A TRAINING DETAILS

Here we provide configurations used for training 5 and finetuning 6 our models. For pre-training, we follow a similar recipe as in MAE (He et al., 2022). For linear probing we use AdamW instead of LARS (You et al., 2017) as in MAE (He et al., 2022).

Config	Value
optimizer	AdamW (Loshchilov & Hutter, 2017)
base learning rate	1e-4
minimum absolute lr	0.0
weight decay	0.05
optimizer momentum	$\beta_1 = 0.9, \beta_2 = 0.95$
batch size	4096
learning rate schedule	cosine decay (Loshchilov & Hutter, 2017)
warmup epochs	20
training epochs	400
augmentation	RandAug (9, 0.5)
label smoothing	0.1
mixup	0.0
cutmix	0.0
drop path	0
layer decay	1.0

Table 5: **Pre-training recipe for GMAE**.

Config	Value
optimizer	AdamW (Loshchilov & Hutter, 2017)
base learning rate	1e-4
minimum absolute lr	0.0
weight decay	0.01
optimizer momentum	$\beta_1 = 0.9, \beta_2 = 0.999$
batch size	4096
learning rate schedule	linear decay
warmup epochs	10
training epochs	90
augmentation	BasicAug
label smoothing	0.1
mixup	0.8
cutmix	0.5
drop path	0.2
layer decay	0.8

Table 6: Fine tuning recipe GMAE.

A.1 MORE SAMPLES

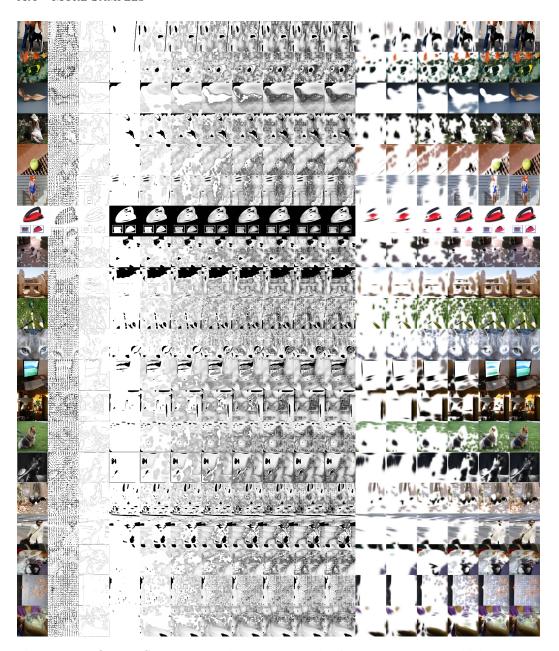


Figure 12: **Unfiltered Samples:** We show more samples from ImageNet-1K, which RGB, XY positions of Gaussians, layering of Gaussians, and RGB layering.

A.2 RESIDUAL GAUSSIANS

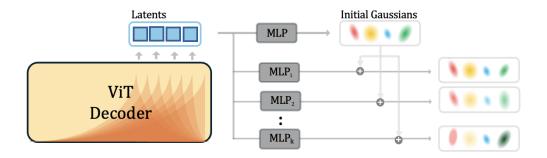


Figure 13: **Learning Residual Gaussians:** After we pretrained the model on N number of Gaussians, we increase the total number of Gaussians by learning k different small changes to the initial Gaussians. We learn k mlp layers, which learns a small changes to the initial Gaussians. We initialize k mlp-layers with zero weights. Finally all Gaussians from each mlp head is is combined to get a total of $k \times N$ Gaussians.