

Event2Vec: A Geometric Approach to Learning Composable Representations of Event Sequences

Antonin Sulc

Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A. ASULC@LBL.GOV

1. Motivation: Word2Vec for Events

Neural activity and real-world tasks often unfold on low-dimensional manifolds. We aim to translate the success of Word2Vec to discrete event sequences.

- ► The Goal: Learn composable embeddings where $History = \sum Events$.
- ► The Nuance: While Euclidean addition is commutative (A + B = B + A), our training data is strictly sequential $(A \rightarrow B)$.
- ▶ **Inference:** Ideally, the learned embedding space should effectively ignore the order of summation during inference, allowing us to treat a trajectory as the "sum of its parts" for vector arithmetic (A B + C = D).

2. Geometric Intuition

The model learns to align event vectors into coherent trajectories. Unlike standard RNNs, we enforce a geometry where displacement equates to meaning.

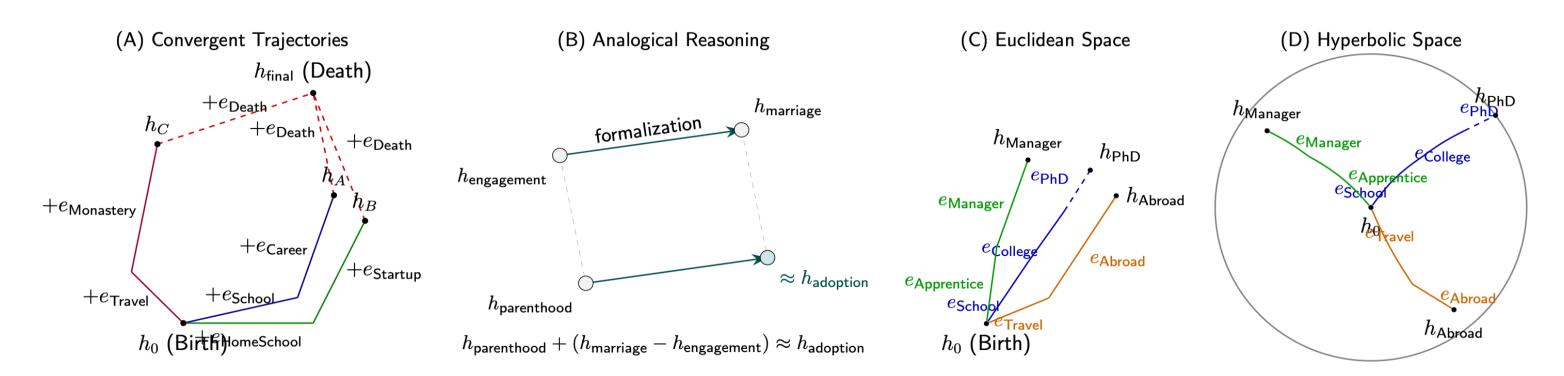


Figure: **(A)** Probable sequences form aligned trajectories (e.g., School \rightarrow Career). **(B)** The additive structure enables analogical reasoning: applying the "formalization" vector (Engagement \rightarrow Marriage) to Parenthood yields Adoption.

3. Two Geometric Variants

We propose an additive recurrent framework $h_t = h_{t-1} \oplus e_{s_t}$:

A. Euclidean Model (Flat)

$$h_t = h_{t-1} + e_{s_t}$$
 (with norm clipping)

Simple vector addition. Interpretable, but distinct paths eventually crowd together in finite space.

B. Hyperbolic Model (Curved)

$$h_t = h_{t-1} \oplus_{c} e_{s_t}$$

Uses Möbius addition in the Poincaré ball. Ideally suited for hierarchical branching.

Hyperbolic space is a Gyrovector space. Addition is Gyrocommutative:

$$a \oplus b = \operatorname{\mathsf{gyr}}[a,b](b \oplus a)$$

(Intuitively: The order of operations affects the final orientation due to the curvature of the space, preserving the sequence history in the vector structure.)

4. Theoretical Guarantees

We minimize a composite loss $\mathcal{L} = \mathcal{L}_{pred} + \mathcal{L}_{recon}$.

Theorem 1: Justification for Additivity

Minimizing reconstruction loss $\mathcal{L}_{recon} = \sum ||(h_t - e_{s_t}) - h_{t-1}||^2$ enforces strict reversibility: f(f(h, e), -e) = h.

▶ **Result:** The simplest function satisfying this is linear addition. The model *must* learn to sum vectors to satisfy the loss.

Theorem 2: Semantic Grounding

The prediction loss \mathcal{L}_{pred} (log-likelihood) acts like Skip-Gram Negative Sampling.

- ▶ **Result:** It forces the inner product $h_t^T e_{s_{t+1}}$ to approximate the Pointwise Mutual Information (PMI).
- ▶ **Synthesis:** \mathcal{L}_{pred} aligns likely events; \mathcal{L}_{recon} ensures the path to them is additive.

6. Analogical Reasoning $(A - B + C \approx D)$

The additive structure allows us to reason about abstract concepts via vector arithmetic.

1. The "Life Transition" Vector

Death — Retirement + Graduation = Internship

The model learns the abstract concept of "ending a major phase." Removing 'Retirement' from 'Death' isolates this transition vector; adding it to 'Graduation' (ending school) correctly predicts 'Internship' (starting work).

2. The "Formalization" Vector

Marriage — Engagement + Parenthood = Adoption

The vector difference between Engagement and Marriage represents legal/formal solidification. Applied to Parenthood, the model identifies Adoption as the formalized equivalent.

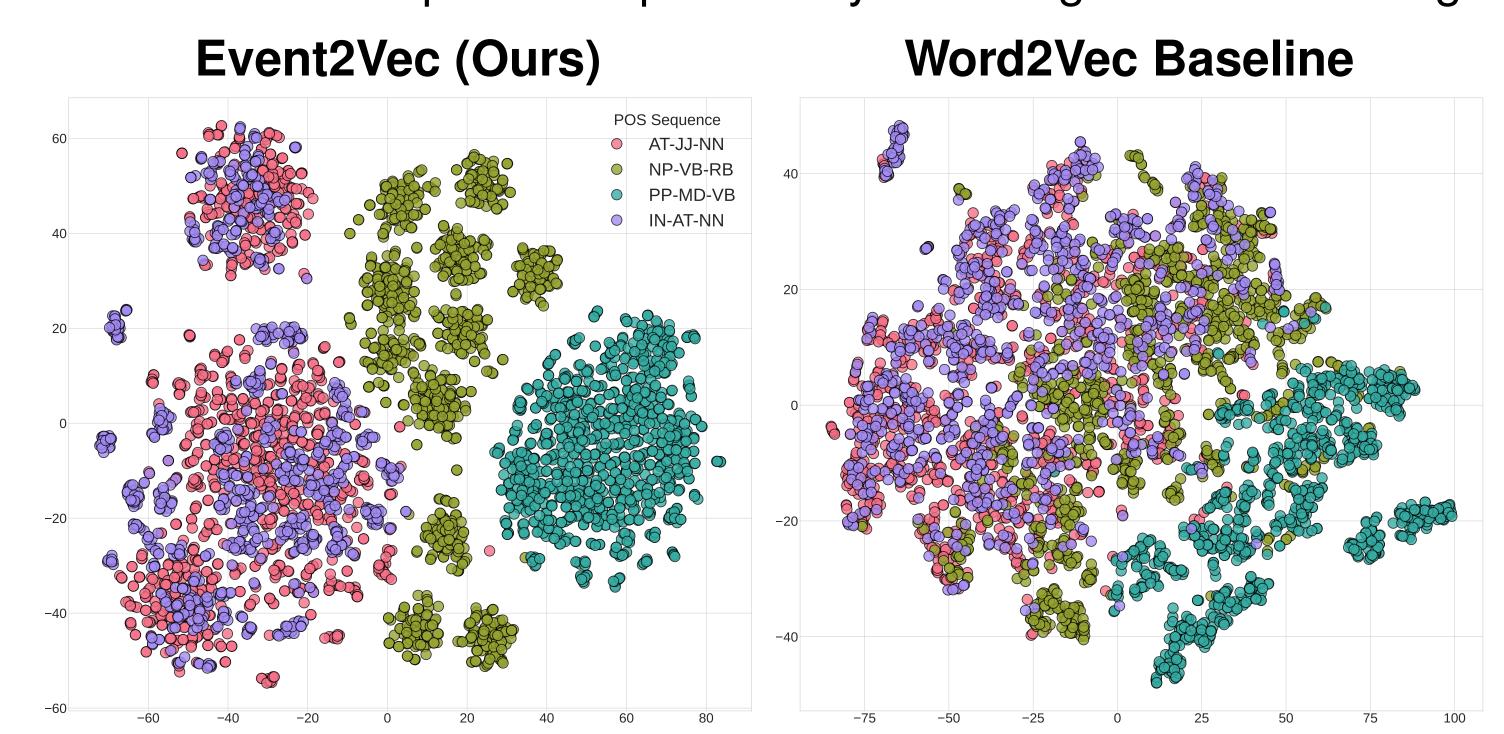
3. The "Financial Outcome" Vector

Business Success — Entrepreneurship + Investment = Inheritance

The model extracts the "financial windfall" component from the specific act of entrepreneurship and applies it to investment, identifying inheritance as a semantically similar major financial gain.

7. Validation: Unsupervised Grammar Induction

Trained on raw text (Brown Corpus) without labels. We composed vectors for Part-of-Speech sequences by summing word embeddings.



Result: Event2Vec automatically clusters distinct grammatical structures (e.g., 'Article-Adj-Noun') significantly better than the baseline.

➤ Silhouette Score: 0.0564 (Ours) vs 0.0215 (Baseline).

5. Life Path Trajectories

1. Word2Vec (Baseline) 2. Event2Vec (Euclidean) 3. Event2Vec (Hyperbolic) 2. Event2Vec (Euclidean) 3. Event2Vec (Hyperbolic) 3. Event2Vec (Hyperbolic) 4. Captures chronological time. Captures hierarchical branching. (Radial expansion).

8. Summary

- ➤ We successfully translated the "Linear Additive Hypothesis" to event sequences.
- ► Euclidean: Good for linear timelines and simple arithmetic.
- ► **Hyperbolic:** Superior for hierarchical/branching processes due to Gyro-geometry.
- ► Impact: Provides a path toward geometric mechanistic interpretability for sequential data.