
Improving Influence-based Instruction Tuning Data Selection for Balanced
Learning of Diverse Capabilities

Anonymous ACL submission

Abstract

Selecting appropriate training data is crucial001
for effective instruction fine-tuning of large lan-002
guage models (LLMs), which aims to (1) elicit003
strong capabilities, and (2) achieve balanced004
performance across a diverse range of tasks.005
Influence-based algorithms show promise in006
achieving (1) by estimating the contribution007
of each training example to the model’s pre-008
dictions, but often struggle with (2). Our sys-009
tematic investigation reveals that this underper-010
formance can be attributed to an inherent bias011
where certain tasks intrinsically have greater in-012
fluence than others. As a result, data selection013
is often biased towards these tasks, not only014
hurting the model’s performance on others but015
also, counterintuitively, harms performance on016
these high-influence tasks themselves.017

As a remedy, we propose BIDS, a Balanced018
and Influential Data Selection algorithm.019
BIDS first normalizes influence scores of the020
training data, and then iteratively balances data021
selection by choosing the training example022
with the highest influence on the most un-023
derrepresented task. Experiments with both024
Llama-3 and Mistral-v0.3 on seven benchmarks025
spanning five diverse capabilities show that026
BIDS consistently outperforms both state-of-027
the-art influence-based algorithms and other028
non-influence-based selection frameworks. Sur-029
prisingly, training on a 15% subset selected by030
BIDS can even outperform full-dataset train-031
ing with a much more balanced performance.032
Our analysis further highlights the importance033
of both instance-level normalization and itera-034
tive optimization of selected data for balanced035
learning of diverse capabilities.036

1 Introduction037

Supervised instruction finetuning (SFT) plays a cru-038

cial role in eliciting strong capabilities from large039

language models (LLMs). Typically, a pretrained040

LLM is finetuned on a mixture of different datasets041

to achieve strong and balanced performance (Tou- 042

vron et al., 2023; Dubey et al., 2024; Jiang et al., 043

2023; Ouyang et al., 2022). The importance of SFT 044

data quality (Zhou et al., 2024) has spawned many 045

works on instruction tuning data selection (Cao 046

et al., 2023; Chen et al., 2023; Liu et al., 2023). 047

Influence-based algorithms estimate each individ- 048

ual training example’s influence on model’s predic- 049

tion on a downstream task (Koh and Liang, 2017; 050

Pruthi et al., 2020). Thanks to recent advances, 051

they have scaled to LLM scales and demonstrated 052

strong potential in facilitating data selection (Xia 053

et al., 2024). 054

However, influence-based algorithms are typi- 055

cally designed to measure the data influence for 056

a single task (Koh and Liang, 2017; Pruthi et al., 057

2020). In this study, we demonstrate that exist- 058

ing influence-based data selection algorithms (Xia 059

et al., 2024) struggle to balance capabilities across 060

diverse tasks, which is crucial in real-world appli- 061

cations1. Specifically, our analysis reveals that the 062

influence scores for certain tasks exhibit larger mag- 063

nitudes than others, introducing systematic bias in 064

the data selection process if the cross-task influ- 065

ence scores are directly compared, as done in many 066

existing works (Yin and Rush, 2024; Albalak et al., 067

2024). This leads to a couple of pitfalls. First, 068

biasing towards some tasks hurts the model’s per- 069

formance on others, making it more challenging 070

for the LLM to achieve balanced capabilities. Sec- 071

ond, perhaps counterintuitively, it may even hurt 072

the model’s performance on the very task that the 073

data is biased towards. These issues call for an 074

influence-based data selection algorithm designed 075

for training LLMs to achieve balanced capabilities 076

across diverse tasks. 077

BIDS, our proposed method, addresses these 078

challenges with two key designs. It first normalizes 079

1E.g., it is desirable for a coding agent to faithfully follow
instructions and perform complex reasoning

1

influence values with respect to each validation in-080

stance, enabling influence for different instances to081

be distributed on the same scale. Then BIDS ap-082

plies an iterative selection algorithm which, at each083

iteration, selects the training example that provides084

largest improvement in influence for the current085

selected data. This ensures that each selected ex-086

ample contributes most to the underrepresented087

tasks in the selected subset.088

Our experimental results on two base models of089

different families, Llama-3-8B (Dubey et al., 2024)090

and Mistral-7B-v0.32, and an extensive suite of091

training and evaluation data, UltraInteract (Yuan092

et al., 2024), show the consistent and strong perfor-093

mance of BIDS. Across seven tasks that span five094

diverse capabilities including coding, math, logical095

inference, world knowledge and general instruction096

following, BIDS consistently outperforms both097

influence- and non-influence-based selection algo-098

rithms, not only in terms of macro-average perfor-099

mance across diverse tasks, but also on most of the100

tasks. Surprisingly, a 15% subset selected by BIDS101

even outperforms full-dataset training in terms of102

average performance across all tasks , emphasizing103

the huge potential of selective training in advancing104

multi-capability learning of LLMs. Further anal-105

ysis reveals the positive contributions from both106

the instance-level normalization and iterative se-107

lection. Investigation of the influence distribution108

of BIDS-selected data also provides valuable in-109

sight on how BIDS reduces the influence disparity110

across tasks and what might be the good properties111

of a balanced set of influential data.112

The contributions of this paper are:113

1. We identify the problem of influence-based data114

selection methods in instruction tuning LLMs for115

learning diverse tasks, and attribute this problem116

to an inherent bias in cross-task influence through117

systematic analysis.118

2. We propose BIDS, a simple and effective119

influence-based data selection algorithm for bal-120

anced learning of diverse capabilities.121

3. Through extensive experiments, we confirm the122

consistent and significant effectiveness of BIDS,123

and provide valuable insights on what makes a124

balanced set of influential data.125

2https://huggingface.co/mistralai/
Mistral-7B-v0.3

2 Background and Preliminaries 126

Influence-based instruction tuning data selec- 127

tion. Estimating the influence of individual train- 128

ing examples on model predictions is critical for 129

understanding model behaviors and selecting in- 130

fluential training data to improve model predic- 131

tions. Traditional methods, including retraining- 132

based and gradient-based approaches (Ilyas et al., 133

2022; Koh and Liang, 2017), have proven effective 134

but are computationally prohibitive when scaling 135

to LLMs. Several recent advances have sought 136

to address these challenges by extending gradient- 137

based approaches to scale more effectively. Given 138

a large training dataset to select from and a vali- 139

dation set representing some targeted capabilities, 140

LESS (Xia et al., 2024) models the influence be- 141

tween each pair of training and validation exam- 142

ples through LoRA-based low-dimensional gra- 143

dient similarity, and then selects training points 144

with highest influence on the validation set. LO- 145

GRA (Choe et al., 2024) leverages a low-rank gra- 146

dient projection algorithm to further improve the 147

efficiency. MATES (Yu et al., 2024) formulates 148

the pointwise data influence between each train- 149

ing point and the whole validation set, and uses a 150

small data influence model to learn this pointwise 151

influence. 152

These LLM-scale influence-based data selection 153

methods all use similar problem formulations, need 154

a validation set to represent a targeted data distri- 155

bution that the selected data are optimized for, and 156

require the computation of pointwise data influence 157

between each training instance and the validation 158

data. In this work, we aim to derive influence-based 159

data selection better suited for the multi-capability 160

instruction tuning setup. Concretely, since only 161

LESS directly targets instruction tuning among the 162

three LLM-scale approaches, we ground our study 163

on the specific formulation of LESS. But we em- 164

phasize that due to the highly similar influence 165

modeling patterns shared among these methods, 166

the results of our work should also provide useful 167

insight for other influence-based selection methods. 168

Problem Setup and Notations. Assume an in- 169

struction tuning dataset D, a validation dataset 170

V , which spans m diverse tasks that we want 171

to optimize the LLM’s performance for: V = 172

V1∪· · ·∪Vm, and an influence estimation method 173

that can compute the influence of each training ex- 174

ample on each validation example. We first com- 175

pute influences between all training and validation 176

2

https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3

instance pairs, yielding a |D|× |V| matrix A. Each177

row of A corresponds to an individual training178

example, and each column a validation example.179

Element Aij indicates the influence of the i-th ex-180

ample from D on the j-th example from V . We181

dub A an Attribution Matrix (AM) as it reveals182

the overall attribution pattern from the training set183

to all target tasks, and each row Ai the Influence184

Distribution of the i-th training example.185

Our goal is to design a data selection algorithm186

that can effectively select a subset T from D with187

size under a pre-defined budget. Finetuning the188

LLM on T is supposed to help the model achieve189

strong and balanced performance on all targeted190

tasks. The evaluation tasks are specifically chosen191

to have minimal overlap in terms of the capabilities192

they benchmark. The validation set size for each193

task is also kept equal to avoid bias in the selection194

process.195

3 Influence-based Selection Fails at196

Balancing Diverse Tasks197

We first show that LESS leads to significantly un-198

balanced and weak performance in a multi-task199

learning setup. This is quantitatively revealed by200

our novel analyses, which identifies inherent bi-201

ases in the scale of influence values across different202

tasks. Insights drawn in this section paves the way203

for the design choices of BIDS in §4.204

Setting. In this section, we use Llama-3-205

8B (Dubey et al., 2024) as the base model for206

both influence estimation and evaluation of selected207

datasets. For the instruction dataset to select from,208

we use UltraInteract (Yuan et al., 2024), a state-of-209

the-art, large-scale, high-quality dataset designed210

to enhance diverse reasoning capabilities, includ-211

ing mathematical reasoning, coding, and general212

logical inference. We also follow the evaluation213

setup of Yuan et al. (2024), with seven datasets214

spanning five diverse capabilities. We use Hu-215

manEval (Chen et al., 2021) and MBPP (Austin216

et al., 2021) for coding, GSM-Plus (Li et al.,217

2024) and MATH (Hendrycks et al., 2021) for218

math, and BigBench-Hard (BBH) (Suzgun et al.,219

2022) for general logical inference. We also use220

MMLU (Hendrycks et al., 2020) to assess the221

model’s ability to understand and reason over world222

knowledge, and IFEval (Zhou et al., 2023) for the223

fine-grained instruction following ability. For more224

details about the training and evaluation setups,225

please refer to Appendix A.2.226

For the influence estimation method through- 227

out this work, we follow the original pipeline intro- 228

duced by LESS, with an equal number of valida- 229

tion instances sampled uniformly from each of the 230

seven evaluation tasks. In this section, for the data 231

selection algorithm, we also start with the task- 232

wise max algorithm (Appendix A.3) used by LESS 233

, which, for each training example, first computes 234

its mean influence over validation examples within 235

the same task, followed by selecting training ex- 236

amples with the highest maximum influence across 237

different tasks. We compare this algorithm against 238

a random selection baseline, which represents the 239

average performance of models trained on two sets 240

of randomly selected data. 241

LESS fails to balance different capabilities (Ta- 242

ble 1). LESS shows substantial imbalance and 243

variability in task-specific performance across dif- 244

ferent budgets. Although it consistently outper- 245

forms the random baseline in IFEval, it also con- 246

sistently and significantly lags behind in BBH, and 247

shows no clear trend of advantage in the remaining 248

five tasks. Moreover, with the increase of bud- 249

get level, LESS is gradually outperformed by the 250

random baseline in more tasks, showing weaker 251

macro-average performance under both 10% and 252

15% budgets. 253

The underperformance of LESS may stem from 254

the fact that it is not designed for learning multiple 255

diverse capabilities, thus less suitable for general- 256

purpose instruction tuning. The observations above 257

suggests a potential inherent bias in the influence 258

values across different tasks, which could skew the 259

selection algorithm towards certain capabilities. If 260

the overall influence on certain task is inherently 261

higher, then the naive task-wise max selection al- 262

gorithm will naturally prioritize training examples 263

that have high influence on these tasks, possibly at 264

the expense of others. 265

In what follows, we aim to answer the following 266

two questions: (1) whether influence values differ 267

across tasks and to what extent, and (2) whether 268

higher influence values correlate with greater per- 269

formance improvements. 270

What causes the imbalance of LESS? To ex- 271

amine the influence distribution of LESS-selected 272

data, we first define two data analysis metrics. 273

• Average Influence Distribution (AID): 274∑N
i=1Ai/N , is the average of Influence 275

Distributions of all the training examples. 276

3

Budget Method Coding Logic STEM Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%
Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
LESS 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

10%
Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
LESS 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

15%
Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
LESS 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

Table 1: Comparison between LESS and the random baseline. The highest performance for each task and macro-
average is bolded. LESS only outperforms the random baseline in macro-average under the 5% budget, while lags
behind under both two other budgets with imbalanced performance distribution.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.0025

0.0020
0.0015
0.0010
0.0005
0.0000
0.0005
0.0010

AID
Mean AID per task

Figure 1: Unnormalized Average Influence Distribu-
tion (AID) for all seven tasks under the 10% budget,
showing great inter-task and intra-task influence scale
differences.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000

4000

6000

8000

1247

5220
4292

9304

6441

2073

280

Figure 2: Task frequency with Highest Influence (THI)
under the 10% budget. MMLU is obviously oversam-
pled for in LESS-selected data.

• The Task Frequency with Highest Influence277

(THI) for a task t is the number of training exam-278

ples for which t receives the highest influence.279

Our analysis with AID (Figure 1) reveals both280

task- and instance-level discrepancies. MMLU re-281

ceives the highest average influence that is sub-282

stantially higher than BBH’s, while neither is in-283

distribution for the training data. Moreover, dis-284

crepancies of average influence inside the same285

task can exceed the largest instance-wise average286

influence by 2.5 times. These results answer our287

question (1) by confirming that the scales of in-288

fluence values indeed differ significantly across289

various tasks.290

Further, the THI analysis of LESS-selected data291

(Figure 2) validates that the scale differences in-292

deed make the selection algorithm of LESS dispro-293

portionately favor certain tasks over others. Specif-294

ically, MMLU has the highest frequency of being295

the most influential task, which is consistent with296

the observations in Figure 1 where MMLU has297

the highest task-level average influence. However,298

this does not translate into proportionally better299

performance—LESS often underperforms the ran-300

dom baseline on MMLU. This observation suggests301

that a higher influence score does not necessarily302

imply a larger performance improvement; besides, 303

it may hinder the learning of other necessary capa- 304

bilities. Thus, we answer the question (2) by con- 305

cluding that the inherent difference in the influence 306

value scales across tasks can severely undermine 307

the performance of the data selection algorithm 308

employed by LESS. 309

4 BIDS: Selecting Influential Data for 310

Balanced Capability Learning 311

In this section, we introduce BIDS, a Balanced and 312

Influential Data Selection algorithm to address the 313

issues identified in §3. BIDS has two key design 314

choices: (1) instance-level normalization, and (2) 315

iterative selection favoring underrepresented tasks. 316

Instance-level normalization. At a higher level, 317

this technique aims to address the scale differ- 318

ence of influence values across different valida- 319

tion instances. This can be achieved by applying a 320

column-wise normalization to the attribution ma- 321

trix. Specifically, for validation instance vj , the 322

influence of each training example ti is normal- 323

ized by Anorm
ij = (Aij − µj)/σj , where µj and 324

σj are the sample mean and standard deviation of 325

all values in column j of A. This normalization 326

step ensures that the influence scores of different 327

4

Training Set
(𝓓𝓓 = 𝒕𝒕𝒊𝒊 𝒊𝒊=𝟏𝟏

|𝓓𝓓|)

|𝓥𝓥|

|𝓓𝓓|

(𝒋𝒋)

𝑨𝑨𝒊𝒊𝒋𝒋𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 =
𝑨𝑨𝒊𝒊𝒋𝒋 − 𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗

(2) BIDS

Selected
(𝓣𝓣)

Candidates
(𝓓𝓓 \ 𝓣𝓣)

(𝒊𝒊) . . .

𝚫𝚫𝟏𝟏
(𝒊𝒊)

𝚫𝚫𝟒𝟒
(𝒊𝒊)

𝚫𝚫|𝓥𝓥|
(𝒊𝒊)

𝚫𝚫𝟐𝟐
(𝒊𝒊)

𝚫𝚫𝟑𝟑
(𝒊𝒊)

Influence

Validation Index

Component-wise Difference

𝜟𝜟(𝒊𝒊) = max
1≤𝑗𝑗≤|𝒱𝒱|

𝜟𝜟𝒋𝒋
(𝒊𝒊) = 𝑨𝑨𝒊𝒊𝒋𝒋 −

1
|𝒯𝒯| �

𝑘𝑘: 𝑡𝑡𝑘𝑘∈𝒯𝒯

𝑨𝑨𝒌𝒌𝒋𝒋

Select candidate 𝒕𝒕𝒊𝒊∗
with highest 𝜟𝜟(𝒊𝒊∗)

Candidates
(𝓓𝓓 \ (𝓣𝓣 ∪ 𝒕𝒕𝒊𝒊∗))

(𝒊𝒊∗)

Selected
(𝓣𝓣 ∪ 𝒕𝒕𝒊𝒊∗)

mean(dim=0)

Instance-level
Normalization

Iterative Selection Favoring Underrepresented Tasks (until 𝓣𝓣 = 𝑩𝑩)

(1) LESS
(task-wise max)

𝒏𝒏 𝟏𝟏

𝟏𝟏

|𝑩𝑩|
Intra-task mean Cross-task max Select Top-B

Largest improvement to
most underrepresented task

Training Set
(𝓓𝓓 = 𝒕𝒕𝒊𝒊 𝒊𝒊=𝟏𝟏

|𝓓𝓓|)

|𝓥𝓥|

|𝓓𝓓|

Figure 3: A comparison between BIDS and the task-wise max algorithm used by LESS. For convenience, we
represent the training set D with its Attribution Matrix (AM), in which the i-th row is the |V|-dimensional Influence
Distribution of the i-th training example, ti, in D. BIDS differs from LESS in mainly two aspects. First, it applies
a column-wise normalization to the AM. Next, instead of directly selecting top-B examples in influence, BIDS
applies an iterative algorithm which, at each iteration, obtains the utility ∆(i) of each candidate example ti by
calculating how much improvement in influence it can bring to the current selected subset T , and selects candidate
ti∗ with the highest utility ∆(i∗). Please see §4 for a more detailed walkthrough.

columns are of the same scale. In other words, if328

two influence scores of different columns have sim-329

ilar intra-column rankings, then they should also330

have similar values.331

Iterative selection for underrepresented tasks.332

We further propose an iterative greedy selection333

algorithm (Figure 3, and Algorithm 1 in Appendix334

A.5) to promote the balance over different capabil-335

ities. It begins with an empty set. In each itera-336

tion, it first computes the average influence distri-337

bution of the current selected subset T , denoted as338

AT ≜ 1
|T |

∑
k:tk∈T

Ak. Then it iterates through each339

training example ti in the candidate subset D \ T ,340

and applies a component-wise difference between341

Ai and AT . The utility ∆(i) of candidate ti is then342

defined as the largest component of Ai −AT , and343

the candidate example with the highest utility is344

selected for this iteration. In other words, BIDS345

actually favors training examples that can bring the346

largest improvement in influence to the most under-347

represented task of the current selected data. This348

approach essentially differs from LESS, which only349

scores each training example independently and350

then selects the top-ranked ones, by considering351

the interactions of influence distributions among 352

different selected examples and promoting the bal- 353

ance of overall influence distribution of the selected 354

dataset. 355

5 Experiments 356

5.1 Experimental Setups 357

Basic setup. We follow the experimental setup 358

outlined in §3, including the same set of LLMs, 359

datasets, tasks, and influence estimation implemen- 360

tations. To further validate the generalizability of 361

BIDS, we also perform experiments on base mod- 362

els from different model families. Please find more 363

details in Appendix A.6. 364

Baselines. We compare to a couple of intuitive 365

variants applicable to the Attribution Matrix, be- 366

yond the original task-wise max algorithm used 367

by LESS. In addition, we compare with a strong 368

non-influence-based method. Baselines: 369

• Instance-wise max: For each training example, 370

it uses the maximum of its influence values over 371

all validation instances as the score. Training 372

examples with highest scores are selected. 373

• Sum also selects training examples with highest 374

5

scores, but uses the sum of an example’s influ-375

ence instead of the max.376

• Representation-based Data Selection (RDS;377

Zhang et al., 2018; Hanawa et al., 2020) is378

a non-influence-based baseline. It uses the lan-379

guage model’s hidden representation for data se-380

lection. More concretely, it computes the cosine381

similarity scores between training and validation382

examples, based on the final layer representations383

of the last tokens. Training examples with the384

highest similarities to any one of the validation385

examples are selected. In order to ensure fair386

comparison, we use the same model that com-387

putes gradient features in BIDS to extract the388

final layer representations for RDS.389

Please refer to Appendix A.3 for more details about390

the baselines.391

5.2 Results392

Performance comparison under the same bud-393

get. As shown in Table 2, across the 5%, 10% and394

15% budgets, BIDS consistently outperforms both395

influence-based baselines and RDS in terms of the396

macro-average score across all seven benchmarks.397

Moreover, when compared on specific tasks, BIDS398

is consistently among the strongest, ranking either399

first or second among the six candidate methods on400

4/7, 6/7 and 5/7 benchmarks under the three bud-401

gets respectively. These results show that BIDS402

indeed helps achieves strong and balanced perfor-403

mance across multiple different tasks.404

Notably, RDS-selected data are significantly bi-405

ased towards the two coding tasks, HumanEval and406

MBPP, at the cost of performance drop on others,407

especially math and instruction-following, where408

it often underperforms the random baseline. This409

confirms the value of further improving influence-410

based data selection methods in the multi-capability411

learning setup. It also suggests that the imbalance412

of utility scores (Yin and Rush, 2024) may exist413

for both influence- and non-influence-based data414

selection approaches.415

BIDS outperforms full-dataset training. As416

shown in the last three rows in Table 2, training on417

a 15% subset selected by BIDS over four epochs418

consistently outperforms full-dataset training. Fur-419

ther analysis on task-specific performance reveals420

that BIDS achieves better performance by main-421

taining balanced and strong performance across six422

reasoning-related tasks while significantly improv-423

ing instruction-following. These results demon-424

strate that BIDS not only excels in selecting influ- 425

ential and balanced data, but also that full-dataset 426

training may not always be optimal for fostering 427

robust, multi-capability learning in LLMs. This 428

finding highlights the potential for training on se- 429

lective subsets to offer more efficient and effective 430

instruction finetuning for LLMs. 431

6 Analysis 432

This section presents ablation studies and analysis 433

of the two key components of BIDS, in terms of 434

their contributions to BIDS’ performance improve- 435

ments and their effect on the selected data. 436

6.1 Ablation 437

The ablation results are summarized in Table 3. We 438

compare BIDS with the Normalized baseline to 439

ablate iterative selection, and with Unnormalized 440

to further ablate both normalization and iterative 441

selection. From the table, we observe that normal- 442

ization alone can already consistently improve the 443

overall performance of selected data under vari- 444

ous budgets. And applying the iterative selection 445

not only further elevates the macro-average score, 446

but also improves the balance of model capability 447

across diverse tasks. These two observations con- 448

firm that both design choices of BIDS contribute 449

positively to the performance gains. 450

6.2 Changes in Influence Distribution of 451

Selected Data 452

After confirming the positive contribution from 453

both of the two components of BIDS, we then 454

proceed to explore how they affect the influence 455

distribution of selected data, and whether such ef- 456

fects can provide insights into why BIDS advances 457

balanced learning of diverse capabilities. 458

We compare the same models as in §6.1 using 459

using a slightly modified version of the two types 460

of data analysis metrics defined in §3 . For better 461

AID comparisons we report influence values after 462

instance-level normalization. We also replace task- 463

wise average influence with instance-wise influence 464

in the THI calculation, since the three algorithms 465

we are comparing are all built upon the instance- 466

wise max approach. Concretely, for each training 467

point ti, if its influence on validation point vk is the 468

highest across all |V| validation instances and vk ∈ 469

Vj , then the THI frequency for task j increases by 470

one. 471

6

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
Task-max (LESS) 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

Sum 45.6 51.9 63.6 64.8 42.4 21.3 20.1 44.2
Instance-max 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2

RDS 45.6 52.7 62.2 65.0 34.5 17.2 15.5 41.8
BIDS 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6

10%

Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
Task-max (LESS) 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

Sum 45.6 51.6 61.6 64.6 43.8 23.7 21.0 44.6
Instance-max 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0

RDS 50.0 54.7 63.2 64.6 39.3 22.4 18.3 44.6
BIDS 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0

15%

Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
Task-max (LESS) 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

Sum 48.2 51.0 62.6 64.6 44.8 24.0 19.3 44.9
Instance-max 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0

RDS 50.0 53.9 63.7 64.5 41.1 23.5 18.1 45.0
BIDS 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1

BIDS (epochs=4) 50.0 53.0 64.4 64.7 47.0 26.9 23.4 47.1

100%
Full (epochs=1) 52.6 53.6 65.5 64.1 47.2 27.9 17.5 46.9
Full (epochs=4) 48.2 54.4 59.2 63.1 51.5 32.3 17.9 46.7

Table 2: Comparison between BIDS and other selection algorithms. The task-specific and macro-average perfor-
mance is bolded if it ranks first under the same budget, and underlined if it ranks second. "BIDS (epochs=4)" is
compared with 100% full training. When scaling the training of BIDS to four epochs, it outperforms full-dataset
training with both one and four epochs, showing its consistently strong and balanced performance.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0

2000

4000

6000 6049
5330 5375

742

3205
4221 3935

(a) Unnormalized
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

6000 5441

4175 3772

2268

3969
4776 4456

(b) Normalized
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0

2000

4000

6000
6140

4253
3239

2376
3357 3827

5665

(c) BIDS

Figure 4: Comparative analysis of THI under the 10% budget. Both Normalized and BIDS have more balanced task
frequencies compared with Unnormalized.

Normalization balances THI. Comparing 4a472

with 4b and 4c, we see that after normalization473

the task frequency distribution becomes much474

more balanced. The frequencies for tasks such475

as MMLU, GSM-Plus, MATH and IFEval all in-476

crease by a great extent, while those for BBH and477

the two coding tasks decrease. This is fairly surpris-478

ing when compared with the experimental results479

in Table 3, where Normalized and BIDS actually480

show improvements both in tasks with decreased481

and increased THI frequencies compared with Un-482

normalized. This observation suggests that a bal-483

anced selection of influential data may improve484

data efficiency not only by allocating more bud-485

get for capabilities that is underrepresented, but486

also reducing the redundancy in over-represented487

capabilities.488

Better performance comes with smaller influ- 489

ence discrepancies. The AID results (Figure 5) 490

offer further insights. Moving from 5a to 5b to 5c, 491

we observe a progressive reduction in the disparity 492

of average influence across tasks, which leads to 493

the following two interesting observations: 494

• The maximums of AID decreases. Despite gen- 495

erally lower influence scores across these evalu- 496

ation tasks, the performance of BIDS improves 497

consistently compared to both the normalized 498

and unnormalized instance-wise max selection 499

algorithms. This observation actually reveals a 500

limitation of the first-order linearity assumption 501

by the influence estimation method of LESS: sim- 502

ply selecting high-influence points using a Top-K 503

algorithm increases the average influence distri- 504

7

Budget Method Coding Logic STEM Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%
Unnormalized 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2
Normalized 45.6 52.1 62.5 64.8 42.5 22.5 20.1 44.3
BIDS 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6

10%
Unnormalized 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0
Normalized 47.4 48.4 64.6 65.1 45.4 25.2 23.0 45.6
BIDS 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0

15%
Unnormalized 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0
Normalized 47.4 50.1 64.9 65.0 45.6 26.0 20.8 45.7
BIDS 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1

Table 3: Respective contribution of normalization and iterative selection. The highest performance for each task and
macro-average is bolded. Both of these techniques make positive contribution to model performance.

human_eval
mbpp bbh mmlu

gsm_plus
MATH if_eval0.4

0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(a) Unnormalized
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.4
0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(b) Normalized
human_eval

mbpp bbh mmlu
gsm_plus

MATH if_eval0.4
0.2
0.0
0.2
0.4
0.6
0.8

AID
Mean AID per task

(c) BIDS

Figure 5: Comparative analysis of normalized AID under the 10% budget. From Unnormalized to Normalized to
BIDS, the disparity among different tasks and instances in AID gradually diminishes, with both decreasing upper
bounds and increasing lower bounds.

bution on almost all tasks, but their effectiveness505

doesn’t linearly add up, thus not necessarily im-506

proving task-level or overall performance.507

• The minimums of the average influence in-508

crease, especially for tasks with validation in-509

stances with exceptionally low influence val-510

ues, such as HumanEval and MBPP. This obser-511

vation again suggests the effectiveness of one of512

BIDS’s key motivations: improving the model’s513

overall performance by enhancing the capabili-514

ties that are most underrepresented in the current515

selected data.516

7 Related Work517

Since the pioneering work LIMA (Zhou et al.,518

2024) showed that a mere 1000 carefully cu-519

rated high-quality instruction data can already lead520

to significant performance improvement, many521

works have been exploring automatic data selec-522

tion pipelines guided by different metrics. Quality-523

guided selection mostly defines the quality for524

each data point based on natural language indi-525

cators (Cao et al., 2023), quality scores from strong526

evaluators such as GPT-4 (Chen et al., 2023; Parkar527

et al., 2024), or principled metrics derived from var-528

ious learning dynamics (Kang et al., 2024; Mekala529

et al., 2024; Xia et al., 2024; Choe et al., 2024).530

Diversity-guided methods usually perform clus- 531

tering over certain informative representation of 532

each data point (Yang et al., 2024), and also take 533

inspiration from traditional core-set selection ap- 534

proaches (Das and Khetan, 2023). Both of these di- 535

mensions have been proved effective for instruction 536

tuning LLMs (Bukharin and Zhao, 2023; Liu et al., 537

2023), and we remark that our method BIDS con- 538

siders both quality and diversity metrics through 539

its iterative selection algorithm based on influence 540

distributions. 541

8 Conclusion 542

In this work, we introduce BIDS, an influence- 543

based instruction tuning data selection algorithm 544

specifically designed for balanced learning of mul- 545

tiple diverse capabilities. Motivated by the observa- 546

tion of an inherent bias in influence across various 547

tasks, BIDS first applies instance-level normaliza- 548

tion to a given Attribution Matrix. Together with 549

an iterative selection algorithm favoring underrep- 550

resented tasks, BIDS consistently outperforms var- 551

ious selection algorithms as well as full-dataset 552

training with much more balanced performance. 553

Our analysis further provides insight on the good 554

properties of an influential dataset with balanced 555

capabilities. 556

8

Limitations557

Though this work focuses on the imbalance issue558

of influence-based data selection methods, the re-559

sults of RDS in Table 2 also shows significant bias560

towards the two coding tasks, at the cost of severely561

degraded performance on almost all others. These562

observations suggest the possibility that the imbal-563

ance of utility scores (Yin and Rush, 2024) may564

exist for both influence- and non-influence-based565

data selection approaches. The focus of this paper566

limits its investigation into such a more general567

imbalance of utility scores. We hope it can be ad-568

dressed in future work.569

References570

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne571
Longpre, Nathan Lambert, Xinyi Wang, Niklas572
Muennighoff, Bairu Hou, Liangming Pan, Hae-573
won Jeong, Colin Raffel, Shiyu Chang, Tatsunori574
Hashimoto, and William Yang Wang. 2024. A survey575
on data selection for language models. Transactions576
on Machine Learning Research. Survey Certifica-577
tion.578

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten579
Bosma, Henryk Michalewski, David Dohan, Ellen580
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.581
Program synthesis with large language models. arXiv582
preprint arXiv:2108.07732.583

Alexander Bukharin and Tuo Zhao. 2023. Data diversity584
matters for robust instruction tuning. arXiv preprint585
arXiv:2311.14736.586

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In-587
struction mining: High-quality instruction data se-588
lection for large language models. arXiv preprint589
arXiv:2307.06290.590

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa591
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-592
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-593
pagasus: Training a better alpaca with fewer data.594
arXiv preprint arXiv:2307.08701.595

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming596
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-597
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,598
Greg Brockman, et al. 2021. Evaluating large599
language models trained on code. arXiv preprint600
arXiv:2107.03374.601

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen602
Zhao, Minsoo Kang, Youngseog Chung, Adithya603
Pratapa, Willie Neiswanger, Emma Strubell, Teruko604
Mitamura, et al. 2024. What is your data worth to605
gpt? llm-scale data valuation with influence func-606
tions. arXiv preprint arXiv:2405.13954.607

Devleena Das and Vivek Khetan. 2023. Deft: Data 608
efficient fine-tuning for large language models via 609
unsupervised core-set selection. arXiv preprint 610
arXiv:2310.16776. 611

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 612
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 613
Akhil Mathur, Alan Schelten, Amy Yang, Angela 614
Fan, et al. 2024. The llama 3 herd of models. arXiv 615
preprint arXiv:2407.21783. 616

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro 617
Inui. 2020. Evaluation of similarity-based explana- 618
tions. arXiv preprint arXiv:2006.04528. 619

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 620
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 621
2020. Measuring massive multitask language under- 622
standing. arXiv preprint arXiv:2009.03300. 623

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 624
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 625
cob Steinhardt. 2021. Measuring mathematical prob- 626
lem solving with the math dataset. arXiv preprint 627
arXiv:2103.03874. 628

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 629
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 630
and Weizhu Chen. 2021. Lora: Low-rank adap- 631
tation of large language models. arXiv preprint 632
arXiv:2106.09685. 633

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil- 634
laume Leclerc, and Aleksander Madry. 2022. Data- 635
models: Predicting predictions from training data. 636
arXiv preprint arXiv:2202.00622. 637

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, 638
Nathan Lambert, Matthew Peters, Pradeep Dasigi, 639
Joel Jang, David Wadden, Noah A Smith, Iz Belt- 640
agy, et al. 2023. Camels in a changing climate: En- 641
hancing lm adaptation with tulu 2. arXiv preprint 642
arXiv:2311.10702. 643

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 644
sch, Chris Bamford, Devendra Singh Chaplot, Diego 645
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 646
laume Lample, Lucile Saulnier, et al. 2023. Mistral 647
7b. arXiv preprint arXiv:2310.06825. 648

William B. Johnson and Joram Lindenstrauss. 1984. 649
Extensions of lipschitz mappings into hilbert space. 650
Contemporary mathematics, 26:189–206. 651

Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu 652
Jahagirdar, Yuanzhi Zhang, Rongxing Du, Anit Ku- 653
mar Sahu, and Ruoxi Jia. 2024. Get more for less: 654
Principled data selection for warming up fine-tuning 655
in llms. arXiv preprint arXiv:2405.02774. 656

Pang Wei Koh and Percy Liang. 2017. Understanding 657
black-box predictions via influence functions. In 658
International conference on machine learning, pages 659
1885–1894. PMLR. 660

9

https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=XfHWcNTSHp
https://api.semanticscholar.org/CorpusID:117819162

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng661
Kong, and Wei Bi. 2024. Gsm-plus: A comprehen-662
sive benchmark for evaluating the robustness of llms663
as mathematical problem solvers. arXiv preprint664
arXiv:2402.19255.665

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and666
Junxian He. 2023. What makes good data for667
alignment? a comprehensive study of automatic668
data selection in instruction tuning. arXiv preprint669
arXiv:2312.15685.670

Dheeraj Mekala, Alex Nguyen, and Jingbo Shang. 2024.671
Smaller language models are capable of selecting672
instruction-tuning training data for larger language673
models. arXiv preprint arXiv:2402.10430.674

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-675
roll L. Wainwright, Pamela Mishkin, Chong Zhang,676
Sandhini Agarwal, Katarina Slama, Alex Ray, John677
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,678
Maddie Simens, Amanda Askell, Peter Welinder,679
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.680
Training language models to follow instructions with681
human feedback. Preprint, arXiv:2203.02155.682

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-683
laume Leclerc, and Aleksander Madry. 2023. Trak:684
Attributing model behavior at scale. arXiv preprint685
arXiv:2303.14186.686

Ritik Sachin Parkar, Jaehyung Kim, Jong Inn Park, and687
Dongyeop Kang. 2024. Selectllm: Can llms select688
important instructions to annotate? arXiv preprint689
arXiv:2401.16553.690

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund691
Sundararajan. 2020. Estimating training data influ-692
ence by tracing gradient descent. Advances in Neural693
Information Processing Systems, 33:19920–19930.694

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-695
bastian Gehrmann, Yi Tay, Hyung Won Chung,696
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny697
Zhou, et al. 2022. Challenging big-bench tasks and698
whether chain-of-thought can solve them. arXiv699
preprint arXiv:2210.09261.700

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-701
bert, Amjad Almahairi, Yasmine Babaei, Nikolay702
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti703
Bhosale, et al. 2023. Llama 2: Open founda-704
tion and fine-tuned chat models. arXiv preprint705
arXiv:2307.09288.706

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack707
Hessel, Tushar Khot, Khyathi Chandu, David Wad-708
den, Kelsey MacMillan, Noah A Smith, Iz Beltagy,709
et al. 2023. How far can camels go? exploring the710
state of instruction tuning on open resources. Ad-711
vances in Neural Information Processing Systems,712
36:74764–74786.713

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,714
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-715
lecting influential data for targeted instruction tuning.716
arXiv preprint arXiv:2402.04333.717

Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and 718
Baharan Mirzasoleiman. 2024. Smalltolarge (s2l): 719
Scalable data selection for fine-tuning large language 720
models by summarizing training trajectories of small 721
models. arXiv preprint arXiv:2403.07384. 722

Junjie Oscar Yin and Alexander M Rush. 2024. 723
Compute-constrained data selection. arXiv preprint 724
arXiv:2410.16208. 725

Zichun Yu, Spandan Das, and Chenyan Xiong. 2024. 726
Mates: Model-aware data selection for efficient pre- 727
training with data influence models. arXiv preprint 728
arXiv:2406.06046. 729

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, 730
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen, 731
Ruobing Xie, Yankai Lin, et al. 2024. Advancing llm 732
reasoning generalists with preference trees. arXiv 733
preprint arXiv:2404.02078. 734

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen- 735
hao Huang, Huan Sun, Yu Su, and Wenhu Chen. 736
2023. Mammoth: Building math generalist models 737
through hybrid instruction tuning. arXiv preprint 738
arXiv:2309.05653. 739

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht- 740
man, and Oliver Wang. 2018. The unreasonable ef- 741
fectiveness of deep features as a perceptual metric. 742
In Proceedings of the IEEE conference on computer 743
vision and pattern recognition, pages 586–595. 744

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 745
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 746
Yu, Lili Yu, et al. 2024. Lima: Less is more for align- 747
ment. Advances in Neural Information Processing 748
Systems, 36. 749

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid- 750
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, 751
and Le Hou. 2023. Instruction-following evalu- 752
ation for large language models. arXiv preprint 753
arXiv:2311.07911. 754

10

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

A Appendix 755

A.1 Influence estimation pipeline of LESS 756

In this section we briefly introduce the influence estimation pipeline of LESS. For more detailed motivation 757

and step-by-step mathematical deduction, we suggest referring to (Xia et al., 2024). 758

Assume a model Ms which scores and selects data, and another model Mt which is trained on the 759

selected data. For a training dataset D and validation dataset V , LESS formulates the pairwise influence 760

between each training point ti ∈ D and validation point vj ∈ V using the following two steps: 761

Step 1: Warmup training with LoRA. LESS first trains Ms on a random subset Dwarmup ⊂ D for N 762

epochs using LoRA (Hu et al., 2021), checkpointing the model after each epoch to store LoRA parameters 763

{θt}Nt=1. 764

Step 2: Gradient computation and projection. For each checkpoint θt of LoRA-trained Ms, LESS
computes the SGD gradient of validation point vj , and further uses random projection (Johnson and
Lindenstrauss, 1984; Park et al., 2023) to project the gradient to a tractable lower dimension. The resulting
projected gradient is denoted as ∇l(vj ;θt). LESS also computes and projects the gradient of training
point ti, but uses the Adam gradient defined as follows:

Γ(ti,θt) ≜
mt+1

√
vt+1 + ϵ

where mt+1 and vt+1 are the first and second moments in the parameter update rule for Adam optimizer. 765

Step 3: Gradient matching and influence calculation. Finally, LESS employs the following cosine-
similarity-based approach to calculate the similarity between the gradient of each training and validation
example, accumulated over all the warmup training epochs:

InfAdam(ti,vj) ≜
N∑
t=1

ηt cos(∇l(vj ;θt),Γ(ti,θt))

where ηt is the average learning rate in the t-th epoch. 766

A.2 Details of training and evaluation setups 767

Based on the LESS pipeline described above, we further introduce the implementation details of the 768

training and evaluation setups in this work. All the experiments are carried out on 2 80GB H100 GPUs. 769

Training Details. We basically follow the same set of hyperparameters as LESS when training both Ms 770

and Mt. Specifically, a batch size of 128 is used throughout all the training processes in this work, along 771

with a learning rate scheduler with linear warm-up, cosine decay, and a peak learning rate of 2×10−5. For 772

the influence estimation pipeline, we consistently conduct the warmup training of Ms using four epochs 773

and the full training set. For gradient computation and projection, we uniformly sample 50 validation 774

examples from either the validation or the test split (when there is not a separate validation split) of each of 775

the seven evaluation tasks, leading to a total of 350 validation examples. The projection dimension is set 776

as 8192 for all the training and validation instances. For training Mt on the selected data, we consistently 777

train for two epochs if not otherwise specified. 778

Both the warmup training for influence estimation and the training on selected data are carried out with 779

LoRA. The LoRA configurations are kept the same throughout the experiments, with a rank of 128, an α 780

value of 512, a dropout rate of 0.1, and LoRA matrices being applied to all the attention modules. 781

Evaluation Details. We follow the evaluation convention of UltraInteract (Yuan et al., 2024) by using 782

greedy decoding (i.e., temperature = 0) for all the evaluation tasks except for IFEval, where we use 783

temperature = 0.7 and take the median result of three random seeds due to the high variability of this task. 784

A.3 Mathematical definition of influence-based selection algorithms 785

In this section, we provide the mathematical definition of all the three influence-based selection 786

algorithms that are used in this work. They share the same framework of first assigning an overall 787

11

influence score si to each training example ti and then selecting examples with the highest scores, and788

only differ in the specific definition of si.789

Task-wise Max: si ≜ maxk=1,...,m{
∑

vj∈Vk
Aij}.790

Instance-wise Max: si ≜ maxj=1,...,|V|{Aij}.791

Sum: si ≜
∑|V|

j=1Aij .792

A.4 Effect of normal standardization on attribution matrix793

In this section we aim to justify the application of normal standardization to Attribution Matrix (AM).794

Specifically, we randomly select five validation instances (i.e., five columns in AM) from each task,795

and compare their empirical distributions after normalization with a standard normal distribution. The796

results show that almost all of the columns sampled approximate a standard normal distribution after797

the instance-level normalization, which justifies the use of normal standardization as the normalization798

method in BIDS.799

5 0 5 100.0

0.2

0.4
human_eval: 1

10 0 100.0

0.2

0.4
human_eval: 2

10 5 0 50.0

0.2

0.4
human_eval: 3

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
human_eval: 4

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
human_eval: 5

5 0 50.0

0.2

0.4
mbpp: 1

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mbpp: 2

5 0 50.0

0.2

0.4
mbpp: 3

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
mbpp: 4

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mbpp: 5

7.5 5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 1

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 2

5 0 50.0

0.2

0.4
bbh: 3

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
bbh: 5

5 0 50.0

0.2

0.4
mmlu: 1

5 0 50.0

0.2

0.4
mmlu: 2

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mmlu: 3

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
mmlu: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
mmlu: 5

5 0 5 100.0

0.2

0.4
gsm_plus: 1

5 0 5 100.0

0.2

0.4
gsm_plus: 2

5 0 5 100.0

0.2

0.4
gsm_plus: 3

5 0 50.0

0.2

0.4
gsm_plus: 4

5 0 5 100.0

0.2

0.4
gsm_plus: 5

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
MATH: 1

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
MATH: 2

5.0 2.5 0.0 2.5 5.0 7.50.0

0.2

0.4
MATH: 3

5 0 50.0

0.2

0.4
MATH: 4

5 0 50.0

0.2

0.4
MATH: 5

6 4 2 0 2 40.0

0.2

0.4
if_eval: 1

5 0 50.0

0.2

0.4
if_eval: 2

4 2 0 2 40.0

0.2

0.4
if_eval: 3

4 2 0 2 40.0

0.2

0.4
if_eval: 4

5.0 2.5 0.0 2.5 5.00.0

0.2

0.4
if_eval: 5

Figure 6: The effect of normal standardization. Five AM columns are sampled for each task. Most of the columns
in the AM indeed approximate a standard normal distribution after normal standardization.

A.5 Algorithmic illustration of the iterative selection in BIDS800

A.6 Results with different base models801

In order to further validate the generalizability of BIDS, we compare BIDS with other baseline data802

selection algorithms using Mistral-7B-v0.3 as the backbone for both selection and training. The results are803

presented in Table 4. The two algorithms compared here, Unnormalized and Normalized, follow the same804

definition in Section 6. And the random baseline is also the average result of two different random seeds.805

Similar to the analysis framework in Section 3, we also present the AID analysis of the whole Ul-806

traInteract dataset (Figure 7) and the THI analysis of LESS-selected data (Figure 8). Then we follow807

12

Algorithm 1 BIDS: Iterative Selection Favoring Underrepresented Tasks
1: Input: D: the set of all training examples; V: the set of validation examples; B: the number of examples to be selected;

A ∈ R|D|×|V|: the Attribution Matrix between D and V .
2: Initialization: T = ∅, D = {ti}|D|

i=1

3: while |T | < B do
4: i∗ = argmax

i∈{i|ti∈D\T }
max

1≤j≤|V|
{Aij − 1

|T |
∑

k∈{k|tk∈T }
Akj}

5: T = T ∪ {ti∗}
6: end while
7: Return: T : selected training examples.

Table 4: Additional results when using Mistral-7B-v0.3 as the base model for selection and training. The highest
performance for each task and macro-average is bolded. Under the two selection budgets, BIDS still outperforms all
other three baselines with a better macro-avg and more balanced task-specific performance. Also, the performance
improvements from Unnormalized to Normalized to BIDS are consistent with prior observation with Llama-3-8B
in Section 6. Finally, the top 15% BIDS-selected subset again outperforms full dataset training in macro average, by
steadily improving on coding and math while maintaining its remarkable instruction-following ability.

Budget Method
Coding Logic STEM Math Ins-Following

Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 36.8 44.3 59.5 61.7 37.0 19.9 22.2 40.2
Unnormalized 33.3 45.0 59.3 61.6 38.0 18.7 22.0 39.7
Normalized 36.8 44.1 59.1 61.5 38.2 19.6 27.5 41.0

BIDS 37.7 44.4 59.5 61.8 38.0 19.8 26.1 41.0

10%

Random 37.7 44.8 59.8 61.8 40.0 21.2 22.0 41.0
Unnormalized 36.0 43.8 59.7 61.5 41.6 20.8 24.6 41.1
Normalized 37.7 45.0 59.7 61.6 40.2 20.2 26.7 41.6

BIDS 40.4 46.1 60.5 61.7 40.5 21.0 27.1 42.5

15% BIDS (epochs=4) 40.4 47.0 58.9 61.1 44.1 23.5 28.1 43.3

100% Full (epochs=4) 41.2 49.3 54.6 59.4 48.1 30.1 19.6 43.2

the workflow in Section 6 to present both the THI and AID analysis for the three progressive algorithms: 808

Unnormalized, Normalized and BIDS (Figure 9, 10). The only difference here is that the selection model 809

is Mistral-7B-v0.3 instead of Llama-3-8B. 810

A.7 Discussion on the computational cost of BIDS 811

In this section we aim to discuss and show that BIDS does not incur much memory or latency overhead, 812

and can thus serve as an efficient plug-and-play module. In our training and evaluation setup, the |D| 813

dimension for the Attribution Matrix (AM) is about 288K, and the |V | dimension is 350. Therefore, the 814

memory cost for storing the AM using FP64 precision is less than 800M. The latency cost for running 815

the whole BIDS algorithm is less than 1 minute with GPU CUDA acceleration. More generally, since 816

most of the popular mixtures of instruction finetuning data are maintained on the scale of hundreds of 817

thousands (Wang et al., 2023; Ivison et al., 2023; Yuan et al., 2024; Yue et al., 2023), the memory and 818

latency cost of BIDS should be light for most practical training setups. 819

A.8 Qualitative Analysis 820

In this section, we aim to show the following two properties of BIDS by providing some qualitative 821

examples: 822

1. Models trained on BIDS-selected data can indeed achieve a stronger balance between mastering 823

task-specific skills (e.g., math reasoning, coding knowledge, etc.) and fully understanding various 824

types of instructions given by the user (e.g., format-following, response style, etc.). 825

13

hu
man

_ev
al

mbp
p

bb
h

mmlu

gsm
_pl

us
MAT

H
if_e

va
l0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

AID
Mean AID per task

Figure 7: Unnormalized Average Influence Distribution
(AID) for all seven tasks under the 10% budget, with the
base model being Mistral-7B-v0.3. It still shows great
inter-task and intra-task influence scale differences.

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

2000
4000
6000
8000

10000
12000
14000
16000

1106 1638 1298

15443

9088

172 112

Figure 8: Task frequency with Highest Influence (THI)
of LESS-selected data under the 10% budget, with the
base model being Mistral-7B-v0.3. In this case, MMLU
is even more obviously oversampled than prior observa-
tion with Llama-3-8B.

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000 5061 4894
4247

1924

4546
3855

4330

(a) Unnormalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000 4985
4593

3726

2645

3868

4751
4289

(b) Normalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000
5171

4765

3360
2747 2880

4839 5095

(c) BIDS

Figure 9: Comparative analysis of THI under the 10% budget, with the base model being Mistral-7B-v0.3. Similar
to prior observations with Llama-3-8B, both Normalized and BIDS have more balanced task frequencies compared
with Unnormalized.

2. Such a stronger balance is indeed helpful to improving the accuracy or human-perceived quality of826

model response.827

Concretely, we present three sets of model responses in the task of coding (Table 5), math (Table 6) and828

general instruction-following (Table 7) respectively. Each set contains a correct response by a Mistral-7B-829

v0.3 model trained on top-15% BIDS-selected data, and a false response by the same base model trained830

on the full (i.e., 100%) UltraInteract, both to exactly the same prompt. We analyze how the BIDS-trained831

model correctly answers all these prompts due to the greater balance of capabilities it achieved.832

14

Table 5: For the example 1, the model trained on the full dataset fails to handle the corner case of numbers = [].
For the example 2, the full-trained model also fails at not adding the constraint of y != x in its sorting rule. In both
cases, BIDS-trained model returns the correct code completion because it better considers and handles corner cases.
It reflects that BIDS-trained model balances its capability in correct coding knowledge and comprehensive thinking
behavior.

HumanEval: Example 1 HumanEval: Example 2

Prompt Prompt

1 def rolling_max(numbers):
2 # Write a Python function ‘rolling_max(numbers: List[int])

-> List[int]‘ to solve the following problem:
3 # From a given list of integers, generate a list of rolling

maximum element found until given moment
4 # in the sequence.
5 # >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
6 # [1, 2, 3, 3, 3, 4, 4]

1 def find_closest_elements(numbers: List[float]) -> Tuple[float,
float]

2 # From a supplied list of numbers (of length at least two)
select and return two that are the closest to each other
and return them in order (smaller number, larger number).

3 # >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
4 # (2.0, 2.2)
5 # >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
6 # (2.0, 2.0)

Wrong Completion: Full-trained model Wrong Completion: Full-trained model

1 # Initialize the result list with the first element of the
input list

2 result = [numbers[0]]
3 # Initialize the maximum value with the first element of the

input list
4 max_value = numbers[0]
5 # Iterate through the input list starting from the second

element
6 for num in numbers[1:]:
7 # If the current number is greater than the maximum value,

update the maximum value and append the current number to
the result list

8 if num > max_value:
9 max_value = num

10 result.append(num)
11 # If the current number is not greater than the maximum

value, append the maximum value to the result list
12 else:
13 result.append(max_value)
14 # Return the result list
15 return result

1 closest_pair = min(numbers, key=lambda x: min(abs(x - y) for y
in numbers))

2 return closest_pair, min(numbers, key=lambda x: abs(x -
closest_pair))

Correct Completion: BIDS-trained model Correct Completion: BIDS-trained model

1 if not numbers:
2 return []
3 n = len(numbers)
4 result = [numbers[0]]
5 for i in range(1, n):
6 result.append(max(numbers[i], result[-1]))
7 return result

1 # Step 1: Sort the list of numbers in ascending order
2 numbers.sort()
3 # Step 2: Initialize the closest_numbers variable with the

first two elements of the sorted list
4 closest_numbers = (numbers[0], numbers[1])
5 # Step 3: Iterate through the list to find the two numbers that

are the closest to each other
6 for i in range(1, len(numbers) - 1):
7 # Step 4: Calculate the difference between the current

number and the next number
8 diff = abs(numbers[i] - numbers[i + 1])
9 # Step 5: If the difference is less than the difference

between the current closest numbers, update the closest
numbers

10 if diff < abs(closest_numbers[0] - closest_numbers[1]):
11 closest_numbers = (numbers[i], numbers[i + 1])
12 # Step 6: Return the two closest numbers in order (smaller

number, larger number)
13 return closest_numbers

15

Table 6: For the example 1, BIDS-trained model understands the implicit condition contained in the question that
only after a whole number of years can a tree grow oranges for sale, and thus goes on to round the calculated the
calculation to integer (Step 7). For the example 2, the model trained on the full dataset fails to understand the
meaning of "a person was born 8 years before another" (Step 3) and thus performs the calculation in the wrong way.
In both examples, BIDS-trained model correctly answers the question because it balances its capability in math
reasoning and natural language understanding.

GSM-Plus: Example 1 GSM-Plus: Example 2

Question Question

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Carlos is planting an orange tree. The tree will cost $120 to
plant. Each year it will grow 10 oranges, which he can sell for
$2 each. It costs $4 a year to water and feed the tree. How many
years will it take before he starts earning money on the orange
tree?

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Raymond and Samantha are cousins. Raymond was born 8
years before Samantha. Raymond had a son at the age of 25. If
Samantha is now 35, how many years ago was Raymond’s son
born?

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: To determine the number of years it will take for
Carlos to start earning money from the orange tree, we need
to consider the initial cost of planting the tree and the annual
expenses associated with watering and feeding it.
Step 2: The tree costs $120 to plant, and it incurs an annual
expense of $4 for watering and feeding.
Step 3: Each year, the tree produces 10 oranges, which he can
sell for $2 each.
Step 4: So, the total income from selling the oranges each year
is 10 * $2 = $20.
Step 5: However, we need to subtract the annual expenses of $4
from the income to find the net profit from the oranges.
Step 6: Therefore, the net profit from the oranges each year is
$20 - $4 = $16.
Step 7: To determine the number of years it will take for Carlos
to start earning money, we can divide the initial cost of planting
the tree by the net profit from the oranges each year.
Step 8: This gives us the number of years it will take for the
tree to start generating a positive return on investment.
Step 9: So, the number of years it will take before Carlos starts
earning money on the orange tree is $120 / $16 = 7.5$ years.

Answer:
\boxed{7.5}

Step 1: To solve this problem, we need to first understand the
given information and then work through the steps to find the
age of Raymond’s son.
Step 2: We’re given that Raymond was born 8 years before
Samantha, and Samantha is currently 35 years old.
Step 3: This means that Raymond was born 35 - 8 = 27 years
ago.
Step 4: Now, we know that Raymond had a son at the age of 25.
So, we need to find out how many years ago Raymond’s son
was born.
Step 5: To do this, we can simply subtract Raymond’s age when
his son was born (27 years) from the current age of Samantha
(35 years).
Step 6: This gives us 35 - 27 = 8 years.
Step 7: Therefore, Raymond’s son was born 8 years ago.

Answer:
\boxed{8}

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

Step 1: To determine how many years it will take for Carlos to
start earning money from his orange tree, we need to consider
the costs involved in planting and maintaining the tree, as well
as the revenue generated from selling the oranges.
Step 2: First, we need to calculate the total cost of planting the
tree, which is $120.
Step 3: Each year, the tree will grow 10 oranges that can be
sold for $2 each, resulting in a total revenue of $20 per year.
Step 4: However, it also costs $4 per year to water and feed the
tree.
Step 5: Therefore, the net revenue from selling the oranges
each year is $20 - $4 = $16.
Step 6: To determine how many years it will take for Carlos to
start earning money, we can divide the total cost of planting the
tree by the net revenue each year. This gives us 120 / 16 = 7.5
years.
Step 7: Since we can’t plant a tree for half a year, Carlos will
need to wait 8 years before he starts earning money from the
orange tree.

Answer:
\boxed{8}

Step 1: To solve this problem, we need to understand the
relationship between Raymond and Samantha, and then
calculate the age of Raymond’s son based on the given
information.
Step 2: Raymond is Samantha’s cousin, and he was born 8
years before her. This means that Raymond is 8 years older
than Samantha.
Step 3: Raymond had a son at the age of 25, so we need to
calculate Raymond’s age at that time. Since Raymond is 8
years older than Samantha, and Samantha is currently 35, we
can calculate Raymond’s age as 35 + 8 = 43.
Step 4: Now, we know that Raymond had his son at the
age of 25, so we can calculate the age of Raymond’s son by
subtracting 25 from Raymond’s age at that time, which is 43 -
25 = 18.
Step 5: Therefore, Raymond’s son was born 18 years ago.

Answer:
\boxed{18}

16

Table 7: For the example 1, the model trained on the full dataset ignores the explicit requirement of forming its
output as a single JSON block. It is especially overfit to the response format of Step X: ... which is frequently
seen in the training data. In contrast, BIDS-trained model handles its CoT in a nifty way by expressing its thinking
process in the values of a JSON block. For the example 2, full-trained model not only fails to completely follow
the explicitly required format, but also hardly writes a poem, compared with the high-quality one generated by
BIDS-trained model. In both examples, BIDS-trained model generates content with significantly higher quality
due to the balance between strict format-following and flexible use of parametric knowledge.

IFEval: Example 1 IFEval: Example 2

Prompt Prompt

Please provide the names of 5 famous moms in JSON format.
Please, use any interesting or weird tone. Your entire output
should just contain a JSON block, nothing else.

Write a poem about how I am missing my classes. The poem
must have 4 sections marked with SECTION X. Finish the
poem with this exact phrase: "Can I get my money back for
the classes I missed?"

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: Let’s think of 5 famous moms who have made a
significant impact in their respective fields.
Step 2: Oprah Winfrey - Talk show host, media mogul,
producer, actress, philanthropist
Step 3: Angelina Jolie - Actress, filmmaker, humanitarian
Step 4: Michelle Obama - Former First Lady of the United
States
Step 5: Serena Williams - Professional tennis player
Step 6: Create a JSON block with the names of the 5 famous
moms.

```javascript
// Step 7: Create a JSON block with the names of the 5
famous moms.
[
"Oprah Winfrey",
"Angelina Jolie",
"Michelle Obama",
"Serena Williams"
]
```

Section 1:
I missed my first class today and I’m feeling quite disap-
pointed.
Section 2:
I really wanted to learn all the new material, but I had to stay
home due to illness.
Section 3:
I hope I can make up for the missed class by studying extra
hard for the next exam.
Section 4:
Can I get my money back for the classes I missed?

Answer:
"I missed my first class today and I’m feeling quite
disappointed.
I really wanted to learn all the new material, but I had to stay
home due to illness.
I hope I can make up for the missed class by studying extra
hard for the next exam.
Can I get my money back for the classes I missed?"

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

{
"Meryl Streep": "An American actress and filmmaker, known
for her versatile and powerful performances in films like
Kramer vs. Kramer, Sophie’s Choice, The Devil Wears Prada,
and many more.",
"Oprah Winfrey": "An American media mogul, talk show
host, actress, producer, and philanthropist. She is best known
for her talk show The Oprah Winfrey Show, which ran for 25
years.",
"Sarah Jessica Parker": "An American actress, producer, and
designer. She is best known for her role as Carrie Bradshaw
in the HBO series Sex and the City.",
"Jennifer Garner": "An American actress, producer, and en-
trepreneur. She is best known for her roles in films like 13
Going on 30, Juno, and Alias.",
"Angelina Jolie": "An American actress, filmmaker, and hu-
manitarian. She is best known for her work as a United
Nations Special Envoy and as a Goodwill Ambassador."
}

SECTION 1:
I’m sitting here feeling so lonely,
Missing my classes with all my friends,
Wishing I could be there with them,
Instead of sitting at home and mend.
SECTION 2:
I’m looking at my empty calendar,
Wondering what I’m missing out on,
Wishing I could join in on the fun,
Instead of staring at the screen and frown.
SECTION 3:
I’m listening to the sound of silence,
While my friends are making memories,
Wishing I could join in on the laughter,
Instead of feeling left out and sadder.
SECTION 4:
I’m staring at the clock, counting the minutes,
Until I can see my teachers and classmates,
Wishing I could just teleport there,
Instead of waiting for the next class to start.

Finish:
Can I get my money back for the classes I missed?

17

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0.0

0.1

0.2

0.3

0.4

0.5

0.6
AID
Mean AID per task

(a) Unnormalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0.0

0.1

0.2

0.3

0.4

0.5

0.6
AID
Mean AID per task

(b) Normalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0.0

0.1

0.2

0.3

0.4

0.5

0.6

AID
Mean AID per task

(c) BIDS

Figure 10: Comparative analysis of normalized AID under the 10% budget, with the base model being Mistral-7B-
v0.3. Similar to prior observations with Llama-3-8B, from Unnormalized to Normalized to BIDS, the disparity
among different tasks and instances in AID gradually diminishes, with both decreasing upper bounds and increasing
lower bounds, although the degree of the original imbalance for Mistral-v0.3 is not as high as Llama-3.

18

