
Sparse Training from Random Initialization:
Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan * 1 2 Rohan Jain * 1 Ekansh Sharma 3 2 Rahul G. Krishnan 3 2 Yani Ioannou 1

Abstract

The Lottery Ticket Hypothesis (LTH) suggests
there exists a sparse LTH mask and weights that
achieve the same generalization performance as
the dense model while using significantly fewer
parameters. However, finding a LTH solution is
computationally expensive, and a LTH’s sparsity
mask does not generalize to other random weight
initializations. Recent work has suggested that
neural networks trained from random initialization
find solutions within the same basin modulo per-
mutation, and proposes a method to align trained
models within the same loss basin. We hypothe-
size that misalignment of basins is the reason why
LTH masks do not generalize to new random ini-
tializations and propose permuting the LTH mask
to align with the new optimization basin when per-
forming sparse training from a different random
init. We empirically show a significant increase in
generalization when sparse training from random
initialization with the permuted mask as compared
to using the non-permuted LTH mask, on multiple
datasets (CIFAR-10/100 & ImageNet) and models
(VGG11 & ResNet20/50). Our codebase for re-
producing the results is publicly available at here.

1. Introduction
In recent years, foundation models have achieved state-of-
the-art results for different tasks. However, the exponential
increase in the size of state-of-the-art models requires a
similarly exponential increase in the memory and compu-
tational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers

*Equal contribution 1 Schulich School of Engineering,
University of Calgary 2Vector Institute for AI 3Dept. of Com-
puter Science, University of Toronto. Correspondence to:
Mohammed Adnan <adnan.ahmad@ucalgary.ca>, Yani Ioannou
<yani.ioannou@ucalgary.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization
and knowledge distillation, have been proposed to reduce
the model size at different phases of training or inference.
Post-training model pruning (Han et al., 2016) has been
shown to be effective in compressing the model size, and
seminal works have demonstrated that large models can be
pruned after training with minimal loss in accuracy (Gale
et al., 2019; Han et al., 2015). While model pruning makes
inference more efficient, it does not reduce the computational
cost of training the model.

Motivated by the goal of training a sparse model from a
random initialization, Frankle & Carbin (2019) demonstrated
that training with a highly sparse mask is possible and
proposed the Lottery Ticket Hypothesis (LTH) to identify
sparse subnetworks that, when trained, can match the
performance of a dense model. The key caveat is that a dense
model must first be trained to find the sparse mask, which
can only be used with the same random initialization that was
used to train the dense model. Despite LTH seeing significant
interest in the research community, LTH masks cannot be
used to train from a new random initialization. Furthermore,
it has been observed empirically that the LTH is impractical
for finding a diverse set of solutions (Evci et al., 2022).

This posits our main research questions: How can we train a
LTH mask from a different random initialization while main-
taining good generalization? Would doing so find a more
diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not
work for different random initializations from a weight-space
symmetry perspective. Our hypothesis is that to reuse
the LTH winning ticket mask with a different random
initialization, the winning ticket mask obtained needs to
be permuted such that it aligns with the optimization basin
associated with the new random initialization. We illustrate
our hypothesis in Figure 1.

To empirically validate our hypothesis, we obtain a sparse
mask using Iterative Magnitude Pruning (IMP) (Renda et al.,
2020; Han et al., 2015) on modelA (from Figure 1) and show
that given a permutation that aligns the optimization basin
of model A and a new random initialization, the mask can

1

https://github.com/calgaryml/sparse-rebasin

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

initialization

sparse
solution

dense

mask
train

high loss

low loss

(a) Dense training and pruning model A. (b) Sparse training model B with A mask.

Figure 1. Weight Symmetry and the Sparse Training Problem. A model with a single layer and only two parameters, w=(w0,w1),
operating on a single input x0 has weight symmetry in the 2D loss landscape as illustrated above. In (a) the original dense model, wA,
is trained from a random dense initialization, wt=0

A to a dense solution, wt=T
A , which is then pruned using weight magnitude resulting

in the mask mA=(1,0). In (b), naively using the same mask to train a model, B, from a different random initialization will likely result
in the initialization being far from a good solution. Permuting the mask to match the (symmetric) basin in which the new initialization
is in will enable sparse training. See Figure 12 in Appendix E for the full figure also including the Lottery Ticket Hypothesis (LTH).

be reused. The sparse model (with the permuted mask) can
be trained to closer match the generalization performance
of the LTH solution, and the permuted mask improves the
generalization of the trained sparse model compared to the
non-permuted mask. Furthermore, we observe drastically
increased functional diversity when using our approach
compared to LTH solutions. Our contributions are as follows:

1. We hypothesize that the LTH (Frankle & Carbin, 2019)
fails to generalize well with a new random initialization
due to a mismatch between the optimization basin of the
winning ticket mask and the new random initialization’s
solution basin. We propose a method based on permuta-
tion matching between two dense models, that permutes
the winning ticket’s sparse mask to align with the opti-
mization basin of the new random initialization. We em-
pirically demonstrate on CIFAR-10/100 and ImageNet
datasets using VGG11 and ResNet models of varying
widths that permuting the LTH sparse mask to align with
the new random initialization improves the performance
of the trained model (permuted), compared to the model
trained without permuting the sparse mask (naive).

2. We show that models trained from random initialization
using the permuted LTH mask are much more func-
tionally diverse in the solutions they learn than those
found from training the LTH winning ticket mask and
initialization alone (Evci et al., 2022), across several
existing functional diversity metrics and improved
ensemble performance.

3. Furthermore, our experiments provide novel insights
about the LTH and the corresponding dense model: we
show that for a fixed initialization, the dense solution
and the corresponding LTH solution remain in the same
loss basin once we take into account variance collapse.
Notably, our conclusion differs from the conclusion
drawn by Paul et al. (2023), where they did not consider
the variance collapse issue when interpolating between
the sparse and dense solutions.

2. Background & Related Work
Linear Mode Connectivity. A pair of trained neural
networks are said to be linearly connected if the loss along
the linear path between the models remains small. The
phenomenon of linear (mode) connectivity was first observed
in the context of Stochastic Gradient Descent (SGD) by
Nagarajan & Kolter (2019), where they showed that two
neural networks trained from the same initialization but
with different data orders exhibit linear connectivity. The
term Linear-Mode Connectivity (LMC) was introduced by
Frankle et al. (2020), where they showed that independently
trained neural networks can be linearly connected.

Linear Mode Connectivity modulo Permutation. En-
tezari et al. (2022) further observed that while a model and
its randomly permuted counterpart are functionally equiva-
lent, they are rarely linearly connected in the weight space.
This misalignment suggests the presence of loss barriers —
regions along a linear path between models where the loss is

2

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

significantly higher than at the endpoints. They conjectured
that independently obtained SGD solutions exhibit no loss
barrier when accounting for permutation symmetries, sug-
gesting that all SGD-trained networks converge to a single
basin modulo permutations. Building on this conjecture, sev-
eral algorithms have been developed to address permutation
invariance by aligning trained networks to the same optimiza-
tion basin (Ainsworth et al., 2023; Jordan et al., 2023; Singh
& Jaggi, 2020; Tatro et al., 2020). Ainsworth et al. (2023)
demonstrated that two models trained from different random
initializations find solutions within the same basin modulo
permutation symmetry. They proposed a permutation match-
ing algorithm to permute the units of one model to align it
with a reference model, enabling LMC (Frankle et al., 2020).
The use of activation matching for model alignment was
originally introduced by Li et al. (2015), to ensure models
learn similar representations when performing the same task.
Jordan et al. (2023) investigated the poor performance of
interpolated networks, attributing it to a phenomenon they
termed "variance collapse". To address this, they proposed a
method that rescales the hidden units, leading to significant
improvements in the generalization performance of interpo-
lated networks. A rigorous study from Sharma et al. (2024)
introduced a notion of simultaneous weak linear connectivity
where a permutation, π, aligning two networks also simulta-
neously aligns two larger fully trained networks throughout
the entire SGD trajectory and the same π also aligns succes-
sive iterations of independently sparsified networks found
via weight rewinding. Sharma et al. (2024) also showed that
for certain neural networks, sparse mask obtained via weight
rewinding can be reused modulo permutations without hurt-
ing the test performance.

Lottery Ticket Hypothesis. The LTH proposes to
solve the sparse training problem by re-using the same
initialization as used to train the pruned models. For very
small models, training from such an initialization maintains
the generalization performance of the pruned model and
demonstrates that training with a highly sparse mask is
possible (Frankle & Carbin, 2019). However, subsequent
work has shown that obtaining winning tickets for modestly-
sized models requires using weight rewinding (Frankle
et al., 2020) — requiring significantly more compute than
dense training alone, especially considering that LTH also
requires IMP, i.e. training of iteratively sparsified models.
We include a detailed description of IMP in Appendix A.3.
Paul et al. (2023) analyzed the IMP algorithm and showed
that sparse network obtained after K th IMP iteration is
linearly connected to the sparse model obtained after K+1th

IMP iteration. In this work, we show that once we take into
account the variance collapse studied in Jordan et al. (2023),
we are able to show that the sparse solution obtained after
the K th iteration is linearly connected to the dense solution.
Furthermore, recent work has shown that the LTH effectively

train

prune

train

Sp
ar

se
 T

ra
in

in
g

activation matching LTH Problem (Naive) LTH SolutionOur Solution (Permuted)

mask

train

train
mask

match

Figure 2. The overall framework of the training procedure, begin-
ning with two distinct dense random weight initializations, wt=0

A ,
wt=0

B sampled from a normal distribution, N . The sparse training
problem attempts to train the random initialization, wt=0

B using the
naive mask mA, found by pruning a dense trained model, wt=T

A .
However, this results in poor generalization performance (Frankle
et al., 2020). We propose to instead train wt=k

B at some rewound
epoch k, equipped with a permuted mask π(mA). We show
that this achieves more comparable generalization to the pruned
model/trained LTH solution, wt=T

A ⊙mA.

re-learns the original pruned solution it is derived from (Evci
et al., 2022). To make any practical use of sparse training,
finding methods of sparse training from random initialization
is necessary to realize any efficiency gains in training.

Weight Symmetry. Hecht-Nielsen (1990) demonstrated
that neural networks are permutation invariant, where swap-
ping any two neurons within a hidden layer does not alter the
underlying function being learned. The permuted network
remains functionally equivalent to its original configuration,
i.e. neural networks are symmetric functions. The existence
of permutation symmetries in weight space creates copies of
global minima at different points in weight space (Entezari
et al., 2022; Goodfellow et al., 2016; Simsek et al., 2021).
Weight sparsity, achieved through pruning, can reduce the
number of weight symmetries in a neural network. Pruning
neurons reduces the number of permutation symmetries in
a layer. Unstructured pruning, in heterogeneously remov-
ing individual weights, can break the weight symmetry of
individual neurons in layers.

3. Method
Motivation. In this work, we try to understand why LTH
masks fail to transfer to a new random initialization. Our hy-
pothesis is that the loss basin corresponding to the LTH mask
is not aligned with the new random initialization, as shown
in Figure 1. Since the sparse mask is not aligned with the
basin of the new random initialization, sparse training does
not work well; therefore, aligning the LTH mask with the new
random initialization may improve sparse training and enable
the transfer of LTH masks to new random initializations.

3

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Permutation Matching. Ainsworth et al. (2023) showed
that the permutation symmetries in the weight space can be
leveraged to align the basin of two models trained from dif-
ferent random initializations. The permutation mapping can
be obtained by either matching activations or weights. In this
work, we use activation matching to obtain the permutation
mapping as it has been shown to be more stable in recent
works (Sharma et al., 2024). Activation matching tries to find
a permutation mapping, π∈Sd (where Sd is the permutation
group of order d!) such that by permuting the parameters of
the second model, the correlation between the activations
of the two models is maximized. For a model consisting of
L layers, each layer is sequentially matched and permuted
starting from the input layer. Let ZA

l ,ZB
l ∈ Rd×n be the

activations of layer l of model A and B respectively obtained
using the training data, where d represents the dimensionality
of the activations at layer l and n is the number of training
data points. Then a permutation mapping for layer l, πl, is
obtained by solving:

πl=argmin
π

||ZB
l −πZA

l ||

=argmax
π

⟨π,ZB(ZA)⊤⟩F
(1)

where ⟨., .⟩F denotes the Frobenius inner product. Equa-
tion (1) can be formulated as a Linear Assignment Problem
(LAP) (Bertsekas, 1998; Ito et al., 2024) solved via the Hun-
garian algorithm (Kuhn, 2010); however, the permutation
found is not global optima but a greedy/approximate solution
as permutation matching is a NP-hard problem. Once the
permutation mapping is obtained for all the layers, the model
A can be permuted to match model B. To ensure that the per-
muted model does not change functionally when permuting
the output dimension of layer l, the input dimension of the
next layer is also permuted accordingly. Let Wl and bl be the
weights and bias of layer l respectively, then the permuted
weight matrix W p

l and permuted bias bpl for each layer can
be mathematically represented as,

W p
l =πlWl(πl−1)

⊤, bpl =πlbl. (2)

Evaluating Permutation Matching. Since LAP uses a
greedy search to find an approximate solution, to ensure that
the permuted model A and model B lie in the same basin,
we evaluate the LMC (loss barrier) between the two models.
More formally, let θ1,θ2 be the parameters of two networks,
then the loss barrier B is defined as:

B(θ1,θ2) := sup
α∈[0,1]

[
L
(
(1−α)θ1+αθ2

)
−
(
(1−α)L(θ1)+αL(θ2)

)]
≥0 , (3)

where L is the loss function evaluated on the training dataset.
If B(θ1,θ2)≈ 0, it is said that θ1 and θ2 are linearly mode
connected.

To ensure that the permutation mapping, π, can closely
match model A and model B, we evaluate the loss barrier
between the permuted model A and model B. However,
aligning neurons alone is not sufficient to establish a
low loss barrier due to variance collapse (Jordan et al.,
2023). To overcome the variance collapse issue, we used
REPAIR (Jordan et al., 2023) to correct the variance of the
activations in the interpolated/merged model. As shown
in Figure 3, the loss barrier after permutation matching and
correcting the variance (REPAIR) is lower than the loss at
random initialization, showing permutation mapping can
match the models to bring them closer/in the loss basin.

Aligning Masks via Weight Symmetry. In contrast to
previous works (Ainsworth et al., 2023), we are interested
in permuting the mask obtained by LTH such that the op-
timization basin of the permuted sparse mask and the new
random initialization is aligned. To validate our hypothesis,
we train two dense models, wt=0

A and wt=0
B , where t denotes

the epoch, to convergence (trained for T epochs) and then
use activation matching (Jordan et al., 2023) to find the per-
mutation mapping π, such that the activations of π(wt=T

A)
and wt=T

B are aligned. Mask mA, obtained using IMP, is also
permuted with the same permutation map π. The intuition
is that the permuted mask aligns with the loss basin of model
wt=T

B , which is necessary for sparse training and, therefore,
the sparse model can be more easily optimized (see Fig-
ure 2). We denote training with the permuted mask, π(mA)
as permuted and with the non-permuted mask, mA as naive.

Sparse Training. We first show that the dense solution
wt=T

A and the LTH solution obtained by training a model with
sparse mask mA remain in the same linearly connected mode
if one fixes the variance collapse identified by Jordan et al.
(2023) by updating the activation statistics via the REPAIR
method. We show in Figure 4a the error barrier after applying
the REPAIR method remains considerably low as we increase
sparsity by iteratively pruning (IMP). These results extend
the findings of Paul et al. (2023) to show that when variance
collapse is taken into account, the LTH solution remains in the
same linearly connected basin as the original dense solution.

In sparse training, the model is trained with a mask m,
masking some of the weights, during both forward and
backward passes. To evaluate the transferability of the per-
muted LTH mask we train, a different random initialization
wt=0

B , the LTH sparse mask mA and permuted LTH mask
π(mA), which we denote the naive and permuted solution
respectively. We also evaluate the LTH baseline, i.e., training
model wt=0

A with mask mA. Since LTH requires weight
rewinding to an earlier point in training, we also use a rewind
checkpoint from epoch t=k≪T for both the baselines and
permuted solution. Figure 4b shows that LTH, dense model
A and sparse permuted solutions all lie in the same mode.

4

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 L

os
s

w = 1
w = 4
w = 8
w = 16

(a) ResNet20×{w}/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

w = 1
w = 4
w = 8
w = 16

(b) ResNet20×{w}/CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

Te
st

 L
os

s

w = 1
w = 2

(c) ResNet50×{w}/ImageNet

Figure 3. Larger width exhibits better LMC. Plots showing linear interpolation between π(wt=T
A) and wt=T

B where π was obtained
through activation matching between two dense models for varying widths,w. As the width of the model increases, the permutation matching
algorithm gets more accurate, thereby reducing the loss barrier (i.e., better LMC), which is evaluated on the test set. This shows that the permu-
tation matching can find a better mapping, π, for wider models, explaining why the permuted mask works better in the case of wider models.

2 4 6 8 10
IMP iterations

2.5

5.0

7.5

10.0

12.5

15.0

Er
ro

r
Ba

rr
ie

r
(%

)

w/o REPAIR w/ REPAIR

(a) ResNet20×{4}/CIFAR-10

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
(wt = T

A) (mA)
(wt = T

A)
wt = T

B (mA)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) 0–1 loss landscape

Figure 4. LTH solution remains in the same linearly connected
mode as the dense solution. In Figure 4a we plot the error barrier
between the dense solution and the sparse solution (y-axis) vs the
IMP iteration corresponding to the sparse solution (x-axis), for
90% sparsity. We observe that after fixing variance collapse via the
REPAIR method, the error barrier between the dense and the sparse
solutions remains small, thus showing that LTH solution remains in
the same linearly connected mode as the dense solution. In Figure 4b
we visualize the 0–1 loss landscape of ResNet20×{4}/CIFAR-10.
The figure is generated by evaluating the 0–1 loss spanned by three
models in the figure. We show that, modulo permutations, reusing
the permuted mask leads to convergence in the same mode as the
original model, i.e. the LTH solution. Hence, there is a small loss
barrier between the permuted and LTH solutions, demonstrating
they are within the same linearly connected mode.

4. Results
To validate our hypothesis, we trained ResNet20 (He
et al., 2016) and VGG11 (Simonyan & Zisserman, 2015)
models on the CIFAR-10/100 datasets (Krizhevsky, 2009)
(details in Appendix A.1) across different levels of spar-
sity (S=0.80,0.90,0.95,0.97). We used ResNet20 with vary-
ing widths (w=1,4,8,16) to study the effect of increasing
width on the permutation matching and, thereby, the perfor-
mance of the permuted sparse model. We also demonstrate
our hypothesis on the large-scale ImageNet dataset (Deng
et al., 2009) using ResNet50, showing the efficacy of our
method across different models and datasets of varying sizes.

4.1. Experimental Results.

ResNet20/CIFAR-10 & CIFAR-100. We trained
ResNet20 on the CIFAR-10/100 datasets. As shown in Fig-
ures 5 and 6, the permuted solution outperforms the naive
baseline across all model widths and rewind points. Since it
is more difficult to train models with higher sparsity, the gap
between naive and permuted solutions increases as sparsity
increases, as shown in Figure 5d for width multiplier 1,4,8,
and 16. It can also be observed that at higher sparsity increas-
ing the rewind point improves both the LTH and permuted so-
lution but not the naive solution. The improved performance
of the permuted solution over naive supports our hypothesis
and shows that misalignment of the LTH mask and loss basin
corresponding to the new random initialization could explain
why LTH masks do not transfer to different initializations. We
also show accuracy vs. sparsity plots for k={10,25,50,100}
(details in Appendix A.5); as sparsity increases, the gap
between permuted and naive solution increases for all rewind
points. As illustrated in figure Figure 5, neither the LTH
nor the permuted solution performs effectively with random
initialization (k=0) but improves on increasing the rewind
point up to a certain point, beyond which it plateaus. Detailed
results are presented in Tables 5 to 8 in Appendix A.4.

We also validated our hypothesis on CIFAR-100 using
ResNet20 with varying widths. As shown in Figure 6,
the permuted solution consistently outperforms the naive
solution, showing that our hypothesis holds true across
different models and datasets. Similar to the CIFAR-10
dataset, as we increase the model width multiplier, the gap
between the permuted and naive solution increases, showing
the efficacy of our method. Detailed results are presented
in Tables 11 to 14 in Appendix A.4.

VGG11/CIFAR-10. We utilize the modified VGG11
architecture implemented by Jordan et al. (2023) trained
on CIFAR-10 (details in Appendix A.1). We observe
that for a moderate sparsity (80%) in Figure 8a, the gap

5

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

0 20 40 60 80 100
Rewind Points

89

90

91

92

93
Te

st
 A

cc
ur

ac
y

(%
)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

89

90

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
4

0 20 40 60 80 100
Rewind Points

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
93.0

93.5

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

92

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
8

0 20 40 60 80 100
Rewind Points

95.00

95.25

95.50

95.75

96.00

96.25

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
94.75

95.00

95.25

95.50

95.75

96.00

96.25

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)
LTH Naive Permuted

0 20 40 60 80 100
Rewind Points

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
16

0 20 40 60 80 100
Rewind Points

95.4

95.6

95.8

96.0

96.2

96.4

96.6

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

95.25

95.50

95.75

96.00

96.25

96.50

96.75

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

95.0

95.5

96.0

96.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

94.0

94.5

95.0

95.5

96.0

96.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(d) sparsity = 0.97

Figure 5. ResNet20×{w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind point on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing a model trained with the permuted mask
generalizes better than naive.

between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
π cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed

6

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

0 20 40 60 80 100
Rewind Points

64

66

68
Te

st
 A

cc
ur

ac
y

(%
)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points
58

60

62

64

66

68

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
4

0 20 40 60 80 100
Rewind Points

73

74

75

76

77

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
8

0 20 40 60 80 100
Rewind Points

77

78

79

80

81

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

76

77

78

79

80

81

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted
0 20 40 60 80 100

Rewind Points

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)
LTH Naive Permuted

0 20 40 60 80 100
Rewind Points

72

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

w
=
16

0 20 40 60 80 100
Rewind Points

80

81

82

83

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

0 20 40 60 80 100
Rewind Points

79

80

81

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

0 20 40 60 80 100
Rewind Points

78

79

80

81

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

0 20 40 60 80 100
Rewind Points

76

78

80

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(d) sparsity = 0.97

Figure 6. ResNet20×{w}/CIFAR-100. Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind points on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing model trained with the permuted model
generalizes better than naive.

in Section 4.3. Detailed results are presented in Table 10
in Appendix A.4. As demonstrated in Table 10, the permuted
solution outperforms the naive approach by nearly 2% at
higher sparsity levels.

4.2. Diversity Analysis of Permuted Models.

A limitation of LTH is that it consistently converges to very
similar solutions to the original pruned model (Evci et al.,
2022). Evci et al. (2022) speculate this occurs because the
LTH is always trained with the same initialization/rewind
point, and effectively relearns the same solution. Our
hypothesis is that permuted LTH masks, trained with distinct
initialization/rewind points and subject to approximation
errors in permutation matching, may learn more diverse
functions than the LTH itself. We analyze the diversity of
sparse models trained at 90% sparsity, with either a permuted

mask (permuted), the LTH mask (naive), LTH mask & init.
and the original pruned solution (IMP) on which the LTH
is based. We follow the same analysis as Evci et al. (2022)
and compare the diversity of the resulting models, over five
different training runs, using disagreement score, KL diver-
gence and JS divergence. We also compare with an ensemble
of five models trained independently with different random
seeds. As shown in Table 1, an ensemble of permuted models
shows higher diversity across all the metrics than the LTH,
showing that the permuted models learn a more diverse set
of solutions. We provide additional details in Appendix C.

4.3. Effect of Model Width Multiplier.

Permutation matching is an NP-hard problem; the activation
matching algorithm proposed by Ainsworth et al. (2023) does
not find the global optimum; rather, it uses a greedy search to

7

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

10 15 20 25 30 35 40 45 50
Rewind Points

84

86

88

90

92
Te

st
 A

cc
ur

ac
y

(%
)

LTH Naive Permuted

(a) sparsity = 0.80

10 15 20 25 30 35 40 45 50
Rewind Points

80.0

82.5

85.0

87.5

90.0

92.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

10 15 20 25 30 35 40 45 50
Rewind Points

80

85

90

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

Figure 7. ResNet50×{1}/ImageNet. Top-5 test accuracy vs.
rewinds points of sparse network solutions at various sparsity levels.
We observe the permuted solution consistently performing better
than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy

(%)
Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20×{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20×{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348

0 10 20 30 40 50
Rewind Points

89.5

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH
Naive

Permuted

(a) sparsity = 0.80

0 10 20 30 40 50
Rewind Points

89.0

89.5

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH
Naive

Permuted

(b) sparsity = 0.90

Figure 8. VGG11×{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k≥ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.

8

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Impact Statement
Our work focuses on improving sparse training and reducing
the computational cost of training DNN. By reducing the
computational and memory requirements of training and
inference, sparse training can facilitate the deployment
of deep learning models on resource-constrained devices.
However, most current hardware cannot leverage unstruc-
tured sparsity, which currently limits the impact of this work.
Furthermore, model pruning often introduces algorithmic
bias in the model (Hooker et al., 2020), it is important to
evaluate algorithmic bias of sparse models before deploying
for real-world applications.

Acknowledgements
We would like to acknowledge the assistance of Nayan
Saxena with an early code prototype for the project, and
Yigit Yargic with an early iteration of Figure 1.

We gratefully acknowledge the support of Alberta In-
novates (ALLRP-577350-22, ALLRP-222301502), the
Natural Sciences and Engineering Research Council of
Canada (NSERC) (RGPIN-2022-03120, DGECR-2022-
00358), and Defence Research and Development Canada
(DGDND-2022-03120).

This research was enabled in part by support provided by
the Digital Research Alliance of Canada (alliancecan.ca).
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector
Institute.

MA is supported by the NSERC Postgraduate Scholarship,
RBC Borealis through the Borealis AI Global Fellowship
Award and the Digital Research Alliance of Canada EDIA
Champions program. ES is supported by the Vector Research
Grant at the Vector Institute. RGK gratefully acknowledges
support from a Canada CIFAR AI Chair. YI is supported by
a Schulich Research Chair.

Contribution Statement
All authors contributed to the writing of the paper. MA and RJ
implemented the method, conducted most experiments, and
contributed the majority of the writing. MA and YI played
key roles in designing the methodology and experimental
setup. ES contributed to the design of the experimental setup,
provided key insights, hypothesized the connection to the
conclusion drawn by Paul et al. (2023), as summarized in Fig-
ure 4 and our contributions, and ran experiments to validate
it. RGK and YI, as senior authors, provided feedback on the
writing and methodology. YI conceptualized the research
idea, designed Figures 1, 2 and 12, and also contributed
feedback on code and experiments throughout the project.

References
Ainsworth, S. K., Hayase, J., and Srinivasa, S. S. Git re-basin:

Merging models modulo permutation symmetries. In
The Eleventh International Conference on Learning
Representations, (ICLR). OpenReview.net, 2023.

Bertsekas, D. Network optimization: continuous and
discrete models, volume 8. Athena Scientific, 1998.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA, pp. 248–255. IEEE Computer
Society, 2009. doi:10.1109/CVPR.2009.5206848.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

Evci, U., Ioannou, Y. A., Keskin, C., and Dauphin, Y.
Gradient flow in sparse neural networks and how
lottery tickets win. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence, February 2022.
doi:10.1609/aaai.v36i6.20611.

Fort, S., Hu, H., and Lakshminarayanan, B. Deep ensembles:
A loss landscape perspective. arXiv preprint, 2020.
doi:10.48550/arXiv.1912.02757.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Linear mode connectivity and the lottery ticket hypothesis.
In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint, abs/1902.09574,
2019. doi:10.48550/arXiv.1902.09574.

Goodfellow, I. J., Bengio, Y., and Courville, A. C. Deep
Learning. Adaptive computation and machine learning.
MIT Press, 2016. ISBN 978-0-262-03561-3.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural network. In
Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pp. 1135–1143, 2015.

9

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1609/aaai.v36i6.20611
https://doi.org/10.48550/arXiv.1912.02757
https://doi.org/10.48550/arXiv.1902.09574

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE
Computer Society, 2016. doi:10.1109/CVPR.2016.90.

Hecht-Nielsen, R. On The Algebraic Structure of Feed-
forward Network Weight Spaces. North-Holland,
Amsterdam, 1990. ISBN 978-0-444-88400-8.
doi:https://doi.org/10.1016/B978-0-444-88400-8.50019-
4.

Hooker, S., Moorosi, N., Clark, G., Bengio, S., and Denton,
E. Characterising bias in compressed models. arXiv
preprint, 2020. doi:10.48550/arXiv.2010.03058.

Ioffe, S. and Szegedy, C. Batch normalization: accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, pp. 448–456. JMLR.org, 2015.

Ito, A., Yamada, M., and Kumagai, A. Analysis
of linear mode connectivity via permutation-
based weight matching. arXiv preprint, 2024.
doi:10.48550/arxiv.2402.04051.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. REPAIR: renormalizing permuted activa-
tions for interpolation repair. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Krizhevsky, A. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

Kuhn, H. W. The hungarian method for the assignment
problem. In Jünger, M., Liebling, T. M., Naddef,
D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt,
G., Rinaldi, G., and Wolsey, L. A. (eds.), 50 Years
of Integer Programming 1958-2008 - From the Early
Years to the State-of-the-Art, pp. 29–47. Springer, 2010.
doi:10.1007/978-3-540-68279-0_2.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft,
J. Convergent learning: Do different neural networks
learn the same representations? In Storcheus, D.,
Rostamizadeh, A., and Kumar, S. (eds.), Proceedings of
the 1st International Workshop on Feature Extraction:
Modern Questions and Challenges at NIPS 2015,

volume 44 of Proceedings of Machine Learning Research,
pp. 196–212, Montreal, Canada, 11 Dec 2015. PMLR.

Nagarajan, V. and Kolter, J. Z. Uniform convergence may be
unable to explain generalization in deep learning. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Paganini, M. and Forde, J. Z. Streamlining tensor and net-
work pruning in pytorch. arXiv preprint, abs/2004.13770,
2020. doi:10.48550/arXiv.2004.13770.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.

Paul, M., Chen, F., Larsen, B. W., Frankle, J., Ganguli,
S., and Dziugaite, G. K. Unmasking the lottery ticket
hypothesis: What’s encoded in a winning ticket’s mask?
In The Eleventh International Conference on Learning
Representations, 2023.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Sharma, E., Kwok, D., Denton, T., Roy, D. M., Rolnick, D.,
and Dziugaite, G. K. Simultaneous linear connectivity
of neural networks modulo permutation. In Machine
Learning and Knowledge Discovery in Databases.
Research Track, pp. 262–279, Cham, 2024. Springer
Nature Switzerland.

Simonyan, K. and Zisserman, A. Very deep convolutional net-
works for large-scale image recognition. In Bengio, Y. and
LeCun, Y. (eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Simsek, B., Ged, F., Jacot, A., Spadaro, F., Hongler, C.,
Gerstner, W., and Brea, J. Geometry of the loss landscape
in overparameterized neural networks: Symmetries
and invariances. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning
Research, pp. 9722–9732. PMLR, 2021.

10

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1016/B978-0-444-88400-8.50019-4
https://doi.org/https://doi.org/10.1016/B978-0-444-88400-8.50019-4
https://doi.org/10.48550/arXiv.2010.03058
https://doi.org/10.48550/arxiv.2402.04051
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.48550/arXiv.2004.13770

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Singh, S. P. and Jaggi, M. Model fusion via optimal transport.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Tatro, N. J., Chen, P., Das, P., Melnyk, I., Sattigeri, P.,
and Lai, R. Optimizing mode connectivity via neuron
alignment. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

11

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

A. Appendix
A.1. Implementation Details for ResNet20 & VGG11 on CIFAR-10 and CIFAR-100

Architectures For residual neural networks, we train the standard ResNet20 on CIFAR-10 and CIFAR-100 with varying
width. We implemented a scalar, w, that adjusts the number of channels in each convolutional and fully connected layer:

• First Convolution Layer: The number of output channels is scaled from 16 to w×16.

• Layer 1,2,3: The number of output channels for the convolutional blocks in these layers are scaled from 16, 32, and
64 to w×16, w×32, and w×64, respectively.

• Fully Connected Layer: The input dimension to the final linear layer is scaled to w×64.

For convolutional neural networks, we train a modified version of the standard VGG11 implemented by Jordan et al. (2023)
on CIFAR-10. Primary differences are:

• A single fully connected layer at the end which directly maps the flattened feature map output from the convolutional
layers to the 10 classes for CIFAR-10 classification.

• The classifier is set up for CIFAR-10 with 10 output classes as originally VGG11 was designed for ImageNet with 1000
output classes (Deng et al., 2009).

Each of our results for a given rewound point, k, is averaged over 3 runs.

Datasets For our set of experiments we used the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009). We apply the
following standard data augmentation techniques to the training set:

• RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by default, 50%).

• RandomCrop: Randomly crops the image to a size of 32×32 pixels, with a padding of 4 pixels around the image.

Optimizers We use the following hyperparameters for ResNet20 and VGG11 trained on CIFAR-10/100, as outlined
in Table 2.

Hyperparameter Value
Optimizer SGD
Momentum 0.9
Dense Learning Rate 0.08
Sparse Learning Rate 0.02
Weight Decay 5×10−4

Batch Size 128
Epochs (T) 200

Table 2. Hyperparameters for dense and sparse training of both ResNet20 and VGG11.

A.2. Implementation Details for ResNet50 on ImageNet

Architecture We utilize the standard ResNet50 implementation provided by torchvision and customize PyTorch’s
distributed data parallel codebase for training models on ImageNet (Paszke et al., 2019).

Dataset For our set of experiments we used the ImageNet dataset (Deng et al., 2009). We apply the following standard
data augmentation techniques to the training set:

• RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by default, 50%).

• RandomResizedCrop: Randomly crops a region from the image and resizes it to 224×224 pixels.

12

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Optimizers We use the following hyperparameters for ResNet50 trained on ImageNet, as outlined in Table 3.

Hyperparameter Value
Optimizer SGD
Momentum 0.9
Dense Learning Rate 0.4
Sparse Learning Rate 0.4
Weight Decay 1×10−4

Batch Size 1024
Epochs (T) 80

Table 3. Hyperparameters for dense and sparse training of ResNet50.

A.3. Pruning

We apply standard Iterative Magnitude Pruning - Fine Tuning (IMP-FT) (Frankle & Carbin, 2019; Han et al., 2015; Renda
et al., 2020) to obtain our final mask, mA, producing a sparse subnetwork wt=T

A ⊙mA. For pruning, we utilize PyTorch’s
torch.nn.utils.prune library (Paganini & Forde, 2020).

1. In an unstructured, global manner, we identify and mask (set to zero) the smallest 20% of unpruned weights based on
their magnitude.

2. This process is repeated for s rounds to achieve the target sparsity S, with each subsequent round pruning 20% of the
remaining weights.

3. During each round, the model is trained for train_epochs_per_prune epochs.

Hyperparameter ResNet20/VGG11 ResNet50
train_epochs_per_prune 50 20
Learning Rate 0.01 0.04

Table 4. Hyperparameters used for pruning ResNet20/VGG11 on CIFAR-10/100 and ResNet50 on ImageNet.

A.4. Results

Detailed results for ResNet20×{w}/CIFAR-10 are provided in Tables 5 to 8, for VGG11×{1}/CIFAR-10 in Table 9, for
ResNet50×{1}/ImageNet in Table 10, and for ResNet20×{w}/CIFAR-100 in Tables 11 to 14.

A.5. Additional Plots

Refer to Figures 9 and 10 for additional accuracy-vs-sparsity plots for ResNet20 on CIFAR-10 and CIFAR-100. Refer
to Figure 11 for Top-1 accuracy vs. rewind points for ResNet50 on ImageNet.

B. Early Matching
In our current methodology, we train both models A and B to convergence, resulting in the weight configurations wt=T

A and
wt=T

B , respectively. However, it has been observed in (Sharma et al., 2024) that it is possible to find permutation mapping
earlier in training. In effort to reduce the computational cost associated with our approach, we aim to find a permutation
π that allows us to suitably align the weights of model A at convergence, wt=T

A , with the weights of model B at an earlier
training iteration i≪T , wt=i

B . In Table 15, we provide additional results on early matching with the CIFAR-10 dataset, which
shows that models can be matched earlier in the training, thus reducing the computational cost of our method.

13

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 5. ResNet20×{1}/CIFAR-10. Results using the ResNet20×{1} trained on CIFAR-10, from a rewind point k, using various methods
of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from a new
random initialization.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50 75 100

80%
LTH 90.41 ± 0.14 92.12 ± 0.25 92.08 ± 0.36 92.10 ± 0.27 92.25 ± 0.14 92.32 ± 0.26 92.15 ± 0.13 92.26 ± 0.19 92.21 ± 0.16

naive 89.67 ± 0.35 89.74 ± 0.69 90.16 ± 0.14 90.07 ± 0.09 90.13 ± 0.11 90.40 ± 0.11 90.66 ± 0.12 90.31 ± 0.27 90.45 ± 0.22
perm. 89.74 ± 0.05 90.15 ± 0.16 90.26 ± 0.08 90.72 ± 0.12 90.68 ± 0.18 90.72 ± 0.28 90.76 ± 0.27 91.13 ± 0.06 90.82 ± 0.21

90%
LTH 89.45 ± 0.10 91.27 ± 0.37 91.34 ± 0.29 91.34 ± 0.09 91.18 ± 0.27 91.43 ± 0.22 91.44 ± 0.12 91.36 ± 0.18 91.68 ± 0.28

naive 88.47 ± 0.21 88.70 ± 0.14 88.77 ± 0.21 88.84 ± 0.43 88.83 ± 0.27 88.78 ± 0.02 88.99 ± 0.08 88.81 ± 0.17 88.82 ± 0.07
perm. 88.59 ± 0.11 89.09 ± 0.22 89.56 ± 0.28 89.71 ± 0.12 89.50 ± 0.27 89.97 ± 0.13 89.84 ± 0.15 90.03 ± 0.07 89.77 ± 0.15

95%
LTH 87.83 ± 0.38 90.33 ± 0.22 90.39 ± 0.28 90.37 ± 0.21 90.58 ± 0.26 90.43 ± 0.20 90.56 ± 0.29 90.44 ± 0.26 90.40 ± 0.19

naive 86.89 ± 0.21 87.01 ± 0.23 86.88 ± 0.13 87.28 ± 0.19 87.31 ± 0.36 87.00 ± 0.19 86.88 ± 0.08 86.99 ± 0.29 86.50 ± 0.22
perm. 87.24 ± 0.22 87.70 ± 0.08 87.92 ± 0.25 88.23 ± 0.52 88.29 ± 0.52 88.24 ± 0.20 88.21 ± 0.30 88.21 ± 0.20 88.04 ± 0.22

97%
LTH 86.03 ± 0.22 88.00 ± 0.02 88.73 ± 0.05 89.00 ± 0.24 89.21 ± 0.23 89.27 ± 0.14 89.03 ± 0.27 89.12 ± 0.25 89.06 ± 0.21

naive 85.60 ± 0.38 85.43 ± 0.40 85.89 ± 0.37 85.48 ± 0.13 85.36 ± 0.14 85.70 ± 0.21 85.30 ± 0.32 85.14 ± 0.29 84.64 ± 0.34
perm. 85.61 ± 0.48 85.93 ± 0.34 86.26 ± 0.40 86.48 ± 0.39 86.12 ± 0.27 86.16 ± 0.14 86.43 ± 0.27 86.06 ± 0.26 85.95 ± 0.14

Table 6. ResNet20×{4}/CIFAR-10. Results using the ResNet20×{4} trained on CIFAR-10, from a rewind point k, using various methods
of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from a new
random initialization. Note this table is the same setting as Table 5 except w=4.

Rewind Epoch k

S Method k=0 5 10 15 20 25 50 75 100

80%
LTH 94.67 ± 0.14 95.57 ± 0.05 95.84 ± 0.15 95.80 ± 0.12 95.88 ± 0.20 95.72 ± 0.09 95.81 ± 0.10 95.83 ± 0.21 95.71 ± 0.16

naive 94.36 ± 0.04 94.55 ± 0.14 94.59 ± 0.29 94.74 ± 0.13 94.69 ± 0.09 94.81 ± 0.06 95.07 ± 0.17 95.02 ± 0.11 94.97 ± 0.21
perm. 94.39 ± 0.19 94.88 ± 0.28 95.15 ± 0.14 95.20 ± 0.16 95.17 ± 0.21 95.28 ± 0.29 95.43 ± 0.14 95.40 ± 0.10 95.30 ± 0.08

90%
LTH 94.43 ± 0.17 95.53 ± 0.21 95.63 ± 0.07 95.65 ± 0.30 95.66 ± 0.07 95.61 ± 0.14 95.56 ± 0.16 95.62 ± 0.14 95.50 ± 0.04

naive 93.79 ± 0.15 93.96 ± 0.05 94.09 ± 0.11 94.20 ± 0.29 94.35 ± 0.25 94.20 ± 0.13 94.27 ± 0.19 94.23 ± 0.08 94.19 ± 0.27
perm. 93.97 ± 0.29 94.64 ± 0.13 94.73 ± 0.17 94.93 ± 0.12 94.92 ± 0.11 94.90 ± 0.07 95.04 ± 0.14 95.07 ± 0.18 94.91 ± 0.19

95%
LTH 93.65 ± 0.12 95.26 ± 0.08 95.39 ± 0.05 95.32 ± 0.18 95.26 ± 0.03 95.33 ± 0.07 95.40 ± 0.14 95.19 ± 0.05 95.37 ± 0.21

naive 93.27 ± 0.07 93.30 ± 0.11 93.63 ± 0.04 93.61 ± 0.21 93.66 ± 0.13 93.67 ± 0.14 93.43 ± 0.21 93.51 ± 0.32 93.14 ± 0.03
perm. 93.54 ± 0.24 94.17 ± 0.07 94.46 ± 0.10 94.27 ± 0.19 94.61 ± 0.07 94.54 ± 0.07 94.75 ± 0.11 94.75 ± 0.09 94.54 ± 0.27

97%
LTH 93.00 ± 0.11 94.77 ± 0.09 94.86 ± 0.06 94.94 ± 0.17 94.96 ± 0.06 94.89 ± 0.21 95.00 ± 0.24 94.94 ± 0.10 94.97 ± 0.13

naive 92.63 ± 0.12 92.80 ± 0.10 92.85 ± 0.21 92.66 ± 0.21 92.74 ± 0.11 92.69 ± 0.14 92.28 ± 0.09 92.02 ± 0.18 91.87 ± 0.10
perm. 92.81 ± 0.27 93.54 ± 0.08 93.83 ± 0.12 93.75 ± 0.34 94.00 ± 0.33 94.12 ± 0.04 94.07 ± 0.31 94.32 ± 0.24 94.14 ± 0.04

C. Additional Details for Section 4.2
In Section 4.2, the IMP solution is trained independently over 5 different seeds with iterative pruning to obtain 5 different
sparse/pruned solutions with different sparse masks/topologies (M1, M2, M3, M4, M5). The LTH ensemble is trained using
the same mask (M1) and initialization (w1) over 5 different runs (with different data order). Random initialization w1 defines
the winning ticket for mask M1. The permuted ensemble is trained using 5 different permutations (π1, π2, π3, π4, π5) of
the same mask (M1) with five different random weight initializations (w1, w2, w3, w4, w5).

D. Computational Overhead of the Permuted Solution
The primary difference in computational complexity between the LTH, naive, and permuted solutions lies in the process
of neuronal alignment, where weight/activation matching is used to locate permutations in order to bring the hidden units
of two networks into alignment. To obtain the permuted solution, two distinct models must be trained independently to
convergence, after which their weights or activations are aligned through a permutation-matching process. This alignment,
though relatively efficient, adds a small computational overhead compared to LTH and naive solutions, which do not involve
matching steps. However, it’s important to note that the primary goal of this study is not to improve training efficiency but
rather to investigate why the LTH framework fails when applied to sparse training from new random initializations (not

14

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 7. ResNet20×{8}/CIFAR-10. Results using the ResNet20×{8} trained on CIFAR-10, from a rewind point k, using various methods
of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from a new
random initialization. Note this table is the same setting as Table 5 except w=8.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 95.35 ± 0.07 95.98 ± 0.14 96.12 ± 0.04 96.10 ± 0.20 96.21 ± 0.06

naive 95.17 ± 0.17 95.32 ± 0.13 95.63 ± 0.13 95.62 ± 0.08 95.79 ± 0.15
perm. 95.36 ± 0.14 95.60 ± 0.15 95.89 ± 0.19 95.94 ± 0.17 95.94 ± 0.06

90%
LTH 94.96 ± 0.18 95.97 ± 0.15 96.02 ± 0.05 96.00 ± 0.19 96.12 ± 0.10

naive 95.05 ± 0.07 95.12 ± 0.03 95.20 ± 0.22 95.44 ± 0.14 95.06 ± 0.25
perm. 95.05 ± 0.05 95.58 ± 0.06 95.78 ± 0.12 95.87 ± 0.13 95.85 ± 0.11

95%
LTH 94.86 ± 0.08 95.90 ± 0.15 95.93 ± 0.26 96.07 ± 0.25 96.00 ± 0.25

naive 94.60 ± 0.14 94.84 ± 0.13 94.93 ± 0.17 95.01 ± 0.33 94.59 ± 0.52
perm. 94.85 ± 0.19 95.29 ± 0.27 95.63 ± 0.11 95.67 ± 0.16 95.59 ± 0.22

97%
LTH 94.54 ± 0.23 95.79 ± 0.14 95.87 ± 0.03 95.78 ± 0.21 95.90 ± 0.04

naive 94.39 ± 0.04 94.39 ± 0.04 94.49 ± 0.18 94.19 ± 0.11 93.83 ± 0.08
perm. 94.46 ± 0.14 95.26 ± 0.10 95.16 ± 0.26 95.56 ± 0.06 95.45 ± 0.05

Table 8. ResNet20×{16}/CIFAR-10. Results using the ResNet20×{8} trained on CIFAR-10, from a rewind point k, using various
methods of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from
a new random initialization. Note this table is the same setting as Table 5 except w=16.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 95.62 ± 0.19 95.84 ± 0.36 96.05 ± 0.34 96.31 ± 0.18 96.36 ± 0.24

naive 95.47 ± 0.15 95.71 ± 0.22 95.71 ± 0.26 96.09 ± 0.04 95.99 ± 0.21
perm. 95.77 ± 0.11 95.79 ± 0.29 96.00 ± 0.14 96.24 ± 0.11 96.21 ± 0.06

90%
LTH 95.59 ± 0.22 96.10 ± 0.48 96.19 ± 0.49 96.18 ± 0.20 96.41 ± 0.14

naive 95.37 ± 0.09 95.47 ± 0.13 95.66 ± 0.01 95.70 ± 0.13 95.76 ± 0.14
perm. 95.58 ± 0.22 95.80 ± 0.14 96.11 ± 0.13 96.17 ± 0.17 96.04 ± 0.05

95%
LTH 95.08 ± 0.21 95.96 ± 0.39 96.12 ± 0.21 96.16 ± 0.30 96.26 ± 0.23

naive 95.27 ± 0.13 95.43 ± 0.09 95.57 ± 0.37 95.63 ± 0.25 95.27 ± 0.55
perm. 95.39 ± 0.26 96.02 ± 0.22 96.12 ± 0.18 96.18 ± 0.18 96.06 ± 0.09

97%
LTH 95.19 ± 0.27 95.84 ± 0.25 96.14 ± 0.30 96.12 ± 0.27 96.17 ± 0.33

naive 94.94 ± 0.04 95.06 ± 0.17 95.29 ± 0.15 95.13 ± 0.19 94.35 ± 0.45
perm. 95.07 ± 0.06 95.51 ± 0.22 95.88 ± 0.14 95.90 ± 0.24 95.88 ± 0.09

associated with the winning ticket’s mask).

E. Full Symmetry Figure including Lottery Ticket Hypothesis
In Figure 12 we include the full version of Figure 1, including an illustration of the LTH in Figure 12b.

15

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 9. VGG11×{1}/CIFAR-10. Results using the VGG11 trained on CIFAR-10, from a rewind point k, using various methods of
sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from a new random
initialization.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50

80%
LTH 89.94 ± 0.06 90.44 ± 0.17 90.91 ± 0.12 90.87 ± 0.16 91.14 ± 0.28 91.11 ± 0.08 91.22 ± 0.08

naive 89.70 ± 0.13 89.90 ± 0.18 90.04 ± 0.07 90.34 ± 0.16 90.48 ± 0.19 90.55 ± 0.17 90.87 ± 0.19
perm. 89.94 ± 0.1 90.18 ± 0.08 90.52 ± 0.17 90.71 ± 0.22 90.77 ± 0.19 90.81 ± 0.19 91.07 ± 0.21

90%
LTH 89.33 ± 0.16 90.82 ± 0.09 90.97 ± 0.14 91.05 ± 0.04 91.15 ± 0.11 90.91 ± 0.17 91.08 ± 0.31

naive 89.17 ± 0.2 89.55 ± 0.02 89.81 ± 0.02 89.49 ± 0.05 89.68 ± 0.11 89.80 ± 0.03 89.80 ± 0.05
perm. 89.30 ± 0.02 90.33 ± 0.08 90.44 ± 0.14 90.46 ± 0.04 90.75 ± 0.22 90.76 ± 0.12 91.01 ± 0.06

Table 10. ResNet50×{1}/ImageNet. Top-1 and Top-5 Accuracies of ResNet50×{1} trained on ImageNet, from a rewind point k, using
various methods of sparse training with sparsity S.

Top-1 Accuracy Top-5 Accuracy

S Method k= 10 25 50 k= 10 25 50

80%
LTH 72.87 72.16 65.23 91.13 90.66 86.65

naive 69.13 68.94 60.30 88.85 88.1 83.22
perm. 69.87 69.85 61.14 89.16 89.45 84.04

90%
LTH 71.40 70.74 60.62 90.27 90.00 83.94

naive 65.49 64.77 54.46 86.55 86.26 79.07
perm. 66.25 66.37 57.40 87.23 87.37 81.45

95%
LTH 68.61 68.07 59.83 89.03 88.25 82.96

naive 61.39 60.77 51.78 83.79 83.58 76.79
perm. 62.48 62.77 52.98 84.51 84.79 78.11

16

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 11. ResNet20×{1}/CIFAR-100. Results using the ResNet20×{1} trained on CIFAR-100, from a rewind point k, using various
methods of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from
a new random initialization.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 63.69 ± 0.41 67.67 ± 0.08 67.66 ± 0.25 67.82 ± 0.17 67.73 ± 0.38

naive 62.89 ± 0.16 63.37 ± 0.09 63.07 ± 0.44 63.36 ± 0.27 63.33 ± 0.35
perm. 63.04 ± 0.24 64.07 ± 0.15 64.71 ± 0.10 64.52 ± 0.78 64.57 ± 0.49

90%
LTH 59.81 ± 0.29 65.21 ± 0.17 65.15 ± 0.28 65.10 ± 0.30 65.17 ± 0.21

naive 58.77 ± 0.28 59.59 ± 0.18 59.44 ± 0.27 59.19 ± 0.41 58.58 ± 0.16
perm. 59.32 ± 0.32 60.60 ± 0.79 61.32 ± 0.33 61.53 ± 0.65 60.93 ± 0.51

95%
LTH 55.71 ± 0.52 61.08 ± 0.54 61.73 ± 0.18 61.65 ± 0.37 61.68 ± 0.18

naive 54.04 ± 0.29 55.20 ± 0.39 54.65 ± 0.38 54.96 ± 0.57 53.97 ± 0.91
perm. 55.12 ± 0.17 56.93 ± 0.26 57.64 ± 0.36 57.47 ± 0.66 57.13 ± 0.34

97%
LTH 51.10 ± 0.34 56.14 ± 0.56 56.92 ± 0.25 56.94 ± 0.13 56.93 ± 0.06

naive 49.70 ± 0.64 49.60 ± 0.25 49.49 ± 0.32 49.16 ± 0.21 47.70 ± 0.83
perm. 50.34 ± 0.21 51.55 ± 0.69 51.88 ± 1.08 52.64 ± 0.34 50.96 ± 1.15

Table 12. ResNet20×{4}/CIFAR-100. Results using the ResNet20×{4} trained on CIFAR-100, from a rewind point k, using various
methods of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from
a new random initialization. Note this table is the same setting as Table 11 except w=4.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 74.46 ± 0.12 77.57 ± 0.06 77.35 ± 0.31 77.75 ± 0.26 77.64 ± 0.14

naive 73.30 ± 0.08 74.10 ± 0.12 74.98 ± 0.17 75.21 ± 0.12 75.20 ± 0.16
perm. 73.68 ± 0.09 75.24 ± 0.31 75.74 ± 0.41 76.12 ± 0.37 76.19 ± 0.39

90%
LTH 72.54 ± 0.57 76.56 ± 0.11 76.56 ± 0.32 76.80 ± 0.34 76.80 ± 0.21

naive 71.97 ± 0.30 72.56 ± 0.22 72.89 ± 0.27 72.59 ± 0.15 72.54 ± 0.33
perm. 72.18 ± 0.23 74.17 ± 0.35 74.21 ± 0.23 74.45 ± 0.27 74.89 ± 0.47

95%
LTH 71.16 ± 0.23 75.41 ± 0.18 75.53 ± 0.11 75.68 ± 0.17 75.76 ± 0.17

naive 70.17 ± 0.47 70.95 ± 0.50 70.90 ± 0.18 71.21 ± 0.26 69.95 ± 0.42
perm. 70.41 ± 0.07 72.70 ± 0.21 72.92 ± 0.39 73.65 ± 0.28 73.41 ± 0.18

97%
LTH 69.06 ± 0.03 74.00 ± 0.39 74.08 ± 0.37 74.18 ± 0.18 74.29 ± 0.31

naive 68.40 ± 0.21 69.26 ± 0.19 69.06 ± 0.11 68.67 ± 0.47 68.42 ± 0.78
perm. 69.08 ± 0.22 71.41 ± 0.54 71.49 ± 0.32 71.92 ± 0.17 72.20 ± 0.08

17

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 13. ResNet20×{8}/CIFAR-100. Results using the ResNet20×{8} trained on CIFAR-100, from a rewind point k, using various
methods of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from
a new random initialization. Note this table is the same setting as Table 11 except w=8.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 78.09 ± 0.28 80.63 ± 0.32 80.83 ± 0.39 80.92 ± 0.06 80.66 ± 0.34

naive 76.86 ± 0.17 77.47 ± 0.35 78.20 ± 0.61 78.65 ± 0.33 78.74 ± 0.39
perm. 77.34 ± 0.26 78.82 ± 0.34 79.20 ± 0.16 79.55 ± 0.38 79.54 ± 0.39

90%
LTH 76.47 ± 0.43 80.02 ± 0.07 80.10 ± 0.13 79.98 ± 0.33 79.98 ± 0.20

naive 75.68 ± 0.23 76.36 ± 0.21 76.80 ± 0.14 77.27 ± 0.12 76.55 ± 0.49
perm. 76.17 ± 0.26 77.99 ± 0.17 78.22 ± 0.15 78.62 ± 0.19 78.82 ± 0.17

95%
LTH 75.38 ± 0.02 79.42 ± 0.06 79.24 ± 0.19 79.35 ± 0.06 79.29 ± 0.13

naive 74.78 ± 0.15 75.48 ± 0.18 75.53 ± 0.15 75.27 ± 0.15 74.38 ± 0.65
perm. 75.07 ± 0.14 76.97 ± 0.46 77.80 ± 0.14 77.74 ± 0.51 78.04 ± 0.42

97%
LTH 73.97 ± 0.21 78.63 ± 0.25 78.65 ± 0.50 78.74 ± 0.49 78.47 ± 0.16

naive 73.13 ± 0.26 73.73 ± 0.12 73.76 ± 0.27 73.26 ± 0.07 72.79 ± 0.46
perm. 73.81 ± 0.67 76.29 ± 0.14 76.38 ± 0.57 76.57 ± 0.29 76.79 ± 0.76

Table 14. ResNet20×{16}/CIFAR-100. Results using the ResNet20×{16} trained on CIFAR-100, from a rewind point k, using various
methods of sparse training with sparsity S. LTH trains within the original dense/pruned solution basin, while naive/permuted train from
a new random initialization. Note this table is the same setting as Table 11 except w=16.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 80.21 ± 0.18 82.32 ± 0.34 82.40 ± 0.26 82.48 ± 0.38 82.16 ± 0.30

naive 79.31 ± 0.06 79.50 ± 0.09 80.24 ± 0.17 81.02 ± 0.11 81.01 ± 0.07
perm. 79.35 ± 0.11 80.44 ± 0.40 81.15 ± 0.48 81.57 ± 0.38 81.81 ± 0.21

90%
LTH 79.31 ± 0.16 82.26 ± 0.18 82.14 ± 0.08 81.95 ± 0.03 82.11 ± 0.12

naive 78.78 ± 0.37 79.26 ± 0.11 79.42 ± 0.51 79.56 ± 0.26 79.57 ± 0.13
perm. 79.20 ± 0.09 80.49 ± 0.32 80.59 ± 0.15 81.12 ± 0.05 81.24 ± 0.09

95%
LTH 78.32 ± 0.34 81.57 ± 0.09 81.57 ± 0.32 81.47 ± 0.25 81.63 ± 0.07

naive 78.01 ± 0.02 78.53 ± 0.10 78.45 ± 0.21 78.38 ± 0.43 77.49 ± 0.06
perm. 78.25 ± 0.20 79.76 ± 0.20 80.50 ± 0.04 80.47 ± 0.08 80.25 ± 0.21

97%
LTH 77.49 ± 0.27 81.07 ± 0.07 81.06 ± 0.11 81.11 ± 0.18 81.14 ± 0.32

naive 76.46 ± 0.44 76.71 ± 0.41 77.19 ± 0.09 76.93 ± 0.36 75.53 ± 0.40
perm. 77.04 ± 0.38 79.14 ± 0.17 79.30 ± 0.21 79.62 ± 0.14 79.63 ± 0.06

18

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(a) rewind=10

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(d) rewind = 100

w
=
4

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(e) rewind=10

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(f) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

92

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(g) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(h) rewind = 100

w
=
8

0.80 0.85 0.90 0.95
Sparsity

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(i) rewind=10

0.80 0.85 0.90 0.95
Sparsity

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(j) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(k) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

94.0

94.5

95.0

95.5

96.0

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(l) rewind = 100

w
=
16

0.80 0.85 0.90 0.95
Sparsity

95.0

95.5

96.0

96.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(m) rewind=10

0.80 0.85 0.90 0.95
Sparsity

95.25

95.50

95.75

96.00

96.25

96.50

96.75

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(n) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

95.00

95.25

95.50

95.75

96.00

96.25

96.50

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(o) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

94.0

94.5

95.0

95.5

96.0

96.5

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(p) rewind = 100

Figure 9. Accuracy vs sparsity trend for ResNet20×{w}/CIFAR-10.As the width increases, the gap between permuted and naive solutions
increases, showing permuted masks help with sparse training. With increased width, we observe a more significant gap seen throughout
Figures 9d, 9h, 9l and 9p and the permuted solution approaches the LTH solution. The dashed (- -) line shows the dense model accuracy.

19

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

0.80 0.85 0.90 0.95
Sparsity

50

55

60

65

70
Te

st
 A

cc
ur

ac
y

(%
)

LTH Naive Permuted

(a) rewind=10

0.80 0.85 0.90 0.95
Sparsity

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) rewind=25

0.80 0.85 0.90 0.95
Sparsity

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) rewind=50

0.80 0.85 0.90 0.95
Sparsity

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(d) rewind=100

w
=
4

0.80 0.85 0.90 0.95
Sparsity

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(e) rewind=10

0.80 0.85 0.90 0.95
Sparsity

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(f) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(g) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(h) rewind = 100

w
=
8

0.80 0.85 0.90 0.95
Sparsity

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(i) rewind=10

0.80 0.85 0.90 0.95
Sparsity

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(j) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(k) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

72

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(l) rewind = 100

w
=
16

0.80 0.85 0.90 0.95
Sparsity

76

77

78

79

80

81

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(m) rewind=10

0.80 0.85 0.90 0.95
Sparsity

77

78

79

80

81

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(n) rewind = 25

0.80 0.85 0.90 0.95
Sparsity

77

78

79

80

81

82

83

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(o) rewind = 50

0.80 0.85 0.90 0.95
Sparsity

76

78

80

82

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(p) rewind = 100

Figure 10. Accuracy vs sparsity trend for ResNet20×{w}/CIFAR-100. Similar to the phenomenon seen in Figure 9, with higher width,
the gap between permuted and naive solutions increases. As seen in Figures 10d, 10h, 10l and 10p and the permuted solution approaches
the LTH solution. The dashed (- -) line shows the dense model accuracy.

10 20 30 40 50
Rewind Points

60

62

64

66

68

70

72

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(a) sparsity = 0.80

10 20 30 40 50
Rewind Points

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(b) sparsity = 0.90

10 20 30 40 50
Rewind Points

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

LTH Naive Permuted

(c) sparsity = 0.95

Figure 11. ResNet50×{1}/ImageNet. Top-1 test accuracy vs rewinds points of sparse network solutions at various sparsity levels. We
observe the permuted solution consistently peroforming better than the naive solution for all sparsities. The dashed (- -) line shows the
dense model accuracy.

20

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Table 15. ResNet20×{1}/CIFAR-10. Results using the ResNet20×{1} trained on CIFAR-10, from a rewind point k=20, using various
methods of sparse training with sparsity S. The LTH and naive methods remain fixed as they are independent of matching. For the permuted
method, the permutation, π, is obtained by matching a fully trained dense model at t=T (T =200) with another model at an early point
in training at t= i, where i∈{5,20,50,100}.

Early Matching Point t

S Method t=5 20 50 100 200

80%
LTH 92.25 ± 0.14
naive 90.13 ± 0.11

perm. 90.49 ± 0.37 90.34 ± 0.63 90.42 ± 0.29 90.42 ± 0.25 90.68 ± 0.18

90%
LTH 91.18 ± 0.27
naive 88.83 ± 0.27

perm. 89.16 ± 0.51 89.23 ± 0.59 89.39 ± 0.69 89.31 ± 0.60 89.50 ± 0.27

95%
LTH 90.58 ± 0.26
naive 87.31 ± 0.36

perm. 87.37 ± 0.33 87.68 ± 0.77 87.43 ± 1.00 87.54 ± 0.43 88.29 ± 0.52

97%
LTH 89.21 ± 0.23
naive 85.36 ± 0.14

perm. 85.77 ± 0.44 85.93 ± 0.94 86.09 ± 0.51 85.88 ± 0.47 86.12 ± 0.27

21

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

initialization

sparse
solution

dense

mask
train

high loss

low loss

(a) Dense training and pruning model A. (b) LTH training model A with pruned mask.

(c) Sparse training model B with A mask.

Figure 12. Weight Symmetry and the Sparse Training Problem (Full Figure). A model with a single layer and only two parameters,
w=(w0,w1), operating on a single input x0 has the weight symmetry in the 2D loss landscape as illustrated above. In (a) the original dense
model, wA, is trained from a random dense initialization, wt=0

A to a dense solution, wt=T
A , which is then pruned using weight magnitude

resulting in the mask mA =(1,0). In (b) we re-use the init. wt=0
A , to train model A with the pruned mask from (a), mA, as in the LTH.

In (c), naively using the same mask to train a model, B, from a different random initialization will likely result in the initialization being
far from a good solution. Permuting the mask to match the (symmetric) basin in which the new initialization is in will enable sparse training.

22

