length, as it prunes a substantial portion of schema information
from each exemplar, while also delivering the best performance.

Approach Simple Moderate Challenging Total

RES 52.32 48.17 43.35 50.74
ORES 58.27 51.29 46.21 55.02
MIPROv2 64.86 48.28 44.14 57.89
IPO 63.57 52.28 45.52 59.24

Table 1: Ex. Accuracies of Prompt optimization Methods on
BIRD (dev) dataset

In terms of optimization time, MIPROv2 takes the longest, as it
involves both data analysis and joint optimization, whereas IPO
and ORES are comparatively faster.

Approach Prompt Length (#tokens) Optimization Time

RES 23,749 -
ORES 84,519 5m26s
MIPROv2 26,352 13m16s
IPO 6,495 8m53s

Table 2: Quantitative analysis of PO on BIRD (dev) dataset

5.2 Multi-Objective Optimization
Table 3 demonstrates the effectiveness of multi-objective optimiza-
tion using the IPO approach. For this, we consider both accuracy
and latency on the BIRD (dev) dataset. When compared to the
ground truth (GT), accuracy-only IPO optimization (Section 3.2)
results in the generation of SQL queries that are less efficient, with
a maximum latency of approximately 18 seconds (vs. 8.7 seconds
for GT) and a standard deviation (𝜎) that is almost 1.8 times larger.
In contrast, joint optimization of both accuracy and latency leads to
only a marginal increase in the maximum latency of queries, while
maintaining a standard deviation similar to that observed in GT.

Approach Execution Time(s) Acc. Gen. Time
Min Max 𝜎 𝜇 (Ex) QPS

GT 1e-5 8.761 0.352 0.0026 - -

Acc.Opt 9e-5 18.512 0.635 0.0051 59.24 1.56
+ Lat. 7e-5 10.156 0.383 0.0028 58.98 1.72

Table 3: Effectiveness of multi-objective optimization on
BIRD (dev) dataset

6 Conclusions
In this paper, we propose a novel approach for building NL2SQL
systems by leveraging prompt optimization as a key strategy. Specif-
ically, we optimize both instruction and exemplar selection for
LLM-based SQL generation. Furthermore, through prompt opti-
mization, we demonstrate that schema pruning and concise prompt
generation can be achieved without negatively impacting accuracy.
Additionally, we highlight the importance of generating efficient
SQL queries and show that prompt optimization can effectively
achieve the dual objectives of accuracy and efficiency. Finally, we in-
troduce an augmented benchmark designed for the multi-objective
optimization of NL2SQL systems.

Effectiveness of Prompt Optimization in NL2SQL Systems NOVAS ’25, June 22–27, 2025, Berlin, Germany

References
[1] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms

for Hyper-Parameter Optimization. In Advances in Neural Information Processing
Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger
(Eds.), Vol. 24. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[3] Hasan Alp Caferoğlu and Özgür Ulusoy. 2025. E-SQL: Direct Schema Linking
via Question Enrichment in Text-to-SQL. arXiv:2409.16751 [cs.CL] https://arxiv.
org/abs/2409.16751

[4] Yeounoh Chung, Gaurav T. Kakkar, Yu Gan, Brenton Milne, and Fatma Ozcan.
2025. Is Long Context All You Need? Leveraging LLM’s Extended Context for
NL2SQL. arXiv:2501.12372 [cs.DB] https://arxiv.org/abs/2501.12372

[5] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jin-
shu Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT.
arXiv:2307.07306 [cs.CL] https://arxiv.org/abs/2307.07306

[6] Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither,
Wangda Tan, Joyce Cahoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, Alex Van
Grootel, Brandon Chow, Kai Deng, Katherine Lin, Marcos Campos, K. Venkatesh
Emani, Vivek Pandit, Victor Shnayder, Wenjing Wang, and Carlo Curino. 2024.
NL2SQL is a solved problem... Not!. In CIDR. https://www.cidrdb.org/cidr2024/
papers/p74-floratou.pdf

[7] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. arXiv:2308.15363 [cs.DB] https://arxiv.org/abs/2308.
15363

[8] Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li,
Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. 2025. A
Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL.
arXiv:2411.08599 [cs.AI] https://arxiv.org/abs/2411.08599

[9] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts.
2024. DSPy: Compiling Declarative Language Model Calls into State-of-the-Art
Pipelines. In The Twelfth International Conference on Learning Representations.
https://openreview.net/forum?id=sY5N0zY5Od

[10] Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su,
Zhaoqing Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. 2024. Spider
2.0: Evaluating language models on real-world enterprise text-to-sql workflows.
arXiv preprint arXiv:2411.07763 (2024).

[11] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

[12] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2025. Long-
context LLMs Struggle with Long In-context Learning. Transactions on Machine
Learning Research (2025). https://openreview.net/forum?id=Cw2xlg0e46

[13] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen,
Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024. A Declarative System for Optimizing AI Workloads.
arXiv:2405.14696 [cs.CL] https://arxiv.org/abs/2405.14696

[14] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173. doi:10.1162/tacl_a_00638

[15] Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi.
2024. The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned
Language Models. arXiv:2408.07702 [cs.CL] https://arxiv.org/abs/2408.07702

[16] Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang,
Arman Cohan, and Dragomir Radev. 2023. Enhancing Text-to-SQL Capabilities
of Large Language Models: A Study on Prompt Design Strategies. In Findings
of the Association for Computational Linguistics: EMNLP 2023, Houda Bouamor,
Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
Singapore, 14935–14956. doi:10.18653/v1/2023.findings-emnlp.996

[17] OpenAI. 2025. Introducing o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/ Accessed: 2025-05-07.

[18] Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher
Potts, Matei Zaharia, and Omar Khattab. 2024. Optimizing Instructions and
Demonstrations for Multi-Stage Language Model Programs. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association for Computa-
tional Linguistics, Miami, Florida, USA, 9340–9366. doi:10.18653/v1/2024.emnlp-
main.525

[19] Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei,
Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik.
2025. CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate
Selection in Text-to-SQL. In The Thirteenth International Conference on Learning
Representations. https://openreview.net/forum?id=CvGqMD5OtX

[20] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems. https://openreview.net/forum?
id=p53QDxSIc5

[21] Chen Shen, Jin Wang, Sajjadur Rahman, and Eser Kandogan. 2025. MageSQL: En-
hancing In-context Learning for Text-to-SQL Applications with Large Language
Models. arXiv:2504.02055 [cs.DB] https://arxiv.org/abs/2504.02055

[22] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
4222–4235. doi:10.18653/v1/2020.emnlp-main.346

[23] Nan Tang, Chenyu Yang, Ju Fan, Lei Cao, Yuyu Luo, and Alon Y. Halevy. 2024.
VerifAI: Verified Generative AI. In CIDR. https://www.cidrdb.org/cidr2024/
papers/p5-tang.pdf

[24] Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal Models.
arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.11805

[25] OpenAI Team. 2024. GPT-4o System Card. arXiv:2410.21276 [cs.CL] https:
//arxiv.org/abs/2410.21276

[26] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. 2023. Hard Prompts Made Easy: Gradient-Based Discrete Opti-
mization for Prompt Tuning andDiscovery. In Thirty-seventh Conference on Neural
Information Processing Systems. https://openreview.net/forum?id=VOstHxDdsN

[27] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou,
and Xinyun Chen. 2024. Large Language Models as Optimizers. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=Bb4VGOWELI

A Appendix
A.1 Prompt Templates
• Random andOptimizes Exemplar Search (RES &ORES)

#Instruction
Given natural language query, schema of the database
and evidence, generate a sqlite SQL query

#Exemplars
NLQ: {{NLQ}}
SCHEMA: {{DB_SCHEMA}}
EVIDENCE: {{EVIDENCE}}
SQL: {{SQL}}

#Query
NLQ: {{NLQ}}
SCHEMA: {{DB_SCHEMA}}
EVIDENCE: {{EVIDENCE}}

• Proposer Agent

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2501.12372
https://arxiv.org/abs/2501.12372
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2307.07306
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=Cw2xlg0e46
https://arxiv.org/abs/2405.14696
https://arxiv.org/abs/2405.14696
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2504.02055
https://arxiv.org/abs/2504.02055
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://www.cidrdb.org/cidr2024/papers/p5-tang.pdf
https://www.cidrdb.org/cidr2024/papers/p5-tang.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=VOstHxDdsN
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

NOVAS ’25, June 22–27, 2025, Berlin, Germany Trovato et al.

#Instruction
You are an expert in assisting another LLM for the
task of generating SQL queries from natural language
queries. You are given the following information:
1. The best prompt generated so far
2. The accuracy of the best prompt
3. The current prompt
4. The accuracy of the current prompt
5. A set of exemplars where the current prompt
incorrectly generated the SQL query
6. A set of exemplars where the current prompt
correctly generated the SQL query

#Goal:
Think step by step to generate a prompt comprising
of two parts in JSON format:
1. Instruction for the LLM to generate SQL query
for sqlite3 database
2. A set of diverse exemplars to assist the LLM in
generating the SQL query.

#Best Prompt:
{best_prompt}

#Best Accuracy:
{best_accuracy}

#Current Prompt:
{current_prompt}

#Current Prompt Accuracy:
{current_accuracy}

#Wrong Exemplars:
{wrong_examples}

Correct Exemplars:
{correct_examples}

Proposed Prompt:

• Proposed Prompt: Example

#Instruction
Given a natural language query (NLQ), the schema of
the database, and relevant evidence, generate a
valid SQLite SQL query that satisfies the NLQ. Use
the provided schema and evidence to ensure the SQL
query correctly answers the NLQ. Only utilize
relevant columns and tables in the query.
Return only the SQL query without any prefixes
or block quotes.

#Exemplars:
NLQ: List all the films that are rated as PG-13.
Schema:
Database Name: movie_3
Tables: ['film']
#Columns:
film: [film_id:integer, title:text, rating:text]
Evidence: film refers to title; rated as PG-13 refers
to rating = 'PG-13'.
SQL: SELECT title FROM film WHERE rating = 'PG-13';

...

• Variant Generator for Multi-Objective Benchmark

#Instruction
Given natural query, database schema, corresponding SQL,
generate {num_variants} SQL variants.
Generate only valid SQL query without any prefix
or suffix:

#Query
{query}

#Database Schema
{db_schema}

#Ground Truth SQL:
{sql}

#SQL Variants:

1.

2.

3.

	Abstract
	1 Introduction
	2 Related Work
	3 Prompt Optimization for NL2SQL
	3.1 Exemplar Selection and Optimization
	3.2 Iterative Prompt Optimization

	4 Extending to Multi-Objective
	5 Preliminary Results
	5.1 Effectiveness of Optimization
	5.2 Multi-Objective Optimization

	6 Conclusions
	References
	A Appendix
	A.1 Prompt Templates

